PBPK Evaluation of Sofosbuvir Dose in Pediatrics Using Simcyp®
Abstract
:1. Introduction
2. Methods
2.1. Model Development
2.2. Model Verification
2.3. Paediatric Simulation
3. Results
3.1. Model Development
3.2. Model Verification
3.3. Paediatric Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.-S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.-H.; Negro, F.; et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet. Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbouBakr, O.; El Regal, M.E.; Sarhan, A.A.; Zaki, M.E.S.; Noaman, A. Safety and efficacy of ledipasvir/sofosbuvir in the treatment of chronic hepatitis C virus infection in treatment-naïve children without and with comorbidities. Pediatr. Drugs 2022, 24, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Watts, T.; Stockman, L.; Martin, J.; Guilfoyle, S.; Vergeront, J.M. Increased risk for mother-to-infant transmission of hepatitis C virus among medicaid recipients—Wisconsin, 2011–2015. Morb. Mortal. Wkly. Rep. 2017, 66, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, A.; Genedy, M.; El-Refai, S.; Funk, A.L.; Fontanet, A.; Talaat, M. The prevalence of hepatitis C virus infection in egypt 2015: Implications for future policy on prevention and treatment. Liver Int. 2017, 37, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhan, P.; Menéndez-Arias, L.; Poongavanam, V. Discovery and development of antiviral therapies for chronic hepatitis C virus infection. In Advances in Experimental Medicine and Biology; Springer Singapore Pte. Limited: Singapore, 2021; Volume 1322, pp. 139–157. [Google Scholar] [CrossRef]
- Bhatia, H.K.; Singh, H.; Grewal, N.; Natt, N.K. Sofosbuvir: A novel treatment option for chronic hepatitis C infection. J. Pharmacol. Pharmacother. 2014, 5, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, B.J.; Symonds, W.T.; Kearney, B.P.; Mathias, A.A. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of the hepatitis C virus NS5B polymerase inhibitor sofosbuvir. Clin. Pharmacokinet. 2015, 54, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Lopez, F.; Rivero, A.; Rivero-Juárez, A. Pharmacokinetics and pharmacodynamics of sofosbuvir and ledipasvir for the treatment of hepatitis C. Expert Opin. Drug Metab. Toxicol. 2017, 13, 105–112. [Google Scholar] [CrossRef]
- Turner, D.B.; Liu, B.; Patel, N.; Pathak, S.M.; Polak, S.; Jamei, M.; Dressman, J.; Rostami-Hodjegan, A. Comment on “in silico modeling of gastrointestinal drug absorption: Predictive performance of three physiologically-based absorption models”. Mol. Pharm. 2017, 14, 336–339. [Google Scholar] [CrossRef]
- Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res. 2022, 39, 1701–1731. [Google Scholar] [CrossRef]
- Huisinga, W.; Telgmann, R.; Wulkow, M. The virtual laboratory approach to pharmacokinetics: Design principles and concepts. Drug Discov. Today 2006, 11, 800–805. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, E.; Thörn, H.; Tannergren, C. In silico modeling of gastrointestinal drug absorption: Predictive performance of three physiologically based absorption models. Mol. Pharm. 2016, 13, 1763–1778. [Google Scholar] [CrossRef]
- El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos. 2021, 42, 107–117. [Google Scholar] [CrossRef]
- Margolskee, A.; Darwich, A.S.; Pepin, X.; Aarons, L.; Galetin, A.; Rostami-Hodjegan, A.; Carlert, S.; Hammarberg, M.; Hilgendorf, C.; Johansson, P.; et al. IMI—Oral biopharmaceutics tools project—Evaluation of bottom-up PBPK prediction success part 2: An introduction to the simulation exercise and overview of results. Eur. J. Pharm. Sci. 2017, 96, 610–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA Approves Two Hepatitis C Drugs for Pediatric Patients. Fda Approves Two Hepatitis Drugs. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-two-hepatitis-c-drugs-pediatric-patients (accessed on 26 October 2022).
- Certara. Certara.com Web Site. Available online: https://www.certara.com/ (accessed on 2 October 2020).
- Predict Drug Performance from Virtual Populations Simcyp™ PBPK Simulator. Available online: https://www.certara.com/software/simcyp-pbpk/ (accessed on 26 October 2022).
- Web Plot Digitizer. WebPlotDigitizer.com Web Site. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 20 October 2019).
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e63. [Google Scholar] [CrossRef]
- Rezk, M.R.; Bendas, E.R.; Basalious, E.B.; Karim, I.A. Quantification of sofosbuvir and ledipasvir in human plasma by UPLC–MS/MS method: Application to fasting and fed bioequivalence studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1028, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Tahat, L.; Mohammed, M.K.; Tayyem, R.F.; Khwairakpam, G.; Nath, S.; Freeman, J.; Benbitour, I.; Helmy, S. Bioequivalent pharmacokinetics for generic and originator hepatitis C direct-acting antivirals. J. Virus Erad. 2018, 4, 128–131. [Google Scholar] [CrossRef]
- Chappell, C.A.; Scarsi, K.K.; Kirby, B.J.; Suri, V.; Gaggar, A.; Bogen, D.L.; Macio, I.S.; Meyn, L.A.; Bunge, K.E.; Krans, E.E.; et al. Ledipasvir plus sofosbuvir in pregnant women with hepatitis C virus infection: A phase 1 pharmacokinetic study. Lancet Microbe 2020, 1, e200–e208. [Google Scholar] [CrossRef]
- Abdallah, O.M.; Abdel-Megied, A.M.; Gouda, A.S. Development a validated highly sensitive LC–MS/MS method for simultaneous quantification of ledipasvir, sofosbuvir and its major metabolite GS-331007 in human plasma: Application to a human pharmacokinetic study. J. Pharm. Biomed. Anal. 2017, 143, 305–310. [Google Scholar] [CrossRef]
- Majnooni, M.B.; Miraghaee, S.-S.; Keshavarzi, S.; Mohammadi, B.; Sajadimajd, S.; Hatami, R.; Bahrami, G. Rapid and sensitive UHPLC-DAD method for simultaneous determination of sofosbuvir and ledipasvir in human serum. J. Pharm. Biomed. Anal. 2021, 195, 113860. [Google Scholar] [CrossRef]
- Mogalian, E.; Brainard, D.M.; Osinusi, A.; Moorehead, L.; Murray, B.; Ling, K.H.J.; Perry, R.; Curtis, C.; Lawitz, E.; Lasseter, K.; et al. Pharmacokinetics and safety of velpatasvir and sofosbuvir/velpatasvir in subjects with hepatic impairment. Clin. Pharmacokinet. 2018, 57, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Xu, B.; Liu, L.; Li, Y.; Zhang, P.; Wang, Y. Evaluation of the pharmacokinetics and food intake effect of generic sofosbuvir in healthy chinese subjects. Int. J. Clin. Pharmacol. Ther. 2020, 58, 230–241. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, X.; Zhang, H.; Chen, H.; Niu, J.; Chen, G.; Li, X.; Ding, Y. Pharmacokinetic profile of a generic formulation of sofosbuvir and its metabolite GS-331007 in healthy chinese subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Rezk, M.R.; Basalious, E.B.; Badr, K.A. Novel determination of sofosbuvir and velpatasvir in human plasma by UPLC–MS/MS method: Application to a bioequivalence study. Biomed. Chromatogr. 2018, 32, e4347. [Google Scholar] [CrossRef]
- German, P.; Mathias, A.; Brainard, D.; Kearney, B.P. Clinical pharmacokinetics and pharmacodynamics of ledipasvir/sofosbuvir, a fixed-dose combination tablet for the treatment of hepatitis C. Clin. Pharmacokinet. 2016, 55, 1337–1351. [Google Scholar] [CrossRef]
- Schwarz, K.B.; Rosenthal, P.; Murray, K.F.; Honegger, J.R.; Hardikar, W.; Hague, R.; Mittal, N.; Massetto, B.; Brainard, D.M.; Hsueh, C.; et al. Ledipasvir-Sofosbuvir for 12 Weeks in children 3 to <6 Years old with chronic hepatitis C. Hepatology 2020, 71, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.; Schwarz, K.B.; Gonzalez-Peralta, R.P.; Lin, C.; Kelly, D.A.; Nightingale, S.; Balistreri, W.F.; Bansal, S.; Jonas, M.M.; Massetto, B.; et al. Sofosbuvir and ribavirin therapy for children aged 3 to <12 years with hepatitis C virus genotype 2 or 3 infection. Hepatology 2020, 71, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.F.; Balistreri, W.F.; Bansal, S.; Whitworth, S.; Evans, H.M.; Gonzalez-Peralta, R.P.; Wen, J.; Massetto, B.; Kersey, K.; Shao, J.; et al. Safety and efficacy of Ledipasvir–Sofosbuvir with or without ribavirin for chronic hepatitis C in children ages 6–11. Hepatology 2018, 68, 2158–2166. [Google Scholar] [CrossRef]
- Johnson, T.N. The problems in scaling adult drug doses to children. Arch. Dis. Child. 2008, 93, 207–211. [Google Scholar] [CrossRef]
Population | Dose |
---|---|
Healthy Adults | 400 mg |
Pediatric: Currently Approved | |
3–6 yo < 17 kg | 150 mg |
6–12 yo | 200 mg |
Physicochemical Parameter | Value | References |
---|---|---|
Molecular Weight (g/mol) | 529.45 | |
Log P | 1.6 | [20] |
Compound Type | Weak Acid | [20] |
Pka | 9.3 | [20] |
B/P | 0.71 | [20] |
Fu | 0.17 for healthy adults | [20] |
Absorption Model: Advanced Dissolution Absorption and Metabolism (ADAM) | ||
GI Peff (10−4 cm/s) | 7 | Predicted based on sensitivity analysis |
Formulation | Solid formulation Immediate release Dissolution Profile | Dissolution profile in supplemental data |
Distribution Model: Full PBPK Model | ||
Vss (L/kg) | 1.97 | Predicted Simcyp® method 1 |
Elimination: Enzyme Kinetics | ||
Clint: Recombinant CES1 (µg/mL/mg) | 49 | Sensitivity analysis |
CLR (L/h) | 14.2 | [7] |
Observed Data (Age Group) | AUC (μg·h/L) | Cmax (μg/L) | ||||
---|---|---|---|---|---|---|
Pred | Obs | Fold (Pred/Obs) | Pred | Obs | Fold (Pred/Obs) | |
Schwarz et al. 150 mg (3–6 y/o) [30] | 2908 | 2500 | 1.2 | 1596 | 1420 | 1.1 |
Rosenthal et al. 200 mg (6–12 y/o) [31] | 1842 | 960 | 1.9 | 1048 | 609 | 1.7 |
Murray et al. 200 mg (6–12 y/o) [32] | 1842 | 1600 | 1.2 | 1048 | 906 | 1.2 |
Simulated dose of 6 mg/kg (3–6 yo) | 2057 | N/A | N/A | 1109 | N/A | N/A |
Simulated dose of 6 mg/kg (6–12 yo) | 1412 | N/A | N/A | 795 | N/A | N/A |
AUC (μg·h/L) | Cmax (μg/L) | |||||
---|---|---|---|---|---|---|
Published Studies | Pred | Obs | Fold (Pred/Obs) | Pred | Obs | Fold (Pred/Obs) |
* Hill et al. [21] | 2051 | 1123 | 1.8 | 545 | 531 | 1.02 |
** Abdallah et al. [23] | 2051 | 1105 | 1.9 | 545 | 910 | 0.6 |
** Majnooni et al. [24] | 2051 | 1057 | 1.9 | 545 | 387 | 1.4 |
** German et al. [29] | 2051 | 1370 | 1.5 | 545 | 703 | 0.8 |
Observed | HCV Adult Patients 400 mg [7] | Pediatric Patients (3–6 y/o) 150 mg [30] | * Pediatric Patients (6–12 y/o) 200 mg [31,32] | ||
---|---|---|---|---|---|
Sofosbuvir | % ped/adult | % ped/adult | |||
AUC (μg·h/L) | 1030 | 2500 | 243% | 1280 | 124% |
Cmax (μg/L) | 511 | 1420 | 278% | 738 | 144% |
Active Metabolite GS-331007 | |||||
AUC (μg·h/L) | 7120 | 11,700 | 164% | 7895 | 110% |
Cmax (μg/L) | 582 | 1000 | 172% | 839 | 144% |
Pediatric Age Range | (3–6 y/o) | (6–12 y/o) | ||||
---|---|---|---|---|---|---|
Predicted | 150 mg | 6 mg/kg | % Predicted 6 mg/kg/150 mg | 200 mg | 6 mg/kg | % Predicted 6 mg/kg/200 mg |
AUC (μg·h/L) | 2908 | 2057 | 71% | 1842 | 1412 | 77% |
Cmax (μg/L) | 1586 | 1109 | 70% | 1048 | 795 | 76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkeeb, R.; Avartoomian, A.; Gouda, A.S.; Abdel-Megied, A.M.; Abdallah, O.; Atef, E. PBPK Evaluation of Sofosbuvir Dose in Pediatrics Using Simcyp®. Sci. Pharm. 2023, 91, 38. https://doi.org/10.3390/scipharm91030038
Elkeeb R, Avartoomian A, Gouda AS, Abdel-Megied AM, Abdallah O, Atef E. PBPK Evaluation of Sofosbuvir Dose in Pediatrics Using Simcyp®. Scientia Pharmaceutica. 2023; 91(3):38. https://doi.org/10.3390/scipharm91030038
Chicago/Turabian StyleElkeeb, Rania, Anomeh Avartoomian, Amira S. Gouda, Ahmed M. Abdel-Megied, Ola Abdallah, and Eman Atef. 2023. "PBPK Evaluation of Sofosbuvir Dose in Pediatrics Using Simcyp®" Scientia Pharmaceutica 91, no. 3: 38. https://doi.org/10.3390/scipharm91030038
APA StyleElkeeb, R., Avartoomian, A., Gouda, A. S., Abdel-Megied, A. M., Abdallah, O., & Atef, E. (2023). PBPK Evaluation of Sofosbuvir Dose in Pediatrics Using Simcyp®. Scientia Pharmaceutica, 91(3), 38. https://doi.org/10.3390/scipharm91030038