GC-MS Analysis of the Phytochemical Constituents, Safety Assessment, Wound Healing and Anti-Inflammatory Activities of Cucurbita pepo Leaf Extract in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Authentication
2.2. Extract Preparation
2.3. Gas Chromatography-Mass Spectrometric (GC-MS) Analysis
2.4. Animals
2.4.1. Acute Toxicity Study
2.4.2. Subacute Toxicity Study
2.4.3. Blood Sample and Organ Collection
2.4.4. Blood Analysis
2.4.5. Clinical Biochemical Analysis
2.4.6. Histopathology
2.5. Wound Healing Experiments
2.5.1. Excision Wound Models
2.5.2. Wound Incision Model
2.5.3. Wound Breaking Strength Measurement
2.6. Anti-Inflammatory
2.7. Data Analysis
3. Results
3.1. Identification of Chemical Compounds Present in Methanol Extract of C. Pepo by GC-MS
3.2. Acute Oral Toxicity
3.3. Subacute Toxicity
3.4. Effect on Biochemical and Hematological Parameters
3.5. Wound Healing Activity
3.6. Effect of C. pepo Extract on Egg Albumin-Induced Paw Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Saleem, U.; Khalid, S.; Zaib, S.; Anwar, F.; Ahmad, B.; Ullah, I.; Zeb, A.; Ayaz, M. Phytochemical analysis and wound healing studies on ethnomedicinally important plant Malva neglecta Wallr. J. Ethnopharmacol. 2020, 249, 112401. [Google Scholar] [CrossRef] [PubMed]
- Ovais, M.; Zia, N.; Ahmad, I.; Khalil, A.T.; Raza, A.; Ayaz, M.; Sadiq, A.; Ullah, F.; Shinwari, Z.K. Phyto-therapeutic and nanomedicinal approach to cure Alzheimer disease: Present status and future opportunities. Front. Aging Neurosci. 2018, 10, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Damiano, R.; Cai, T.; Fornara, P.; Franzese, C.A.; Leonardi, R.; Mirone, V. The role of Cucurbita pepo in the management of patients affected by lower urinary tract symptoms due to benign prostatic hyperplasia: A narrative review. Arch. Ital. Urol. Androl. 2016, 88, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugbogu, E.A.; Ude, V.C.; Elekwa, I.; Arunsi, U.O.; Uche-Ikonne, C.; Nwakanma, C. Toxicological profile of the aqueous-fermented extract of Musa paradisiaca in rats. Avicenna J. Phytomed. 2018, 8, 478–487. [Google Scholar] [PubMed]
- Lei, Z.Y.; Chen, J.J.; Cao, Z.J.; Ao, M.Z.; Yu, L.J. Efficacy of Aeschynomene indica L. leaves for wound healing and isolation of active constituent. J. Ethnopharmacol. 2019, 228, 156–163. [Google Scholar] [CrossRef]
- Esimone, C.; Nworu, C.; Jackson, C. Cutaneous wound healing activity of herbal ointment containing the leaf extract of Jatropha curcas L. (Euphorbiaceae). Int. J. Appl. Res. Nat. Prod. 2008, 1, 1–4. [Google Scholar]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Mfotie Njoya, E.; Coopoosamy, R.M.; van Staden, J. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. S. Afr. J. Bot. 2019, 126, 232–240. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [Green Version]
- Meguellati, H.; Ouafi, S.; Saad, S.; Djemouai, N. Evaluation of acute, subacute oral toxicity and wound healing activity of mother plant and callus of Teucrium polium L. subsp. geyrii Maire from Algeria. S. Afr. J. Bot. 2019, 127, 25–34. [Google Scholar] [CrossRef]
- Chabane, S.; Boudjelal, A.; Keller, M.; Doubakh, S.; Potterat, O. Teucrium polium—Wound healing potential, toxicity and polyphenolic profile. S. Afr. J. Bot. 2021, 137, 228–235. [Google Scholar] [CrossRef]
- Okur, M.E.; Karadağ, A.E.; Özhan, Y.; Sipahi, H.; Ayla, Ş.; Daylan, B.; Kültür, Ş.; Demirci, B.; Demirci, F. Anti-inflammatory, analgesic and in vivo-in vitro wound healing potential of the Phlomis rigida Labill. extract. J. Ethnopharmacol. 2021, 266, 113408. [Google Scholar] [CrossRef] [PubMed]
- Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric. 2013, 93, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Gul, S.; Batool, S.; Fatima, B.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N.; et al. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J. Phytopharmacol. 2017, 6, 133–139. [Google Scholar]
- Müller, C.; Bracher, F. Determination by GC-IT/MS of phytosterols in herbal medicinal products for the treatment of lower urinary tract symptoms and food products marketed in Europe. Planta Med. 2015, 81, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafarian, A.; Zolfaghari, B.; Parnianifard, M. The effects of methanolic, chloroform, and ethylacetate extracts of the Cucurbita pepo L. on the delay type hypersensitivity and antibody production. Res. Pharm. Sci. 2012, 7, 217–224. [Google Scholar] [PubMed]
- Sharma, P.; Kaur, G.; Kehinde, B.A.; Chhikara, N.; Panghal, A.; Kaur, H. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: A review. Int. J. Veg. Sci. 2020, 26, 79–95. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S. Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res. Int. 2009, 42, 641–646. [Google Scholar] [CrossRef]
- Badr, S.E.; Shaaban, M.; Elkholy, Y.M.; Helal, M.H.; Hamza, A.S.; Masoud, M.S.; El Safty, M.M. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 2011, 25, 1524–1539. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, V.B.; Askari, V.R.; Tajani, A.S.; Hosseini, A.; Rakhshandeh, H. Evaluation of the sleep-prolonging effect of Lagenaria vulgaris and Cucurbita pepo extracts on pentobarbital-induced sleep and possible mechanisms of action. Medicina 2018, 54, 55. [Google Scholar] [CrossRef] [Green Version]
- Asowata-Ayodele, A.M.; Afolayan, A.J.; Otunola, G.A. Ethnobotanical survey of culinary herbs and spices used in the traditional medicinal system of Nkonkobe Municipality, Eastern Cape, South Africa. S. Afr. J. Bot. 2016, 104, 69–75. [Google Scholar] [CrossRef]
- OECD. Guidance document on acute oral toxicity testing. In OECD Series on Testing and Assessment; OECD: Paris, France, 2001; Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)10 (accessed on 20 June 2022).
- OECD. Test No. 425: Acute Oral Toxicity: Up-And-Down Procedure. In Guidelines for the Testing of Chemicals; OECD: Paris, France, 2008. [Google Scholar]
- OECD. Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents. In Guidelines for the Testing of Chemicals; OECD: Paris, France, 2008. [Google Scholar] [CrossRef]
- Sun, M.; Zigma, S. An improved spectrophotometer assay of superoxide dismutase based on epinephrine antioxidation. Anal. Biochem. 1978, 90, 81–89. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Method in Enzymology, 105; Academic Press: New York, NY, USA, 1984; pp. 121–126. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 1192–11205. [Google Scholar] [CrossRef]
- Gautam, M.K.; Purohit, V.; Agarwal, M.; Singh, A.; Goel, R.K. In vivo healing potential of aegle marmelos in excision, incision, and dead space wound models. Sci. World J. 2014, 2014, 740107. [Google Scholar] [CrossRef] [Green Version]
- Adewumi, S.S.; Akinpelu, B.A.; Akinpelu, D.A.; Aiyegoro, O.A.; Alayande, K.A.; Agunbiade, M.O. Studies on wound healing potentials of the leaf extract of Terminalia avicennioides (Guill. & parr.) on Wistar rats. S. Afr. J. Bot. 2020, 133, 285–297. [Google Scholar] [CrossRef]
- Kumar, M.S.; Kirubanandan, S.; Sripriya, R.; Sehgal, P.K. Triphala promotes healing of infected full-thickness dermal wound. J. Surg. Res. 2008, 144, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.S.; Anderson, M.; Pinto Pereira, L.M. Evaluation of wound-healing potential of Catharanthus roseus leaf extract in rats. Fitoterapia 2007, 78, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Ali, S.S.; Khan, N.A.; Mishra, A.; Mishra, A.K. Wound healing potential of Cleome viscosa Linn. seeds extract and isolation of active constituent. S. Afr. J. Bot. 2017, 112, 460–465. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Singh, A.; Gaurav, K.; Goel, S.; Khanna, H.D.; Goel, R.K. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats. Indian J. Exp. Biol. 2009, 47, 32–40. [Google Scholar]
- Kumar, B.; Vinaykumar, M.; Govindarajan, R.; Pushpangadan, P. Ethanopharmacological approaches to wound healing exploring medicinal plants of India. J. Ethnopharmacol. 2007, 114, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H. Studies on mechanism of action of salicylates. Retardation of wound healing by aspirin. J. Pharm. Sci. 1968, 51, 1042–1043. [Google Scholar] [CrossRef] [PubMed]
- Orieke, D.; Ohaeri, O.C.; Ijeh, I.I.; Ijioma, S.N. Gastrointestinal and uterine smooth muscles relaxant and anti-inflammatory effects of Corchorus olitorius leaf extract in laboratory animal models. J. Ethnopharmacol. 2020, 247, 112224. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Q.; Li, S.; Chen, C.; Chen, Z.; Huang, W. In vitro antimicrobial activities and mechanism of 1-octen-3-ol against food-related bacteria and pathogenic fungi. J. Oleo Sci. 2017, 66, 1041–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.H.; Sun, H.L.; Chen, S.Y.; Zeng, L.; Wang, T.T. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Paparella, A.; Shaltiel-Harpaza, L.; Ibdah, M. β-Ionone: Its occurrence and biological function and metabolic engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]
- De Moraes, J.; de Oliveira, R.N.; Costa, J.P.; Junior, A.L.; de Sousa, D.P.; Freitas, R.M.; Allegretti, S.M.; Pinto, P.L. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS Negl. Trop. Dis. 2014, 8, e2617. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Karadeniz, F. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 2012, 65, 223–233. [Google Scholar] [CrossRef]
- Ugbogu, E.A.; Nwoku, C.D.; Ude, V.C.; Emmanuel, O. Evaluating bioactive constituents and toxicological effect of aqueous extract of fermented Pentaclethra macrophylla seeds in rats. Avicenna J. Phytomed. 2020, 10, 101–113. [Google Scholar]
- Bello, I.; Bakkouri, A.S.; Tabana, Y.M.; Al-Hindi, B.; Al-Mansoub, M.A.; Mahmud, R.; Asmawi, M.Z. Acute and sub-acute toxicity evaluation of the methanolic extract of Alstonia scholaris stem bark. Med. Sci. 2016, 4, 4. [Google Scholar] [CrossRef]
- Teo, S.; Stirling, D.; Thomas, S.; Hobeerman, A.; Kiorpes, A.; Khetani, V. A 90-day oral gavage toxicity study of D-methylphenidate and D, L-methylphenidate in Sprague-Dawley rats. Toxicology 2002, 179, 183–196. [Google Scholar] [CrossRef]
- Michael, B.; Yano, B.; Sellers, R.S.; Perry, R.; Morton, D.; Roome, N.; Johnson, J.K.; Schafer, K.; Pitsch, S. Evaluation of organ weights for rodent and non-rodent toxicity studies: A review of regulatory guidelines and a survey of current practices. Toxicol. Pathol. 2007, 35, 742–750. [Google Scholar] [CrossRef] [PubMed]
- James, R.W. The relevance of clinical pathology to toxicology studies. Comp. Haematol. Int. 1993, 3, 190–195. [Google Scholar] [CrossRef]
- Emmanuel, O.; Okezie, U.M.; Iweala, E.J.; Ugbogu, E.A. Pretreatment of red palm oil extracted from palm fruit (Elaeis guineensis) attenuates carbon tetrachloride induced toxicity in Wistar rats. Phytomed. Plus 2021, 1, 100079. [Google Scholar] [CrossRef]
- Nagata, S.; Nagase, H.; Kawane, K.; Mukae, N.; Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 2003, 10, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Auti, S.; Kulkarni, Y. Acute and 28-day repeated dose oral toxicity study of caraway oil in rats. Drug Metab. Pers. Ther. 2019, 34, 20190011. [Google Scholar] [CrossRef]
- Thounaojam, M.C.; Jadeja, R.N.; Sankhari, J.M.; Devkar, R.V.; Ramachandran, A.V. Safety evaluations on ethanolic extract of red cabbage (Brassica oleracea L.) in mice. J. Food Sci. 2011, 76, 35–39. [Google Scholar] [CrossRef]
- Mukinda, J.T.; Syce, J.A. Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents. J. Ethnopharmacol. 2007, 112, 138–144. [Google Scholar] [CrossRef]
- Ismail, M.D.; Hossain-Faruk, M.D.; Tanu, R.A.; Shekhar, H.U. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. Biomed. Res. Int. 2015, 2015, 486120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffone, M.G.; Verstraeten, S.V.; Calamera, J.C.; Doncel, G.F. High cholesterol content and decreased membrane fluidity in human spermatozoa are associated with protein tyrosine phosphorylation and functional deficiencies. J. Androl. 2009, 30, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Ajiboye, J.A.; Adejobi, R.O.; Okafor, O.Y.; Kosoko, S.B.; Owolabi, F.O. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats. Asian Pac. J. Trop. Med. 2011, 4, 182–184. [Google Scholar] [CrossRef] [Green Version]
- Onyema, O.O.; Farombi, E.O.; Emerole, G.O.; Ukoha, A.I.; Onyeze, G.O. Effect of vitamin E on monosodium glutamate induced hepatoxicity and oxidative stress in rats. Indian J. Biochem. Biophys. 2005, 43, 20–24. [Google Scholar]
- Okafor, O.Y.; Erukainure, O.L.; Ajiboye, J.A.; Adejobi, R.O.; Owolabi, F.O.; Kosoko, S.B. Pineapple peel extract modulates lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats. Asian Pac. J. Trop. Biomed. 2011, 1, 12–14. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.; Schewe, T. Phospholipase A2s and lipid peroxidation. Biochimica Biophysica Acta 2000, 1488, 167–181. [Google Scholar] [CrossRef]
- Okereke, G.; Emmanuel, O.; Ude, V.C.; Ekweogu, C.N.; Ikpeazu, V.O.; Ugbogu, E.A. Physicochemical characteristics, acute and subacute toxicity of cashew nut shell oil in Wistar rats. Sci. Afr. 2020, 8, e00391. [Google Scholar] [CrossRef]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4- induced liver injury in low-protein fed rats. Phytother. Res. 2006, 20, 935–940. [Google Scholar] [CrossRef]
- Lynn, S.; Gurr, J.R.; Lai, H.T.; Jan, K.Y. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ. Res. 2000, 86, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Chitra, S.; Patil, M.B.; Ravi, K. Wound healing activity of Hyptis suaveolens (L) poit (Laminiaceae). Int. J. Pharmtech. Res. 2009, 1, 737–744. [Google Scholar]
- Ayyanar, M.; Ignacimuthu, S. Herbal medicines for wound healing among tribal people in Southern India: Ethnobotanical and scientific evidences. Int. J. Appl. Res. Nat. Prod. 2009, 2, 29–42. [Google Scholar]
- Wild, T.; Rahbarnia, A.; Kellner, M.; Sobotka, L.; Eberlein, T. Basics in nutrition and wound healing. Nutrition 2010, 26, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Frangez, I.; Cankar, K.; Frangez, H.B.; Smrke, D.M. The effect of LED on blood microcirculation during chronic wound healing in diabetic and on diabetic patients—a prospective, double-blind randomized study. Lasers Med. Sci. 2017, 32, 887–894. [Google Scholar] [CrossRef]
- Ozay, Y.; Guzel, S.; Erdogdu, I.H.; Yildirim, Z.; Pehlivanoglu, B.; Aydın Turk, B.; Darcan, S. Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats. Records Nat. Prod. 2018, 12, 350–366. [Google Scholar] [CrossRef]
- Ananth, K.; Asad, M.; Kumar, N.P.; Asdaq, M.B.; Rao, G.S. Evaluation of wound healing potential of Bauhinia purpurea leaf extracts in rats. Indian J. Pharm. Sci. 2010, 72, 122–127. [Google Scholar]
- Siwik, D.A.; Pagano, P.J.; Colucci, W.S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. 2001, 280, 53–60. [Google Scholar] [CrossRef]
- Rodriguez, P.G.; Felix, F.N.; Woodley, D.T.; Shim, E.K. The role of oxygen in wound healing: A review of the literature. Dermatol. Surg. 2008, 34, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Boakye, Y.D.; Agyare, C.; Hensel, A. Anti-infective properties and time-kill kinetics of Phyllanthus muellerianus and its major constituent, geraniin. Med. Chem. 2016, 6, 95–104. [Google Scholar] [CrossRef]
- Akindele, J.A.; Oladimeji-Salami, J.A.; Usuwah, B.A. Antinociceptive and anti-inflammatory activities of Telfairia occidentalis hydroethanolic leaf extract (Cucurbitaceae). J. Med. Food 2015, 18, 1157–1163. [Google Scholar] [CrossRef]
A | |||
---|---|---|---|
Peak No. | Compound | Retention Time | Quantity (%) |
1 | 1-Octen-3-ol | 4.45 | 2.71 |
2 | Hexane, 4-ethyl-2-methyl- | 4.580 | 8.42 |
3 | Nonanal | 6.79 | 6.18 |
4 | 1-Cyclohexene-1-carboxaldehyde, 2, 6,6-trimethyl- | 9.10 | 2.32 |
5 | 1,6,6-Trimethyl-7-(3-oxobut-1-enyl)-3,8-dioxatricyclo[5.1.0.0(2,4)]octan-5-one | 13.04 | 1.87 |
6 | Cyclohexene, 2-ethenyl-1,3,3-trimethyl- | 13.46 | 2.01 |
7 | Trans-β-Ionone | 13.76 | 1.84 |
8 | Cyclohexane, 1,1’-(1,2-dimethyl-1, 2-ethanediyl)bis- | 16.03 | 1.86 |
9 | 2-Pentadecanone, 6,10,14-trimethyl | 20.20 | 2.24 |
10 | 4-Tetradecene, (Z)- | 21.00 | 6.99 |
11 | 1-Heneicosanol | 25.29 | 12.32 |
12 | Phytol | 25.80 | 3.09 |
13 | Trans-Farnesol | 27.39 | 3.96 |
14 | 1,5,9-Undecatriene, 2,6,10-trimethyl-, (Z)- | 27.49 | 6.33 |
15 | Squalene | 27.53 | 1.73 |
B | |||
Compound Name | Structure | Medicinal Uses | Reference |
1-Octen-3-ol | Antimicrobial properties | [38] | |
Nonanal | Antifungal activity | [39,40] | |
trans-β-Ionone | Anti-inflammatory, cancer-preventing, antibacterial, antifungal, and antileishmanial | [41] | |
Phytol | Anti-inflammatory, antinociceptive and antioxidant effects | [42] | |
trans-Farnesol | Anti-Inflammatory, antimicrobial and anti-Cancer properties | [43] | |
Squalene | Anticancer and antioxidant activities | [44] |
Death/Number of Animals | |||
---|---|---|---|
Dose (mg/kg) | Male | Female | Death/Total Number of Rats |
0 | 0/5 | 0/5 | 0/10 |
500 | 0/5 | 0/5 | 0/10 |
1000 | 0/5 | 0/5 | 0/10 |
2000 | 0/5 | 0/5 | 0/10 |
3000 | 0/5 | 0/5 | 0/10 |
4000 | 0/5 | 0/5 | 0/10 |
5000 | 0/5 | 0/5 | 0/10 |
Cucarbita pepo Extract (mg/kg) | ||||
---|---|---|---|---|
Organs | Normal Control | 200 mg/kg | 400 mg/kg | 800 mg/kg |
Kidney | 1.17 ± 0.35 | 1.01 ± 0.06 | 0.98 ± 0.15 | 0.96 ± 0.06 |
Lungs | 1.17 ± 0.35 | 1.05 ± 0.12 | 0.98 ± 0.12 | 0.96 ± 0.29 |
Spleen | 0.97 ± 0.25 | 0.81 ± 0.17 | 0.76 ± 0.20 | 0.77 ± 0.10 |
Liver | 6.53 ± 0.58 | 5.69 ± 0.12 | 5.46 ± 0.47 | 5.19 ± 0.26 |
Heart | 0.57 ± 0.06 | 0.49 ± 0.12 | 0.49 ± 0.06 | 0.50 ± 0.06 |
Testes | 2.37 ± 0.06 | 2.07 ± 0.12 | 1.99 ± 0.20 | 1.97 ± 0.12 |
Cucarbita pepo Leaf Extract (mg/kg) | ||||
---|---|---|---|---|
Parameters | Normal Control | 200 mg/kg | 400 mg/kg | 800 mg/kg |
RBC (×1012/L) | 6.19 ± 0.23 a | 5.91 ± 0.39 a | 5.82 ± 0.14 a | 5.78 ± 0.75 a |
PCV (%) | 40.75 ± 0.96 a | 38.37 ± 2.22 a | 37.52 ± 0.82 a | 36.98 ± 5.20 a |
HB (g/dL) | 12.41 ± 0.19 a | 11.86 ± 1.00 a | 11.62 ± 0.24 a | 11.54 ± 0.52 a |
WBC (×109/L) | 12.99 ± 4.60 a | 11.08 ± 0.32 a | 10.34 ± 0.87 a | 9.97 ± 1.02 a |
Platelet (×109/L) | 307.25 ± 26.22 a | 282.15 ± 18.39 a | 279.19 ± 18.63 a | 280.54 ± 35.00 a |
MCV (fl) | 65.91 ± 1.24 a | 59.18 ± 2.15 b | 56.67 ± 1.75 b | 54.25 ± 9.82 b |
MCH (pg) | 20.07 ± 0.50 a | 18.14 ± 0.48 a | 17.40 ± 0.41 a | 17.12 ± 0.73 a |
MCHC (g/L) | 30.29 ± 0.59 a | 27.79 ± 0.75 b | 26.88 ± 0.33 b | 26.63 ± 1.16 b |
Neutrophil (%) | 57.25 ± 2.22 a | 50.35 ± 1.71 b | 48.85 ± 1.29 b | 47.80 ± 2.16 b |
Lymphocyte (%) | 34.50 ± 2.38 b | 32.49 ± 1.73 b | 31.13 ± 2.22 b | 30.66 ± 2.06 b |
Monocyte (%) | 5.00 ± 0.82 a | 4.48 ± 0.50 a | 4.42 ± 0.50 a | 4.44 ± 0.58 a |
Eosinophil (%) | 3.00 ± 0.20 a | 2.60 ± 0.96 a | 2.53 ± 0.50 a | 2.53 ± 0.82 a |
Basophil (%) | 0.25 ± 0.50 a | 0.48 ± 0.50 a | 0.55 ± 0.50 a | 0.58 ± 0.50 a |
Group | Day 0 | Day 4 | Day 8 | Day 12 | Day 16 | Day 20 | EIN (Days) |
---|---|---|---|---|---|---|---|
C (HA) | 440.00 ± 10.00 | 350.00 ± 20.00 | 280.00 ± 26.45 | 243.33 ± 15.28 | 150.00 ± 10.00 | 60.00 ± 10.00 b | 22 |
% WC | - | 20.46 ± 2.23 a | 36.25 ± 6.52 a | 44.64 ± 4.46 a | 65.88 ± 2.71 a | 86.39 ± 1.97 b | |
PI (HA) | 416.00 ± 6.56 | 270.00 ± 10.00 | 160.00 ± 10.00 | 90.00 ± 10.00 | 40.00 ± 10.00 | 0.00 ± 0.00 | 20 |
% WC | - | 35.10 ± 2.23 b | 61.54 ± 2.25 b | 78.34 ± 2.74 b | 94.06 ± 4.61 b | 100 ± 0.00 | |
C. pepo extract (HA) | 412.33 ± 2.52 | 211.67 ± 7.64 | 126.67 ± 20.82 | 40.00 ± 10.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 16 |
% WC | - | 48.66 ± 1.81 c | 65.93 ± 4.46 b | 90.05 ± 2.83 c | 100 ± 0.00 | 100 ± 0.00 |
Group | Tensile Strength (g) |
---|---|
Control | 192.83 ± 7.15 a |
Providone iodine | 240.33 ± 6.50 b |
C. pepo extract | 334.03 ± 12.48 c |
Cucarbita pepo Extract | |||||
---|---|---|---|---|---|
Parameters | Control | Aspirin 100 mg/kg | 200 mg/kg | 400 mg/kg | 800 mg/kg |
Pre induction paw circumference (mm) | 23.67 ± 2.62 a | 25.67 ± 1.89 a | 26.33 ± 0.94 a | 21.33 ± 2.62 a | 24.33 ± 0.47 a |
Paw circumference at induction (mm) | 34.33 ± 1.70 a | 34.67 ± 1.25 a | 33.67 ± 0.47 a | 33.67 ± 0.47 a | 33.33 ± 1.89 a |
Paw circumference, 30 min. post-induction (mm) | 38.67 ± 2.62 c | 31.67 ± 1.25 a | 33.67 ± 0.47 a | 33.00 ± 0.00 a | 35.00 ± 0.00 b |
Paw circumference, 60 min. post-induction (mm) | 40.67 ± 0.47 b | 28.00 ± 2.16 a | 31.67 ± 1.25 a | 30.00 ± 0.82 a | 32.00 ± 0.00 a |
Paw circumference, 120 min. post-induction (mm) | 37.33 ± 1.70 c | 24.33 ± 2.62 a | 30.00 ± 0.82 b | 28.33 ± 0.47 b | 30.00 ± 0.82 b |
Cucarbita pepo Extract (mg/kg) | |||||
---|---|---|---|---|---|
Parameters | Control | Aspirin 100 mg/kg | 200 mg/kg | 400 mg/kg | 800 mg/kg |
% Rise in paw circumference at induction | 46.15 ± 9.81 c | 35.91 ± 12.36 b | 27.95 ± 2.86 a | 60.31 ± 20.35 d | 37.11 ± 9.37 b |
% Fall in paw circumference, 30 min. post-induction | −13.21 ± 12.64 a | 8.66 ± 0.32 d | −0.03 ± 2.44 b | 1.96 ± 1.39 c | −5.33 ± 5.73 b |
% Fall in paw circumference, 60 min. post-induction | −14.16 ± 12.79 a | 19.32 ± 3.90 d | 5.91 ± 4.14 b | 10.90 ± 1.48 c | 3.70 ± 5.24 b |
% Fall in paw circumference, 120 min. post-induction | −8.79 ± 2.43 a | 26.14 ± 5.09 d | 10.87 ± 2.72 b | 15.84 ± 1.29 c | 9.61 ± 7.07 b |
Cucarbita pepo Extract | |||||
---|---|---|---|---|---|
Control | Aspirin 100 mg/kg | 200 mg/kg | 400 mg/kg | 800 mg/kg | |
Fall in paw circumference after 120 min (mm) | −3.00 ± 0.82 a | 9.00 ± 1.41 c | 3.67 ± 0.94 b | 5.33 ± 0.47 b | 3.33 ± 2.62 b |
Percentage anti- inflammatory activity | 0.00 ± 0.00 | 318.65 ± 73.88 d | 225.00 ± 20.41 b | 288.89 ± 43.74 c | 163.89 ± 30.68 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akubugwo, E.I.; Emmanuel, O.; Ekweogu, C.N.; Ugbogu, O.C.; Onuorah, T.R.; Egeduzu, O.G.; Ugbogu, E.A. GC-MS Analysis of the Phytochemical Constituents, Safety Assessment, Wound Healing and Anti-Inflammatory Activities of Cucurbita pepo Leaf Extract in Rats. Sci. Pharm. 2022, 90, 64. https://doi.org/10.3390/scipharm90040064
Akubugwo EI, Emmanuel O, Ekweogu CN, Ugbogu OC, Onuorah TR, Egeduzu OG, Ugbogu EA. GC-MS Analysis of the Phytochemical Constituents, Safety Assessment, Wound Healing and Anti-Inflammatory Activities of Cucurbita pepo Leaf Extract in Rats. Scientia Pharmaceutica. 2022; 90(4):64. https://doi.org/10.3390/scipharm90040064
Chicago/Turabian StyleAkubugwo, Emmanuel Iroha, Okezie Emmanuel, Celestine Nwabu Ekweogu, Ositadinma Chinyere Ugbogu, Tochukwu Remigius Onuorah, Ozioma Glory Egeduzu, and Eziuche Amadike Ugbogu. 2022. "GC-MS Analysis of the Phytochemical Constituents, Safety Assessment, Wound Healing and Anti-Inflammatory Activities of Cucurbita pepo Leaf Extract in Rats" Scientia Pharmaceutica 90, no. 4: 64. https://doi.org/10.3390/scipharm90040064
APA StyleAkubugwo, E. I., Emmanuel, O., Ekweogu, C. N., Ugbogu, O. C., Onuorah, T. R., Egeduzu, O. G., & Ugbogu, E. A. (2022). GC-MS Analysis of the Phytochemical Constituents, Safety Assessment, Wound Healing and Anti-Inflammatory Activities of Cucurbita pepo Leaf Extract in Rats. Scientia Pharmaceutica, 90(4), 64. https://doi.org/10.3390/scipharm90040064