The Role of Digital Media in Shaping Youth Planetary Health Interests in the Global Economy
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Review and Conceptual Framework
2.2. Empirical Review and Hypotheses Formulation
3. Methods
3.1. Description of the Data and Variables
Dependents Variables Description
- IntBiosph: defined as , it is a qualitative ordinal response assuming the values (1—unaware and not interested, 2—Hardly interested, 3—Aware and Interested). As shown in Table A1 its mean value is 2.28 with a standard deviation of 0.79.
- IntScPrevDis: defined as , it is also a qualitative ordinal variable that assumes the values (1—unaware and not interested, 2—Hardly interested, 3—Aware and Interested). As shown in Table A1 its mean value is 2.62 with a standard deviation of 0.68.
3.2. Specification of the Econometric Model
3.3. Model Estimation
3.4. Bayesian MCMC Sampling Schemes for Identification of the Model
3.4.1. Updating the Latent Utilities from the Biosphere and Science-Based Disease Prevention
3.4.2. Location Effects Vector Updating
3.4.3. Variance-Covariance Structures (G and R) Updating
3.4.4. Cutoff Points Updating
4. Results
4.1. Descriptive Results
4.2. Econometric Results
4.2.1. Random Effects, Residuals and Cutoff Points Estimates
4.2.2. Digital Media Consumption and Youths Interests in the Biosphere
4.2.3. Digital Media Consumption and Youths Interests in Science-Based Disease Prevention
4.2.4. Control Variables and Youths Interests in the Biosphere, and Science-Based Disease Prevention
5. Discussion
6. Conclusions
6.1. Implication
6.2. Limits and Future Research Topic
Author Contributions
Funding
Conflicts of Interest
Appendix A
Quantitative Variables | (Means and Standard Deviations) | Mean | s.d. |
---|---|---|---|
(Dependents) | |||
IntBiosph | Level of interest in Ecosystem services and Sustainability (Biosphere) | ||
1: Unaware and Not interested, 2: Hardly Interested, | 2.28 | 0.79 | |
3: Aware and Interested; | |||
IntScPrevDis | Level of Interest in how science can help prevent disease; | ||
1: Unaware and Not interested, 2: Hardly Interested, | 2.62 | 0.68 | |
3: Aware and Interested; | |||
(Digital Media Diet) | How often student do the following: | ||
1—never or Hardly, 2—sometimes, 3—regularly, 4—very often. | |||
EcoWebVisit | ↪ Visit Ecological Websites | 3.41 | 0.82 |
BlogsVisit | ↪ Follow news via blogs | 3.27 | 0.91 |
BroadScWeb | ↪ Visit websites on broad science | 3.06 | 0.91 |
(Socio-Economic) | |||
AGE | Student’s age | 15.84 | 0.29 |
WEALTH | Student’s family wealth index value | 0.14 | 1.34 |
ESCS | Standardized Index of economic, social and cultural status | 0.13 | 1.14 |
MISCED | Student’s Mother Education level | 4.50 | 1.66 |
FISCED | Student’s Father Education level | 4.38 | 1.65 |
WFSTUWT | Student final weight in the Data | 161.61 | 240.95 |
Qualitative Variables | (absolute and percent relative frequencies) | Abs. Freq. | Rel. Freq. |
(Demographic) | |||
Gender | Gender: | ||
1—Female | 9419 | 52.38 | |
2—Male | 8562 | 47.62 | |
IMMIG | Student Immigration status: | ||
1—Native | 14,973 | 83.27 | |
2—Second-generation | 1623 | 9.03 | |
3—First-generation | 1385 | 7.70 | |
GradeLev | Student grade level in school: | ||
7th grade | 49 | 0.27 | |
8th grade | 121 | 0.67 | |
9th grade | 2161 | 12.02 | |
10th grade | 14,979 | 83.30 | |
11th grade | 657 | 3.65 | |
12th grade | 14 | 0.08 | |
CNTRYID | Unique Identifier for each of the 50 countries | ||
(used to capture the country-specific effects | |||
with Australia representing the reference country) | |||
(see Figure A1 for its absolute frequency distribution) |
IntBioshp | Rel. Freq. | Chi2 Test | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | X-sq Stat | df | p-Value | |||
EcoWebVisit | 1 | 20.3 | 14.7 | 65 | 4.5 | 12,355 *** | 6 | <2.2 × |
2 | 13.2 | 19.7 | 67.1 | 8.9 | ||||
3 | 11.7 | 26.3 | 62 | 28.5 | ||||
4 | 27.2 | 33.9 | 38.9 | 58.1 | ||||
BlogsVisit | 1 | 17.2 | 16.4 | 66.4 | 6.5 | 12,696 *** | 6 | <2.2 × |
2 | 11.4 | 21.8 | 66.8 | 11.8 | ||||
3 | 13.1 | 28.2 | 58.7 | 29.3 | ||||
4 | 28.4 | 33.8 | 37.8 | 52.5 | ||||
BroadScWeb | 1 | 17 | 19 | 64 | 7.6 | 13,049 *** | 6 | <2.2 × |
2 | 12.5 | 24.1 | 63.4 | 15.5 | ||||
3 | 15.1 | 30.2 | 54.7 | 39.9 | ||||
4 | 32.2 | 33.5 | 34.3 | 37 | ||||
Rel. Freq. | 21.2 | 29.6 | 49.2 |
IntScPrevDis | Rel. Freq. | Chi2 Test | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | X-sq Stat | df | p-Value | |||
EcoWebVisit | 1 | 16.9 | 9.3 | 73.7 | 4.5 | 3097.6 *** | 6 | <2.2 × |
2 | 10.3 | 11.4 | 78.3 | 8.9 | ||||
3 | 6.9 | 13.2 | 79.9 | 28.5 | ||||
4 | 12.8 | 18.1 | 69.1 | 58.1 | ||||
BlogsVisit | 1 | 14.7 | 9.3 | 76.1 | 6.5 | 3925.7 *** | 6 | <2.2 × |
2 | 8 | 11.1 | 80.9 | 11.8 | ||||
3 | 7 | 13.7 | 79.3 | 29.3 | ||||
4 | 13.6 | 18.7 | 67.7 | 52.5 | ||||
BroadScWeb | 1 | 13.9 | 10 | 76.1 | 7.6 | 5960.5 *** | 6 | <2.2 × |
2 | 7.9 | 11.2 | 80.9 | 15.5 | ||||
3 | 7.1 | 14.6 | 78.3 | 39.9 | ||||
4 | 16.1 | 20.1 | 63.8 | 37 | ||||
Rel. Freq. | 11.1 | 15.7 | 73.2 |
Dependent Variables | CNTRYID | |
---|---|---|
Posterior Mean | (95% CI) | |
IntBiosph | 0.41 | (0.20; 0.69) |
IntScPrevDis | 0.15 | (0.09; 0.23) |
Posterior Mean | (95% CI) | |
---|---|---|
Variance of “IntBiosph” | 2.09 | (1.84; 2.40) |
Covariance between “IntBiosph” and “IntScPrevDis” | 1.52 | (1.45; 1.62) |
Variance of ”IntScPrevDis” | 1.58 | (1.31; 1.81) |
Correlation Coefficient | = 0.8353 |
Units | IntBiosph | IntScPrevDis | ||
---|---|---|---|---|
Fixed Effects | Posterior Mean | (95% CI) | Posterior Mean | (95% CI) |
Digital Media | ||||
EcoWebVisit | −0.2 | (−0.22; −0.18) | 0.03 | (0.02; 0.05) |
BlogsVisit | −0.21 | (−0.23; −0.19) | −0.11 | (−0.12; −0.09) |
BroadScWeb | −0.34 | (−0.36; −0.32) | −0.26 | (−0.28; −0.24) |
Control Variables | ||||
AGE | 0.2 | (0.18; 0.22) | 0.18 | (0.16; 0.19) |
Gender_Male | −0.16 | (−0.19; −0.15) | −0.53 | (−0.59; −0.49) |
GradeLev | 0.13 | (0.11; 0.15) | 0.13 | (0.11; 0.15) |
IMMIG | ||||
First Gen | −0.06 | (−0.10; −0.02) | 0.16 | (0.11; 0.20) |
Second Gen | 0.09 | (0.05; 0.13) | 0.17 | (0.13; 0.21) |
MISCED | −0.03 | (−0.03; −0.02) | −0.02 | (−0.03; −0.01) |
FISCED | 0.01 | (0.001; 0.02) | 0.01 | (0.001; 0.02) |
ESCS | 0.16 | (0.14; 0.17) | 0.14 | (0.12; 0.16) |
Cutoff points | 1.56 | (1.50; 1.64) | 1.02 | (0.97; 1.07) |
MCMC Algorithm specification | ||||
Number of Iterations | 50,000 | |||
Burn-in period | 15,000 | |||
Thinning interval | 10 | |||
Effective Sample Size | 3500 |
References
- Myers, S.S. Planetary health: Protecting human health on a rapidly changing planet. Lancet 2017, 390, 2860–2868. [Google Scholar] [CrossRef]
- Demaio, A.R.; Rockström, J. Human and planetary health: Towards a common language. Lancet 2015, 386, e36–e37. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation—Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- McKinney, A. A Planetary Health Approach to Study Links Between Pollution and Human Health. Curr. Pollut. Rep. 2019, 5, 394–406. [Google Scholar] [CrossRef]
- Lang, T.; Rayner, G. Ecological public health: The 21st century’s big idea? An essay by Tim Lang and Geof Rayner. BMJ 2012, 345, e5466. [Google Scholar] [CrossRef]
- Horton, R.; Beaglehole, R.; Bonita, R.; Raeburn, J.; McKee, M.; Wall, S. From public to planetary health: A manifesto. Lancet 2014, 383, 847. [Google Scholar] [CrossRef]
- Lerner, H.; Berg, C. A comparison of three holistic approaches to health: One health, EcoHealth, and planetary health. Front. Vet. Sci. 2017, 4, 163. [Google Scholar] [CrossRef]
- Prior, J.; Cusack, C.M.; Capon, A. The role of pliability and transversality within trans/disciplinarity: Opening university research and learning to planetary health. In Transdisciplinary Theory, Practice and Education; Springer: Berlin, Germany, 2018; pp. 57–71. [Google Scholar]
- Parsons, J. Global and Planetary Health. In Good Health and Well-Being; Springer: Cham, Switzerland, 2020; pp. 225–236. [Google Scholar]
- Frumkin, H. Sustaining Life: Human Health–Planetary Health Linkages. In Health of People, Health of Planet and Our Responsibility; Springer: Cham, Switzerland, 2020; pp. 21–37. [Google Scholar]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Bénassy-Quéré, A.; Marimon, R.; Pisani-Ferry, J.; Reichlin, L.; Schoenmaker, D.; Weder, B. 13 COVID-19: Europe needs a catastrophe relief plan. In Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes; CEPR Press: London, UK, 2020; Volume 121. [Google Scholar]
- Maffioli, E.M. How Is the World Responding to the Novel Coronavirus Disease (COVID-19) Compared with the 2014 West African Ebola Epidemic? The Importance of China as a Player in the Global Economy. Am. J. Trop. Med. Hyg. 2020, 102, 924–925. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.; Tomiura, E. Thinking ahead about the trade impact of COVID-19. In Economics in the Time of COVID-19; CEPR Press: London, UK, 2020; Volume 59. [Google Scholar]
- McKibbin, W.J.; Fernando, R. The Global Macroeconomic Impacts of COVID-19: Seven Scenarios. CAMA Working Paper No. 19/2020. Available online: http://dx.doi.org/10.2139/ssrn.3547729 (accessed on 27 March 2020).
- Brown, A.; Horton, R. A planetary health perspective on COVID-19: A call for papers. Lancet 2020, 395, 1099. [Google Scholar] [CrossRef]
- Lim, S.S.; Allen, K.; Bhutta, Z.A.; Dandona, L.; Forouzanfar, M.H.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Hay, S.I.; Holmberg, M.; et al. Measuring the health-related Sustainable Development Goals in 188 countries: A baseline analysis from the Global Burden of Disease Study 2015. Lancet 2016, 388, 1813–1850. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, H. Global strategies for the prevention and control of infectious diseases and non-communicable diseases. J. Epidemiol. 2016, 26, 171–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymann, D.L.; Shindo, N. COVID-19: What is next for public health? Lancet 2020, 395, 542–545. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Escamilla, R. Food security and the 2015–2030 sustainable development goals: From human to planetary health: Perspectives and opinions. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, A.; Valois, P.; Ajzen, I.; Schmidt, P. Using the theory of planned behavior to identify key beliefs underlying pro-environmental behavior in high-school students: Implications for educational interventions. J. Environ. Psychol. 2015, 42, 128–138. [Google Scholar] [CrossRef]
- Clark, H.; Coll-Seck, A.M.; Banerjee, A.; Peterson, S.; Dalglish, S.L.; Ameratunga, S.; Balabanova, D.; Bhan, M.K.; Bhutta, Z.A.; Borrazzo, J.; et al. A future for the world’s children? A WHO–UNICEF–Lancet Commission. Lancet 2020, 395, 605–658. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Farley, J. Ecosystem services: The economics debate. Ecosyst. Serv. 2012, 1, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.J.; Won, D.; Park, K. Entrepreneurial cyclical dynamics of open innovation. J. Evol. Econ. 2018, 28, 1151–1174. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X.; Park, K.; Shi, L. Sustainability Condition of Open Innovation: Dynamic Growth of Alibaba from SME to Large Enterprise. Sustainability 2020, 12, 4379. [Google Scholar] [CrossRef]
- Rodríguez-Labajos, B.; Martínez-Alier, J. The economics of ecosystems and biodiversity: Recent instances for debate. Conserv. Soc. 2013, 11, 326–342. [Google Scholar] [CrossRef]
- Wahl, D.C. Design for human and planetary health: A transdisciplinary approach to sustainability. Manag. Nat. Resour. Sustain. Dev. Ecol. Hazards 2006, 99, 285. [Google Scholar]
- Doshi, R.; Diwekar, U.; Benavides, P.T.; Yenkie, K.M.; Cabezas, H. Maximizing sustainability of ecosystem model through socio-economic policies derived from multivariable optimal control theory. Clean Technol. Environ. Policy 2015, 17, 1573–1583. [Google Scholar] [CrossRef]
- Menshutkin, V.; Rukhovets, L.; Filatov, N. Ecosystem modeling of freshwater lakes (review): 2. Models of freshwater lake’s ecosystem. Water Resour. 2014, 41, 32–45. [Google Scholar] [CrossRef]
- Yun, J.J.; Liu, Z. Micro-and Macro-Dynamics of Open Innovation with a Quadruple-Helix Model. Sustainability 2019, 11, 3301. [Google Scholar] [CrossRef] [Green Version]
- Cabezas, H.; Fath, B.D. Towards a theory of sustainable systems. Fluid Phase Equilibria 2002, 194, 3–14. [Google Scholar] [CrossRef]
- Shastri, Y.; Diwekar, U. Sustainable ecosystem management using optimal control theory: Part 1 (deterministic systems). J. Theor. Biol. 2006, 241, 506–521. [Google Scholar] [CrossRef]
- Manski, C.F. The structure of random utility models. Theory Decis. 1977, 8, 229. [Google Scholar] [CrossRef]
- Brown, B.W.; Walker, M.B. The random utility hypothesis and inference in demand systems. Econom. J. Econom. Soc. 1989, 57, 815–829. [Google Scholar] [CrossRef]
- Walker, J.; Ben-Akiva, M. Generalized random utility model. Math. Soc. Sci. 2002, 43, 303–343. [Google Scholar] [CrossRef]
- Batley, R. On ordinal utility, cardinal utility and random utility. Theory Decis. 2008, 64, 37–63. [Google Scholar] [CrossRef] [Green Version]
- Marschak, J. Binary-choice constraints and random utility indicators (1960). In Economic Information, Decision, and Prediction; Springer: Berlin, Germany, 1974; pp. 218–239. [Google Scholar]
- Becker, G.M.; DeGroot, M.H.; Marschak, J. Stochastic models of choice behavior. Behav. Sci. 1963, 8, 41–55. [Google Scholar] [CrossRef]
- Fechner, G.T. Elements of Psychophysics; Breitkopf and Hartel: Leipzip, Germany, 2012. [Google Scholar]
- Thurstone, L.L. A law of comparative judgment. Psychol. Rev. 1994, 101, 266. [Google Scholar] [CrossRef]
- Luce, R.D. Individual Choice Behavior: A Theoretical Analysis; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- McFadden, D. The revealed preferences of a government bureaucracy: Theory. Bell J. Econ. 1975, 6, 401–416. [Google Scholar] [CrossRef]
- Kleinert, S.; Horton, R. Adolescent health and wellbeing: A key to a sustainable future. Lancet 2016, 387, 2355–2356. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Forouzanfar, M.H.; Daoud, F.; Mokdad, A.A.; El Bcheraoui, C.; Moradi-Lakeh, M.; Kyu, H.H.; Barber, R.M.; Wagner, J.; Cercy, K.; et al. Global burden of diseases, injuries, and risk factors for young people’s health during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2016, 387, 2383–2401. [Google Scholar] [CrossRef]
- Ki-moon, B. Sustainability—Engaging future generations now. Lancet 2016, 387, 2356–2358. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Liang, Y.; Kee, K.F.; Henderson, L.K. Towards an integrated model of strategic environmental communication: Advancing theories of reactance and planned behavior in a water conservation context. J. Appl. Commun. Res. 2018, 46, 135–154. [Google Scholar] [CrossRef]
- Wartella, E.; Rideout, V.; Montague, H.; Beaudoin-Ryan, L.; Lauricella, A. Teens, health and technology: A national survey. Media Commun. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Chassiakos, Y.L.R.; Radesky, J.; Christakis, D.; Moreno, M.A.; Cross, C. Children and adolescents and digital media. Pediatrics 2016, 138, e20162593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twenge, J.M.; Martin, G.N.; Spitzberg, B.H. Trends in US Adolescents’ media use, 1976–2016: The rise of digital media, the decline of TV, and the (near) demise of print. Psychol. Pop. Media Cult. 2019, 8, 329. [Google Scholar] [CrossRef]
- Bailey, J.; Mann, S.; Wayal, S.; Hunter, R.; Free, C.; Abraham, C.; Murray, E. Sexual health promotion for young people delivered via digital media: A scoping review. Public Health Res. 2015, 3, 1–119. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, K.; Potts, H.W. Digital transformation in government: Lessons for digital health? Digit. Health 2018, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreiro, S.; Chai, P.R.; Carey, J.; Lai, J.; Smelson, D.; Boyer, E.W. mHealth for the detection and intervention in adolescent and young adult substance use disorder. Curr. Addict. Rep. 2018, 5, 110–119. [Google Scholar] [CrossRef]
- Lauvsnes, A.D.F.; Langaas, M.; Toussaint, P.; Gråwe, R.W. Mobile Sensing in Substance Use Research: A Scoping Review. Telemed. e-Health 2020. [Google Scholar] [CrossRef]
- Nebeker, C. mHealth Research Applied to Regulated and Unregulated Behavioral Health Sciences. J. Law Med. Ethics 2020, 48, 49–59. [Google Scholar] [CrossRef]
- Patterson, S.P.; Hilton, S.; Flowers, P.; McDaid, L.M. What are the barriers and challenges faced by adolescents when searching for sexual health information on the internet? Implications for policy and practice from a qualitative study. Sex. Transm. Infect. 2019, 95, 462–467. [Google Scholar] [CrossRef]
- Bago, J.L.; Lompo, M.L. Exploring the linkage between exposure to mass media and HIV awareness among adolescents in Uganda. Sex. Reprod. Healthc. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Fleary, S.A.; Joseph, P.; Pappagianopoulos, J.E. Adolescent health literacy and health behaviors: A systematic review. J. Adolesc. 2018, 62, 116–127. [Google Scholar] [CrossRef]
- Guo, S.; Yu, X.; Davis, E.; Armstrong, R.; Riggs, E.; Naccarella, L. Adolescent Health Literacy in Beijing and Melbourne: A Cross-Cultural Comparison. Int. J. Environ. Res. Public Health 2020, 17, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, S.; Chen, S.; Hong, L.; Sun, K.; Gong, E.; Li, C.; Yan, L.L.; Schwalm, J.D. Effect of mobile health interventions on the secondary prevention of cardiovascular disease: Systematic review and meta-analysis. Can. J. Cardiol. 2017, 33, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.; Kyu, H.H.; Zoeckler, L.; Olsen, H.E.; Thomas, K.; Pinho, C.; Bhutta, Z.A.; Dandona, L.; Ferrari, A.; Ghiwot, T.T.; et al. Child and adolescent health from 1990 to 2015: Findings from the global burden of diseases, injuries, and risk factors 2015 study. JAMA Pediatr. 2017, 171, 573–592. [Google Scholar] [PubMed] [Green Version]
- Azzopardi, P.S.; Hearps, S.J.; Francis, K.L.; Kennedy, E.C.; Mokdad, A.H.; Kassebaum, N.J.; Lim, S.; Irvine, C.M.; Vos, T.; Brown, A.D.; et al. Progress in adolescent health and wellbeing: Tracking 12 headline indicators for 195 countries and territories, 1990–2016. Lancet 2019, 393, 1101–1118. [Google Scholar] [CrossRef] [Green Version]
- Crompton, H.; Burke, D.; Gregory, K.H. The use of mobile learning in PK-12 education: A systematic review. Comput. Educ. 2017, 110, 51–63. [Google Scholar] [CrossRef]
- Newland, L.A.; Mourlam, D.; Strouse, G. A phenomenological exploration of the role of digital technology and media in children’s subjective well-being. Child Indic. Res. 2018, 11, 1563–1583. [Google Scholar] [CrossRef]
- Orben, A.; Przybylski, A.K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Vannucci, A.; Ohannessian, C.M. Social media use subgroups differentially predict psychosocial well-being during early adolescence. J. Youth Adolesc. 2019, 48, 1469–1493. [Google Scholar] [CrossRef] [Green Version]
- Cangas, A.J.; Fínez, M.J.; Morán, C.; Navarro, N.; Moldes, P. Mental Health, New Technologies, and Wellbeing for Adolescents. In Enhancing Resilience in Youth; Springer: Berlin, Germany, 2019; pp. 233–243. [Google Scholar]
- Goodall, D.; Ban, S.; Birks, E.; Clifton, A. New perspectives on the contribution of digital technology and social media use to improve the mental wellbeing of children and young people: A state-of-the-art review. Neonatal Paediatr. Child Health Nurs. 2013, 16, 19. [Google Scholar]
- James, C.; Davis, K.; Charmaraman, L.; Konrath, S.; Slovak, P.; Weinstein, E.; Yarosh, L. Digital life and youth well-being, social connectedness, empathy, and narcissism. Pediatrics 2017, 140, S71–S75. [Google Scholar] [CrossRef] [Green Version]
- Loebach, J.; Tilleczek, K.; Chaisson, B.; Sharp, B. Keyboard warriors? Visualising technology and well-being with, for and by indigenous youth through digital stories. Vis. Stud. 2019, 34, 281–297. [Google Scholar] [CrossRef]
- Loid, K.; Täht, K.; Rozgonjuk, D. Do pop-up notifications regarding smartphone use decrease screen time, phone checking behavior, and self-reported problematic smartphone use? Evidence from a two-month experimental study. Comput. Hum. Behav. 2020, 102, 22–30. [Google Scholar] [CrossRef]
- Dhir, A.; Yossatorn, Y.; Kaur, P.; Chen, S. Online social media fatigue and psychological wellbeing—A study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inf. Manag. 2018, 40, 141–152. [Google Scholar] [CrossRef]
- Elhai, J.D.; Rozgonjuk, D.; Alghraibeh, A.M.; Yang, H. Disrupted daily activities from interruptive smartphone notifications: Relations with depression and anxiety severity and the mediating role of boredom proneness. Soc. Sci. Comput. Rev. 2019. [Google Scholar] [CrossRef]
- Marino, C.; Gini, G.; Vieno, A.; Spada, M.M. The associations between problematic Facebook use, psychological distress and well-being among adolescents and young adults: A systematic review and meta-analysis. J. Affect. Disord. 2018, 226, 274–281. [Google Scholar] [CrossRef]
- Sha, P.; Sariyska, R.; Riedl, R.; Lachmann, B.; Montag, C. Linking internet communication and smartphone use disorder by taking a closer look at the Facebook and WhatsApp applications. Addict. Behav. Rep. 2019, 9, 100148. [Google Scholar] [CrossRef]
- Sindermann, C.; Elhai, J.D.; Montag, C. Predicting tendencies towards the disordered use of facebook’s social media platforms: On the role of personality, impulsivity, and social anxiety. Psychiatry Res. 2020, 285, 112793. [Google Scholar] [CrossRef]
- Xin, M.; Xing, J.; Pengfei, W.; Houru, L.; Mengcheng, W.; Hong, Z. Online activities, prevalence of Internet addiction and risk factors related to family and school among adolescents in China. Addict. Behav. Rep. 2018, 7, 14–18. [Google Scholar] [CrossRef]
- Domoff, S.E.; Borgen, A.L.; Foley, R.P.; Maffett, A. Excessive use of mobile devices and children’s physical health. Hum. Behav. Emerg. Technol. 2019, 1, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, R.F.; Slater, A.; Gordon, C.S.; McLean, S.A.; Jarman, H.K.; Paxton, S.J. A biopsychosocial model of social media use and body image concerns, disordered eating, and muscle-building behaviors among adolescent girls and boys. J. Youth Adolesc. 2020, 49, 399–409. [Google Scholar] [CrossRef]
- Bachi, L.; Ribeiro, S.C.; Hermes, J.; Saadi, A. Cultural Ecosystem Services (CES) in landscapes with a tourist vocation: Mapping and modeling the physical landscape components that bring benefits to people in a mountain tourist destination in southeastern Brazil. Tour. Manag. 2020, 77, 104017. [Google Scholar] [CrossRef]
- Figueroa-Alfaro, R.W.; Tang, Z. Evaluating the aesthetic value of cultural ecosystem services by mapping geo-tagged photographs from social media data on Panoramio and Flickr. J. Environ. Plan. Manag. 2017, 60, 266–281. [Google Scholar] [CrossRef]
- Karasov, O.; Vieira, A.A.B.; Külvik, M.; Chervanyov, I. Landscape coherence revisited: GIS-based mapping in relation to scenic values and preferences estimated with geolocated social media data. Ecol. Indic. 2020, 111, 105973. [Google Scholar] [CrossRef]
- Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring cultural ecosystem service hotspots: Linking multiple urban forest features with public participation mapping data. Urban For. Urban Green. 2020, 48, 126561. [Google Scholar] [CrossRef]
- Workman, J.E.; Lee, S.H.; Jung, K. Trendsetting, Cultural Awareness, Cultural Receptivity, and Future Orientation among the Young Generation of Chinese College Students: Trendsetters Critically Matter. Sustainability 2019, 11, 5853. [Google Scholar] [CrossRef] [Green Version]
- Ayres, C. Political Participation, Digital Media and Communication for Development and Social Change: The Perpective of the Youth Citizens. In Proceedings of the 52nd International Scientific Conference on Economic and Social Development, Porto, Portugal, 17–18 April 2020; p. 53. [Google Scholar]
- Babu, A.; Kurian, A.S.; Ammu Priya, P.; Cherian, E.S.; Babu, S. U-REPORT: Helping Hand In Defendless Situation. Int. J. Inf. 2019, 8, 13–17. [Google Scholar]
- Gatera, G.; Pavarini, G. The voices of children in the global health debate. Lancet 2020, 395, 541–542. [Google Scholar] [CrossRef] [Green Version]
- Niankara, I. Cross-national Data Sample on the Environmental Affection and Cognition of Adolescent Students of Varying Interests in Ecosystem Services and Sustainability. Data Brief 2019, 22, 312–318. [Google Scholar] [CrossRef]
- Petty, R.E.; Briñol, P.; Teeny, J.; Horcajo, J. The Elaboration Likelihood Model: Changing attitudes toward exercising and beyond. In Persuasion and Communication in Sport, Exercise, and Physical Activity; Routledge: Abingdon, UK, 2017; pp. 22–37. [Google Scholar]
- Chang, H.; Zhang, L.; Xie, G.X. Message framing in green advertising: The effect of construal level and consumer environmental concern. Int. J. Advert. 2015, 34, 158–176. [Google Scholar] [CrossRef]
- Pope, J.P.; Pelletier, L.; Guertin, C. Starting off on the best foot: A review of message framing and message tailoring, and recommendations for the comprehensive messaging strategy for sustained behavior change. Health Commun. 2018, 33, 1068–1077. [Google Scholar] [CrossRef]
- Gifford, R.D.; Chen, A.K. Why aren’t we taking action? Psychological barriers to climate-positive food choices. Clim. Chang. 2017, 140, 165–178. [Google Scholar] [CrossRef]
- Chernov, G.; McCombs, M. Philosophical orientations and theoretical frameworks in media effects: Agenda setting, priming and their comparison with framing. Agenda Setting J. 2019, 3, 63–81. [Google Scholar] [CrossRef]
- Domínguez, P.R.; Gámiz, F.; Gil, M.; Moreno, H.; Zamora, R.M.; Gallo, M.; de Brugada, I. Providing choice increases children’s vegetable intake. Food Qual. Prefer. 2013, 30, 108–113. [Google Scholar] [CrossRef]
- Newell, B.R.; McDonald, R.I.; Brewer, M.; Hayes, B.K. The psychology of environmental decisions. Annu. Rev. Environ. Resour. 2014, 39, 443–467. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.M.; Reynolds-Tylus, T.; Quick, B.L. Clustering energy and water conservation behaviors as choices: Examining the moderating roles of message elaboration and involvement. Appl. Environ. Educ. Commun. 2020, 1–16. [Google Scholar] [CrossRef]
- OECD. Programme for International Student Assessment (PISA) 2015 Database: Stduent Questionnaire Data file; Organization for Economic Co-operation and Development: Paris, France, 2016.
- OECD. PISA 2015 Technical Report: Chapter 04—Sample Design; Organization for Economic Co-operation and Development: Paris, France, 2017.
- Niankara, I.; Adkins, L.C. Youth Awareness and Expectations about GMOs and Nuclear Power Technologies within the North American Free Trade Bloc: A Retrospective Cross-Country Comparative Analysis. J. Open Innov. Technol. Mark. Complex. 2020, 6, 34. [Google Scholar] [CrossRef]
- Niankara, I.; Zoungrana, D.T. Interest in the biosphere and students environmental awareness and optimism: A global perspective. Glob. Ecol. Conserv. 2018, 16, e00489. [Google Scholar] [CrossRef]
- Sajaia, Z. Maximum likelihood estimation of a bivariate ordered probit model: Implementation and Monte Carlo simulations. Stata J. 2008, 4, 1–18. [Google Scholar]
- Jackman, S. Models for Ordered Outcomes [PDF Document]. 2000. Available online: http://www.stanford.edu/class/polisci203/ordered.pdf (accessed on 25 March 2018).
- McKelvey, R.D.; Zavoina, W. A statistical model for the analysis of ordinal level dependent variables. J. Math. Sociol. 1975, 4, 103–120. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Hadfield, J.D. MCMC Methods for Multi-response Generalized Linear Mixed Models: The MCMCglmm R package. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.K.; Merovci, F. Bayesian estimation for parameters and reliability characteristic of the Weibull Rayleigh distribution. J. King Saud Univ.-Sci. 2018, 30, 472–478. [Google Scholar] [CrossRef]
- McCulloch, C.E.; Searle, S.R. Generalized Linear, and Mixed Models; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Niankara, I. Evaluating health consumers’ preferences stability through joint estimation of revealed and stated health insurance preferences data. Int. J. Econ. Bus. Res. 2018, 15, 236–256. [Google Scholar] [CrossRef]
- Zhao, Y.; Staudenmayer, J.; Coull, B.A.; Wand, M.P. General Design Bayesian Generalized Linear Mixed Models. Stat. Sci. 2006, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.; Draper, D. A comparison of bayesian and likelihood-based methods for fitting multilevel methods. Bayesian Anal. 2006, 1, 473–514. [Google Scholar] [CrossRef]
- Gracia-Cortes, L.A.; Sorensen, D. Alternative Implementations of Monte Carlo EM Algorithms for Likelihood Inferences. Genet. Sel. Evol. 2001, 33, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovaskainen, O.; Rekola, H.; Meyke, E.; Arjas, E. Bayesian Methods for Analyzing Movements in heterogeneous landscapes from mark-recapture data. Ecology 2008, 89, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Carlin, J.B.; Stern, H.H.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman & Hall: London, UK, 2004. [Google Scholar]
- Haario, H.; Saksman, E.; Tamminen, J. An Adaptive Metropolis Algorithm. Bernoulli 2001, 7, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.T. Direct Methods for Sparse Linear Systems; Fundamentals of Algoritms; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]
- Korsgaard, I.R.; Andersen, A.H.; Soresen, D. A Useful Reparametrisation to obtain Samples from Conditional inverse Wishart Distributions. Genet. Sel. Evol. 1999, 31, 177–181. [Google Scholar] [CrossRef]
- Cowles, M.K. Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Stat. Comput. 1996, 6, 101–111. [Google Scholar] [CrossRef]
- Ruan, S.; Raeside, R.; Singleton, A.; Redfern, J.; Partridge, S.R. Limited engaging and interactive online health information for adolescents: A systematic review of Australian websites. Health Commun. 2020, 1–10. [Google Scholar] [CrossRef]
- Good, B.; Mishna, F. “Double-edged sword” of Digital Media Use among Youth in Residential Treatment: Perspectives of Service Providers. Resid. Treat. Child. Youth 2019, 1–25. [Google Scholar] [CrossRef]
- Yonker, L.M.; Zan, S.; Scirica, C.V.; Jethwani, K.; Kinane, T.B. “Friending” teens: Systematic review of social media in adolescent and young adult health care. J. Med. Internet Res. 2015, 17, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.K.; Aalsma, M.C.; Weitzman, E.R.; Garcia-Huidobro, D.; Wong, C.; Hadland, S.E.; Santelli, J.; Park, M.J.; Ozer, E.M. Research on clinical preventive services for adolescents and young adults: Where are we and where do we need to go? J. Adolesc. Health 2017, 60, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, C.; Burkhalter, R.; Asbridge, M. Adolescent media use and its association to wellbeing in a Canadian national sample. Prev. Med. Rep. 2019, 14, 100867. [Google Scholar] [CrossRef] [PubMed]
- Stiglic, N.; Viner, R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef] [Green Version]
- Marker, C.; Gnambs, T.; Appel, M. Active on Facebook and Failing at School? Meta-Analytic Findings on the Relationship Between Online Social Networking Activities and Academic Achievement. Educ. Psychol. Rev. 2018, 30, 651–677. [Google Scholar] [CrossRef]
- Tripathi, G.; Ahad, M.A. Effects of Social Media on Social, Mental, and Physical Health Traits of Youngsters. In Computational Intelligence in Data Mining; Springer: Berlin, Germany, 2019; pp. 685–695. [Google Scholar]
- Przybylski, A.K.; Weinstein, N. Digital Screen Time Limits and Young Children’s Psychological Well-Being: Evidence From a Population-Based Study. Child Dev. 2019, 90, e56–e65. [Google Scholar] [CrossRef] [Green Version]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Nereim, C.D.; Bickham, D.S.; Rich, M.O. 234. Social Media and Adolescent Mental Health: Who You are and What You do Matter. J. Adolesc. Health 2020, 66, S118–S119. [Google Scholar] [CrossRef]
- Perkins, P.E. Feminist ecological economics and sustainability. J. Bioecon. 2007, 9, 227–244. [Google Scholar] [CrossRef]
- Fortnam, M.; Brown, K.; Chaigneau, T.; Crona, B.; Daw, T.M.; Gonçalves, D.; Hicks, C.; Revmatas, M.; Sandbrook, C.; Schulte-Herbruggen, B. The gendered nature of ecosystem services. Ecol. Econ. 2019, 159, 312–325. [Google Scholar] [CrossRef]
- Wang, M.T.; Degol, J.L. Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educ. Psychol. Rev. 2017, 29, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Eccles, J. Female achievement patterns: Attributions, expectancies, values, and choice. J. Soc. Issues 1983, 1, 1–22. [Google Scholar]
- Weder, F.; Voci, D.; Vogl, N.C. Environmental Discourses and Natural Resource Related Claims in German, Austrian, Slovenian and Italian Media. J. Sustain. Dev. 2019, 12, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Zosh, J.M.; Lytle, S.R.; Golinkoff, R.M.; Hirsh-Pasek, K. Putting the education back in educational apps: How content and context interact to promote learning. In Media Exposure during Infancy and Early Childhood; Springer: Berlin, Germany, 2017; pp. 259–282. [Google Scholar]
- Hossain, M.; Islam, K.Z. Ideation through online open innovation platform: Dell IdeaStorm. J. Knowl. Econ. 2015, 6, 611–624. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. Communication and Persuasion: Central and Peripheral Routes to Attitude Change; Springer: Berlin, Germany, 2012. [Google Scholar]
- Chesbrough, H. The future of open innovation: The future of open innovation is more extensive, more collaborative, and more engaged with a wider variety of participants. Res. Technol. Manag. 2017, 60, 35–38. [Google Scholar] [CrossRef]
- West, J.; Salter, A.; Vanhaverbeke, W.; Chesbrough, H. Open Innovation: The Next Decade. Res. Policy 2014, 43, 805–811. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niankara, I.; Noor Al adwan, M.; Niankara, A. The Role of Digital Media in Shaping Youth Planetary Health Interests in the Global Economy. J. Open Innov. Technol. Mark. Complex. 2020, 6, 49. https://doi.org/10.3390/joitmc6030049
Niankara I, Noor Al adwan M, Niankara A. The Role of Digital Media in Shaping Youth Planetary Health Interests in the Global Economy. Journal of Open Innovation: Technology, Market, and Complexity. 2020; 6(3):49. https://doi.org/10.3390/joitmc6030049
Chicago/Turabian StyleNiankara, Ibrahim, Muhammad Noor Al adwan, and Aminata Niankara. 2020. "The Role of Digital Media in Shaping Youth Planetary Health Interests in the Global Economy" Journal of Open Innovation: Technology, Market, and Complexity 6, no. 3: 49. https://doi.org/10.3390/joitmc6030049
APA StyleNiankara, I., Noor Al adwan, M., & Niankara, A. (2020). The Role of Digital Media in Shaping Youth Planetary Health Interests in the Global Economy. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 49. https://doi.org/10.3390/joitmc6030049