Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of AML Cells and MSCs
- AML conditioned medium. AML cells were cultured (1 × 106 cells/mL, 10 mL medium per flask) in T25 flasks (Falcon; Glendale, AZ, USA). The culture medium was serum-free IMDM without phenol red (Ref. 21056023, Thermo Scientific; Waltham, MA, USA). Supernatants were collected after 48 h and stored in aliquots at −80 °C until used. The supernatants are referred to as AML conditioned medium or AML-CM. Supernatants were harvested after 48 h as described in several previous studies [7,9,13,14]; differences between patients can then be detected and these differences are associated with clinical chemosensitivity and differences in overall survival after intensive therapy [7].
- MSC expansion. We investigated AML effects on normal MSCs derived from a healthy donor; these MSCs were used instead of autologous MSCs to have a similar system for evaluation of direct AML effect for all patients without any influence of indirect AML effects mediated for example through other stromal cell subsets. The MSCs from a healthy donor (C-12974, lot number 427Z010.1; Promocell Gmbh, Heidelberg, Germany) were thawed according to the manufacturer’s instructions, and 5 × 105 cells were expanded to 4 × 106 cells in Mesenchymal Stem Cell Growth Medium (Promocell Gmbh) before the cells were distributed into four T75 flasks (Falcon) after eight days of culture. The cells were cultured for three additional days before the medium was changed to serum-free IMDM. The cells were then transferred to 24-well culture plates (Falcon; 3 × 104 cells/well) and cultured in Mesenchymal Stem Cell Growth Medium for one additional day before the medium again was changed to serum-free IMDM.
- MSC cultures with AML conditioned medium. AML-CM (also prepared in serum-free IMDM) was added at a ratio of 1:1 (24 well culture plates, a total of 2 mL medium/well). MSCs were cultured in the presence of AML-CM for 48 h. Four control replicates of MSCs were also cultured with culture medium instead of AML-CM. MSCs from the same donor were used in all cultures. After the culture period MSCs were harvested and lysed in 150 µL lysis buffer (4% SDS/0.1M Tris-HCl, pH 7.6) as described previously [17] and stored in aliquots at −80 °C until analyzed. As explained above cells were cultured in serum-free medium during the exposure to AML conditioned medium and not in the presence of specialized growth medium. Previous studies have shown that MSC proliferation is maintained during a 48-h culture period [15,16], and light microscopy showed that the high MSC viability was maintained during culture.
2.2. Proteomics Sample Preparation
2.3. Liquid Chromatography (LC) Tandem Mass Spectrometry (MS) Analysis
2.4. Statistical and Bioinformatical Analyses
3. Results
3.1. AML Cells Have Limited Effects on the MSC Proteoma; Most MSC Protein Levels Are Not Altered by AML Conditioned Medium
3.2. The Effects on the MSC Proteomic Profile by Constitutive AML Cell Mediator Release Differ between Patients
3.3. The Constitutive Mediator Release by Primary AML Cells Derived from a Minority of Patients Modulates Mitochondrial Metabolism and Protein Metabolism/Extracellular Matrix Protein Release by Normal MSCs
3.4. Comparison of the AML Secretome for the Two Main Patient Subsets Identified in the Unsupervised Hierarchical Clustering Analysis
3.5. A Subset of MSC Proteins Can Only Be Quantified after Exposure to the AML Secretome but Even These Proteins Contribute to AML Heterogeneity
- A large subset of these 30 proteins are important for the biological functions of GTP (e.g., GTPases, G-proteins, GTPase regulated protein) including VAV1, CXCL7/PPBP, AGTPBP1, RAB37, DEFA1, PLCB2, ARHGAP15/25/45, GIMAP1/8 and DOK2. Several other CCL/CXCL chemokines were quantified in smaller subsets of patients, including CCL5, CCL24, CXCL1, CXCL3, CXCL4/PF4, while CXCL8 was quantified for most patients (Figure 4).
- Several of the GTP associated proteins regulate Rho activity and thereby also vesicular biology/trafficking, e.g., VAV1, UNC13D, RAB37, CD36 and DEFA1.
- Several of the 30 proteins listed in Table S6 are important for the cytoskeleton/actin (VAV1, BIN2, ARHGAP15), cell signaling (TLR2, IRAK3, LYN, ICAM3, SASH3, CXCL7/PPBP) and cell adhesion/extracellular matrix (CD84, ICAM3, CD36, possibly also the proteases GZMK, CFD).
- No proteins reflected differentiation induction of the MSCs, but two proteins have been described to maintain stemness (BIN2, CD36).
- None of the 30 proteins were among the 100 top-ranked exosomal proteins (ExoCarta: Exosome markers, analyzed 20.06.2021).
3.6. Common Effects of AML Cells on the MSC Proteome: Comparison of Protein Abundances for Proteins Quantified Both in Control MSCs and after MSC Exposure to AML Conditioned Medium
- A relatively large group of mitochondrial proteins showed altered levels after exposure to AML conditioned medium but were not included in any of the large protein networks: ACSS1, CYBB, CLYBL, ACADS, COX7A2L, MGME1, COQ8A, CYP27A1, MCAT, COX7A2, ETFDH, AGMAT, DGUOK, ATP5MF, PCCB, TRMU, ECH1, SOD2, PGS1 and MTERF3. All except the last protein showed increased levels after conditioned medium exposure.
- Some proteins important for the biological functions of GTP (ARHGDIB, RAB3A, MX1, IQGAP), adhesion molecules (the integrins ITGAM, ITGB2, ITGAX together with ICAM1 and VCAM1) and S100 molecules (S100A9, S100A8, S100A12) were also increased after exposure.
- The three collagens COL6A2, COL4A2 and COL5A1 showed decreased levels after exposure to AML conditioned medium.
- Several kinases (CAMK4, NME7, CDK2, COQ8A, DGUOR, WNK4, CDKNA1, PFKFB3, LATS2) and phosphatases (PTPRJ, PTPN6, INPP5A, G6PC3, PTPRE) showed altered levels after exposure; all except the three last kinases then showing increased levels. These observations show that several proteins involved in the regulation of posttranscriptional protein modification were altered.
- With regard to cytokine biology no chemokines showed altered levels. However, IL18 and IL17RA showed increased levels, whereas decreased levels were seen for VEGFC, IGFBP3 and IGF2.
- LOX, LOXL1 and LOXL2 showed increased levels after exposure.
- Only two of the proteins (LGALS3BP, STOM) were among the 100 top-ranked exosomal proteins (ExoCarta: Exosome markers, analyzed 20.06.2021).
3.7. A Small Number of Proteins Could Be Detected for Control MSCs but Only for a Small Minority of MSCs Exposed to AML Conditioned Medium
- Extracellular matrix: COL6A3, POSTN, CHIT1, FSD1, ODAPH;
- Intracellular transport, cytoskeleton: KTN1, PIP, FSD1, TTC26;
- Transcriptional regulation/DNA binding: BUD13, ERCC6, MBD1, ZNF22;
- Protein synthesis/degradation/modification: KTN1, EIF1B, CAMKK2, SERPINB12, MINDY1, SENP1, TXNDC11, HSP90AB3P;
- Cell cycle regulation: FOLR3, S100P, CEP55;
- Other functions: MCC (Wnt signaling), ACOX1 (fatty acid metabolism), RNLS (oxidoreductase).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Bruserud, Ø.; Aasebø, E.; Hernandez-Valladares, M.; Tsykunova, G.; Reikvam, H. Therapeutic targeting of leukemic stem cells in acute myeloid leukemia–the biological background for possible strategies. Expert Opin. Drug Discov. 2017, 12, 1053–1065. [Google Scholar] [CrossRef]
- Pinho, S.; Frenette, P.S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019, 20, 303–320. [Google Scholar] [CrossRef]
- Ehninger, A.; Trumpp, A. The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in. J. Exp. Med. 2011, 208, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Brenner, A.K.; Tvedt, T.H.; Nepstad, I.; Rye, K.P.; Hagen, K.M.; Reikvam, H.; Bruserud, Ø. Patients with acute myeloid leukemia can be subclassified based on the constitutive cytokine release of the leukemic cells; the possible clinical relevance and the importance of cellular iron metabolism. Expert Opin. Ther. Targets 2017, 21, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Aasebø, E.; Birkeland, E.; Selheim, F.; Berven, F.; Brenner, A.K.; Bruserud, Ø. The Extracellular Bone Marrow Microenvironment-A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells. Cancers 2020, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Aasebø, E.; Brenner, A.K.; Birkeland, E.; Tvedt, T.H.A.; Selheim, F.; Berven, F.S.; Bruserud, Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers 2021, 13, 1509. [Google Scholar] [CrossRef]
- Forte, D.; García-Fernández, M.; Sánchez-Aguilera, A.; Stavropoulou, V.; Fielding, C.; Martín-Pérez, D.; López, J.A.; Costa, A.S.H.; Tronci, L.; Nikitopoulou, E.; et al. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab. 2020, 32, 829–843.e9. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Garcia, M.; Weng, L.; Jung, X.; Murakami, J.L.; Hu, X.; McDonald, T.; Lin, A.; Kumar, A.R.; DiGiusto, D.L.; et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 2018, 32, 575–587. [Google Scholar] [CrossRef]
- Yuan, B.; El Dana, F.; Ly, S.; Yan, Y.; Ruvolo, V.; Shpall, E.J.; Konopleva, M.; Andreeff, M.; Battula, V.L. Bone marrow stromal cells induce an ALDH+ stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway. PLoS ONE 2020, 15, e0242809. [Google Scholar] [CrossRef]
- Honnemyr, M.; Bruserud, Ø.; Brenner, A.K. The constitutive protease release by primary human acute myeloid leukemia cells. J. Cancer Res. Clin. Oncol. 2017, 143, 1985–1998. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Ryningen, A.; Olsnes, A.M.; Stordrange, L.; Øyan, A.M.; Kalland, K.H.; Gjertsen, B.T. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 2007, 92, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, A.K.; Nepstad, I.; Bruserud, Ø. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms. Front. Immunol. 2017, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reikvam, H.; Brenner, A.K.; Hagen, K.M.; Liseth, K.; Skrede, S.; Hatfield, K.J.; Bruserud, Ø. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res. 2015, 15, 530–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Valladares, M.; Aasebø, E.; Mjaavatten, O.; Vaudel, M.; Bruserud, Ø.; Berven, F.; Selheim, F. Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biol. Proced. Online 2016, 18, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Arntzen, M.Ø.; Koehler, C.J.; Barsnes, H.; Berven, F.S.; Treumann, A.; Thiede, B. IsobariQ: Software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT. J. Proteome Res. 2011, 10, 913–920. [Google Scholar] [CrossRef]
- Scholz, C.; Lyon, D.; Refsgaard, J.C.; Jensen, L.J.; Choudhary, C.; Weinert, B.T. Avoiding abundance bias in the functional annotation of post-translationally modified proteins. Nat. Methods 2015, 12, 1003–1004. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kishtagari, A.; Levine, R.L.; Viny, A.D. Driver mutations in acute myeloid leukemia. Curr. Opin. Hematol. 2020, 27, 49–57. [Google Scholar] [CrossRef]
- Cai, S.F.; Levine, R.L. Genetic and epigenetic determinants of AML pathogenesis. Semin. Hematol. 2019, 56, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hang, X.; Wu, B.; Chen, C.; Liu, Y. Epigenetic Abnormalities in Acute Myeloid Leukemia and Leukemia Stem Cells. Adv. Exp. Med. Biol. 2019, 1143, 173–189. [Google Scholar] [PubMed]
- Aasebø, E.; Berven, F.S.; Bartaula-Brevik, S.; Stokowy, T.; Hovland, R.; Vaudel, M.; Døskeland, S.O.; McCormack, E.; Batth, T.S.; Olsen, J.V.; et al. Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia. Cancers 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- Gjertsen, B.M.; Øyan, A.M.; Marzolf, B.; Hovland, R.; Gausdal, G.; Døskeland, S.O.; Dimitrov, K.; Golden, A.; Kalland, K.H.; Hood, L.; et al. Analysis of acute myelogenous leukemia: Preparation of samples for genomic and proteomic analyses. J. Hematother. Stem Cell Res. 2002, 11, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, K.; Burnett, A.K.; Goldstone, A.H.; Gray, R.G.; Hann, I.M.; Harrison, C.J.; Rees, J.K.; Stevens, R.F.; Walker, H. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br. J. Haematol. 1999, 107, 69–79. [Google Scholar] [CrossRef]
- De Jonge, H.J.; Valk, P.J.; de Bont, E.S.; Schuringa, J.J.; Ossenkoppele, G.; Vellenga, E.; Huls, G. Prognostic impact of white blood cell count in intermediate risk acute myeloid leukemia: Relevance of mutated NPM1 and FLT3-ITD. Haematologica 2011, 96, 1310–1317. [Google Scholar] [CrossRef]
- Lin, P.; Chen, L.; Luthra, R.; Konoplev, S.N.; Wang, X.; Medeiros, L.J. Acute myeloid leukemia harboring t(8;21)(q22;q22): A heterogeneous disease with poor outcome in a subset of patients unrelated to secondary cytogenetic aberrations. Mod. Pathol. 2008, 21, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zhou, L.; Zhang, X.; Tang, B.; Zhu, X.; Liu, H.; Sun, Z.; Zheng, C. Impact of ELN Risk Stratification, Induction Chemotherapy Regimens and Hematopoietic Stem Cell Transplantation on Outcomes in Hyperleukocytic Acute Myeloid Leukemia With Initial White Blood Cell Count More Than 100 × 109/L. Cancer Manag. Res. 2019, 11, 9495–9503. [Google Scholar] [CrossRef] [Green Version]
- How, J.; Sykes, J.; Gupta, V.; Yee, K.W.; Schimmer, A.D.; Schuh, A.C.; Minden, M.D.; Kamel-Reid, S.; Brandwein, J.M. Influence of FLT3-internal tandem duplication allele burden and white blood cell count on the outcome in patients with intermediate-risk karyotype acute myeloid leukemia. Cancer 2012, 118, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Reikvam, H.; Fredly, H.; Kittang, A.O.; Bruserud, Ø. The possible diagnostic and prognostic use of systemic chemokine profiles in clinical medicine—the experience in acute myeloid leukemia from disease development and diagnosis via conventional chemotherapy to allogeneic stem cell transplantation. Toxins 2013, 5, 336–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reikvam, H.; Hatfield, K.J.; Fredly, H.; Nepstad, I.; Mosevoll, K.A.; Bruserud, Ø. The angioregulatory cytokine network in human acute myeloid leukemia—From leukemogenesis via remission induction to stem cell transplantation. Eur. Cytokine Netw. 2012, 23, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Bartaula-Brevik, S.; Lindstad Brattås, M.K.; Tvedt, T.H.A.; Reikvam, H.; Bruserud, Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert Opin. Investig. Drugs 2018, 27, 377–387. [Google Scholar] [CrossRef]
- Johansen, S.; Brenner, A.K.; Bartaula-Brevik, S.; Reikvam, H.; Bruserud, Ø. The Possible Importance of β3 Integrins for Leukemogenesis and Chemoresistance in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2018, 19, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelson, A.P.; McDonough, S.; Willman, C.L.; Koegle, E.R.; Godwin, J.E.; Petersdorf, S.H.; List, A.F.; Othus, M.; Appelbaum, F.R.; Radich, J.P.; et al. Association of immunophenotype with expression of topoisomerase II α and β in adult acute myeloid leukemia. Sci. Rep. 2020, 10, 5486. [Google Scholar] [CrossRef]
- Tvedt, T.H.; Nepstad, I.; Bruserud, Ø. Antileukemic effects of midostaurin in acute myeloid leukemia—The possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin. Investig. Drugs 2017, 26, 343–355. [Google Scholar] [CrossRef]
- Reikvam, H.; Aasebø, E.; Brenner, A.K.; Bartaula-Brevik, S.; Grønningsæter, I.S.; Forthun, R.B.; Hovland, R.; Bruserud, Ø. High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype. J. Clin. Med. 2019, 8, 970. [Google Scholar] [CrossRef] [Green Version]
- Aasebø, E.; Bartaula-Brevik, S.; Hernandez-Valladares, M.; Bruserud, Ø. Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia. Expert Rev. Hematol. 2018, 11, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.A.; Lopez, K.M. Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett. 2018, 417, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Laczko, R.; Csiszar, K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020, 25, 5144. [Google Scholar] [CrossRef]
- Leo, C.; Cotic, C.; Pomp, V.; Fink, D.; Varga, Z. Overexpression of Lox in triple-negative breast cancer. Ann. Diagn. Pathol. 2018, 34, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Zhou, X.; Liang, C.; Zheng, X.; Lei, P.; Fang, J.; Han, X.; Wang, L.; Qi, C.; Wei, H. Human colorectal cancer progression correlates with LOX-induced ECM stiffening. Int. J. Biol. Sci. 2017, 13, 1450–1457. [Google Scholar] [CrossRef]
- Kunadt, D.; Kramer, M.; Dill, C.; Altmann, H.; Wagenführ, L.; Mohr, B.; Thiede, C.; Röllig, C.; Schetelig, J.; Bornhäuser, M.; et al. Lysyl oxidase expression is associated with inferior outcome and Extramedullary disease of acute myeloid leukemia. Biomark. Res. 2020, 8, 20. [Google Scholar] [CrossRef]
- Ono, E.; Uede, T. Implication of Soluble Forms of Cell Adhesion Molecules in Infectious Disease and Tumor: Insights from Transgenic Animal Models. Int. J. Mol. Sci. 2018, 19, 239. [Google Scholar] [CrossRef] [Green Version]
- Lokau, J.; Garbers, C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev. 2020, 55, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Valencia, K.; Montuenga, L.M. Exosomes in Liquid Biopsy: The Nanometric World in the Pursuit of Precision Oncology. Cancers 2021, 13, 2147. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Pelosi, E.; Castelli, G. Precision Medicine Treatment in Acute Myeloid Leukemia Is Not a Dream. Hemato 2021, 2, 8. [Google Scholar] [CrossRef]
Sex and Age (n = 41) | Karyotype/Cytogenetic Abnormalities | ||
---|---|---|---|
Males/females | 22/19 | Normal | 21 |
Age (years; median/range) | 70/18–87 | Favorable | 4 |
Intermediate | 9 | ||
Predisposition/previous disease | Adverse | 4 | |
Previous chronic myeloid neoplasia | 1 | Not tested | 3 |
Myelodysplastic syndrome | 8 | ||
Relapsed AML | 3 | Flt3 status | |
Chemotherapy related | 0 | ITD | 14 |
Wild type | 19 | ||
Morphology/FAB classification | Not tested | 8 | |
M0/M1 | 17 | ||
M2 | 8 | NPM1 status | |
M4/M5 | 16 | Insertion | 14 |
M6/M7 | 0 | Insertion + Flt3-ITD | 9 |
Wild type | 20 | ||
CD34 positive | 22 | Not tested | 7 |
Term | Description | Category | Foreground Count 1 | Background Count 1 | s-Value 1 | p-Value | FDR |
---|---|---|---|---|---|---|---|
INCREASED IN THE UPPER YELLOW MAIN PATIENT CLUSTER (n = 10) | |||||||
KW-0496 | Mitochondrion | UniProt | 57 | 833 | 1.53 | 1.57 × 10−6 | 0.00073 |
KW-0809 | Transit peptide | UniProt | 41 | 421 | 1.33 | 6.18 × 10−7 | 0.00073 |
KW-1274 | Primary mitochondrial disease | UniProt | 18 | 139 | 0.62 | 6.78 × 10−7 | 0.00073 |
KW-0276 | Fatty acid metabolism | UniProt | 11 | 98 | 0.29 | 1.32 × 10−5 | 0.0022 |
GO:0005739 | Mitochondrion | GO CC | 62 | 1065 | 1.60 | 9.00 × 10−7 | 0.0025 |
DOID:700 | Mitochondrial metabolism disease | DO | 18 | 138 | 0.62 | 6.24 × 10−7 | 0.0027 |
GOCC:0005739 | Mitochondrion | CC-TM | 54 | 954 | 1.30 | 1.73 × 10−6 | 0.0035 |
GOCC:0005759 | Mitochondrial matrix | CC-TM | 26 | 304 | 0.79 | 8.88 × 10−7 | 0.0035 |
DOID:3652 | Leigh disease | DO | 10 | 62 | 0.33 | 1.82 × 10−6 | 0.0039 |
KW-0732 | Signal | UniProt | 38 | 913 | 0.55 | 3.87 × 10−5 | 0.0045 |
DECREASED IN THE UPPER YELLOW (i.e., INCREASED IN THE LOWER BROWN MAIN PATIENT CLUSTER) | |||||||
KW-0176 | Collagen | UniProt | 7 | 31 | 0.74 | 4.39 × 10−8 | 5.16 × 10−5 |
KW-0732 | Signal | UniProt | 33 | 913 | 2.31 | 4.64 × 10−7 | 0.00027 |
KW-0325 | Glycoprotein | UniProt | 37 | 1180 | 2.29 | 1.22 × 10−6 | 0.00030 |
KW-1015 | Disulfide bond | UniProt | 29 | 880 | 1.87 | 8.93 × 10−7 | 0.00030 |
KW-0964 | Secreted | UniProt | 23 | 500 | 1.67 | 7.71 × 10−7 | 0.00030 |
KW-0272 | Extracellular matrix | UniProt | 13 | 103 | 1.07 | 1.04 × 10−6 | 0.00030 |
map04974 | Protein digestion and absorption | KEGG | 6 | 30 | 0.52 | 8.07 × 10−7 | 0.00035 |
GO:0030312 | External encapsulating structure | CC | 23 | 228 | 2.00 | 3.88 × 10−7 | 0.0011 |
GO:0031012 | Extracellular matrix | CC | 23 | 228 | 2.00 | 3.88 × 10−7 | 0.0011 |
GO:0005576 | Extracellular region | CC | 39 | 1884 | 1.92 | 9.28 × 10−7 | 0.0011 |
Term | Description | Category | Foreground Count 1 | Background Count 1 | s-Value 1 | p-Value | FDR |
---|---|---|---|---|---|---|---|
NETWORK 1 | |||||||
GO:0031410 | Cytoplasmic vesicle | CC | 20 | 1375 | 5.58 | 1.23 × 10−7 | 0.00034 |
GO:0005886 | Plasma membrane | CC | 20 | 1825 | 4.63 | 6.02 × 10−7 | 0.00083 |
GO:0016192 | Vesicle-mediated transport | BP | 20 | 1217 | 5.43 | 2.80 × 10−7 | 0.0028 |
GO:0002376 | Immune system process | BP | 20 | 1279 | 5.15 | 5.27 × 10−7 | 0.0028 |
GO:0006810 | Transport | BP | 20 | 2258 | 4.77 | 1.04 × 10−7 | 0.0021 |
GO:0007155 | Cell adhesion | BP | 9 | 372 | 2.59 | 3.17 × 10−7 | 0.0028 |
NETWORK 2 | |||||||
GO:0005576 | Extracellular region | CC | 16 | 1873 | 3.85 | 2.27 × 10−7 | 0.00063 |
GO:0005615 | Extracellular space | CC | 15 | 1644 | 3.55 | 4.32 × 10−7 | 0.00063 |
GO:0031410 | Cytoplasmic vesicle | CC | 14 | 1375 | 3.45 | 4.54 × 10−7 | 0.00063 |
GO:0016192 | Vesicle-mediated transport | BP | 17 | 1217 | 5.08 | 9.71 × 10−8 | 0.0019 |
GO:0006950 | Response to stress | BP | 15 | 1705 | 3.38 | 7.15 × 10−7 | 0.0027 |
GO:0040011 | Locomotion | BP | 10 | 515 | 3.03 | 2.14 × 10−7 | 0.0019 |
GO:0048870 | Cell motility | BP | 9 | 435 | 2.55 | 6.77 × 10−7 | 0.0027 |
map04060 | Cytokine-cytokine receptor interaction | KEGG | 7 | 47 | 2.41 | 2.20 × 10−7 | 9.60 × 10−5 |
map04062 | Chemokine signaling pathway | KEGG | 7 | 102 | 2.34 | 2.54 × 10−7 | 9.60 × 10−5 |
NETWORK 3 | |||||||
GO:0005886 | Plasma membrane | CC | 13 | 1825 | 4.47 | 2.27 × 10−7 | 0.00063 |
GO:0007165 | Signal transduction | BP | 12 | 1753 | 3.40 | 2.77 × 10−6 | 0.028 |
map04666 | Fc gamma R-mediated phagocytosis | KEGG | 5 | 72 | 2.30 | 2.38 × 10−7 | 0.0001 |
map04062 | Chemokine signaling pathway | KEGG | 5 | 102 | 2.04 | 1.24 × 10−6 | 0.00014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aasebø, E.; Brenner, A.K.; Hernandez-Valladares, M.; Birkeland, E.; Mjaavatten, O.; Reikvam, H.; Selheim, F.; Berven, F.S.; Bruserud, Ø. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases 2021, 9, 74. https://doi.org/10.3390/diseases9040074
Aasebø E, Brenner AK, Hernandez-Valladares M, Birkeland E, Mjaavatten O, Reikvam H, Selheim F, Berven FS, Bruserud Ø. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases. 2021; 9(4):74. https://doi.org/10.3390/diseases9040074
Chicago/Turabian StyleAasebø, Elise, Annette K. Brenner, Maria Hernandez-Valladares, Even Birkeland, Olav Mjaavatten, Håkon Reikvam, Frode Selheim, Frode S. Berven, and Øystein Bruserud. 2021. "Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells" Diseases 9, no. 4: 74. https://doi.org/10.3390/diseases9040074
APA StyleAasebø, E., Brenner, A. K., Hernandez-Valladares, M., Birkeland, E., Mjaavatten, O., Reikvam, H., Selheim, F., Berven, F. S., & Bruserud, Ø. (2021). Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases, 9(4), 74. https://doi.org/10.3390/diseases9040074