Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Participant Recruitment
2.3. Sample Collection and Processing
2.4. Sample Analysis
2.4.1. Full Blood Count (FBC)
2.4.2. Coagulation Analyses
Principle for APTT
Principle for PT
2.4.3. Haemoglobin Electrophoresis
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashutosh, L.; Elliott, P.V. Sickle cell disease. In Post Grad Haematol, 5th ed.; Hoffbrand, A.V., Catovsky, D., Tuddenham, E.G.D., Eds.; Welly-Blackwell: Hoboken, NJ, USA, 2005; pp. 104–114. [Google Scholar]
- Schnog, J.B.; Duits, A.J.; Muskiet, F.A.; ten Cate, H.; Rojer, R.A.; Brandjes, D.P. Sickle cell disease: An overview. Neth. J. Med. 2004, 62, 365. [Google Scholar]
- Grosse, S.D.; Odame, I.; Atrash, H.K.; Amendah, D.D.; Piel, F.B.; Williams, T.N. Sickle cell disease in Africa: A neglected cause of early childhood mortality. Am. J. Prev. Med. 2011, 41, S398–S405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juwah, A.I.; Nlemadim, E.U.; Kaine, W. Types of anaemic crisis in paediatric patients with sickle cell anaemic crisis in Enugu, Nigeria. Arch. Dis. Child. 2004, 89, 572–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballas, S.K.; Lieff, S.; Benjamin, L.J.; Dampier, C.D.; Heeney, M.M.; Hoppe, C.; Johnson, C.S.; Rogers, Z.R.; Smith-Whitley, K.; Wang, W.C.; et al. Definitions of the Phenotypic Manifestations of Sickle Cell Disease. Am. J. Haematol. 2010, 85, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Telen, J.M. Principles and problems of transfusion in sickle cell disease. New Ther. Sickle Cell. Anem. Beta-Thal. 2001, 38, 315–323. [Google Scholar]
- Akinbami, A.; Dosunmu, A.; Adediran, A.; Oshinaike, O.; Adebola, P.; Arogundade, O. Haematological values in homozygous sickle cell disease in steady state and Haemoglobin phenotypes AA control in Lagos, Nigeria. BMC Res. Notes. 2012, 5, 398. [Google Scholar] [CrossRef] [Green Version]
- Zohreh, R.; Abbas, P. Sickle cell disease and venous thromboembolism. Med. J. Haematol. Infect. Dis. 2011, 3. [Google Scholar]
- Ciesla, B. Haematology in Practice; FA Davis Company: Philadelphia, PA, USA, 2007; p. 230. [Google Scholar]
- Zhao, Y.; Lv, G. Influence of temperature and storage duration on measurement of activated partial thromboplastin time, D-dimers, fibrinogen, prothrombin time and thrombin time, in citrate-anticoagulated whole blood specimens. Int. J. Lab. Haematol. 2013, 35, 566–570. [Google Scholar] [CrossRef]
- Fourel, V.; Gabastou, J.M.; Desroys du Roure, F.; Ehrhardt, N.; Robert, A. Influence of age, sex and ABO blood group on activated partial thromboplastin time. Haemostasis 1993, 23, 321–326. [Google Scholar] [CrossRef]
- Campbell, N.A. Biology, 8th ed.; Pearson Education: London, UK, 2008; p. 912. [Google Scholar]
- Broos, K.; Feys, H.B.; De Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at work in primary Haemostasis. Blood Rev. 2011, 25, 155. [Google Scholar] [CrossRef]
- Chaudhry, R.; Babiker, H.M. Physiology, Coagulation Pathways, [Updated 2019 Apr 17]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482253/ (accessed on 15 March 2016).
- Sallah, S. Inhibitors of clotting factors. Ann. Haematol. 1997, 75, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hills, A. Thrombosis in paroxysmal nocturnal Haemoglobinuria: Proposed mechanism of thrombosis in paroxysmal nocturnal Haemoglobinuria. Blood 2013, 121, 4985–4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataga, K.I.; Key, S.N. Hypercoagulability in Sickle Cell Disease: New Approaches to an Old Problem. Am. Soc. Haematol. Edu. Prog. 2007, 1, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nduka, N.; Owhochuku, S.M.; Odike, P. Current observation in sickle cell genotype in Nigeria. East Afr. Med. J. 1993, 70, 646–649. [Google Scholar] [PubMed]
- Chinawa, J.M.; Emodi, I.; Uwaezuoke, S.N. Correlation between coagulation profile and Haemoglobin concentration among children with sickle cell Anaemia in steady state and crisis. Curr. Pediatr. Res. 2013, 17, 109–114. [Google Scholar]
- Wright, J.G.; Malia, R.; Cooper, P.; Thomas, P.; Preston, F.E.; Serjeant, G.R. Protein C and S in homozygous sickle cell disease: Does hepatic dysfunction contribute to low levels? Br. J. Haematol. 1997, 98, 627–631. [Google Scholar] [CrossRef]
- Lane, P.A.; O’Connell, J.L.; Marler, R.A. Erythrocyte membrane vesicles and irreversibly sickled cells binding protein S. Am. J. Haematol. 1994, 47, 295–300. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin concentrations for the diagnosis of Anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System; WHO: Geneva, Switzerland, 2011; Available online: https://www.who.int/vmnis/indicators/haemoglobin/en/ (accessed on 4 April 2017).
- Makani, J.; Ofori-Acquah, S.F.; Nnodu, O.; Wonkam, A.; Ohene-Frempong, K. Sickle cell disease: New opportunities and challenges in Africa. Sci. World J. 2013, 2013, 193252. [Google Scholar] [CrossRef]
- Mehta, P.J.; Chapman, S.; Jayam-Trouth, A.; Kurukumbi, M. Acute ischaemic stroke secondary to iron deficiency anaemia: A Case Report. Case Rep. Neurol. Med. 2012, 2012, 1–5. [Google Scholar]
- Ataga, K.I.; Brittain, J.E.; Desai, P.; May, R.; Jones, S.; Delaney, J.; Strayhorn, D.; Hinderliter, A.; Key, N.S. Association of Coagulation Activation with Clinical Complications in Sickle Cell Disease. PLoS ONE. 2012, 7, e29786. [Google Scholar] [CrossRef] [Green Version]
- Scharbert, G.; Wetzel, L.; Berlinger, L.; Kozek-Langenecker, S. Effect of anaemia on coagulation and platelet function: A whole blood in vitro study. Crit Care 2011, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.A.; Rost, N.S.; Snider, R.W.; Chanderraj, R.; Greenberg, S.M.; Smith, E.E.; Rosand, J. Anaemia and Haematoma volume in acute intracerebral haemorrhage. Crit. Care Med. 2009, 37, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Bain, B.; Bates, I.; Laffan, M.; Lewis, S. Dacie and Lewis Practical Haematology, 11th ed.; Churchill Livingstone: London, UK, 2012. [Google Scholar]
- Antwi-Boasiako, C.; Dankwah, G.B.; Aryee, R.; Hayfron-Benjamin, C.; Donkor, E.S.; Campbell, A.D. Oxidative Profile of Patients with Sickle Cell Disease. Med. Sci. (Basel) 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajuwon, M.D.; Olayemi, E.; Benneh, A.A. Plasma levels of some coagulation parameters in steady state HBSC disease patients. Pan. Afr. Med. J. 2014, 19, 289. [Google Scholar] [CrossRef]
- Kurantsin-Mills, J.; Ofosu, F.A.; Safa, T.K.; Siegel, R.S.; Lessin, L.S. Plasma Factor VII and Thrombin-Antithrombin III Levels Indicate Increased Tissue Factor Activity in Sickle Cell Patients. Brit. J. Haematol. 1992, 81, 539–544. [Google Scholar] [CrossRef]
- Hagger, D.; Wolff, S.; Owen, J.; Sampson, D. Changes in Coagulation and Fibrinolysis in Patients with Sickle Cell Disease Compared with Healthy Black Controls. Blood Coag. Fibrinol. 1995, 6, 93–99. [Google Scholar] [CrossRef]
- Buseri, F.I.; Jeremiah, Z.A.; Shokunbi, W.A. Plasma Levels of Some Blood Coagulation Parameters in Nigerian Homozygous Sickle Cell Patients (HbSS) in Steady State. Hematology 2006, 11, 375–379. [Google Scholar] [CrossRef]
- Famodu, A.A. Coagulation changes in homozygous sickle cell disease in Nigeria. J. Clin. Pathol. 1987, 40, 1487. [Google Scholar] [CrossRef] [Green Version]
- Babadoko, A.A.; Ibinaye, P.O.; Hassan, A.; Yusuf, R.; Ijei, I.P.; Aiyekomogbon, J.; Aminu, S.M.; Hamidu, A.U. Autosplenectomy of sickle cell disease in Zaria, Nigeria: An ultrasonographic assessment. Oman. Med. J. 2012, 27, 121–123. [Google Scholar] [CrossRef]
- Fatunde, O.J.; Scott, R.B. Pitted red cell counts in sickle cell disease: Relationship to age, hemoglobin genotype, and splenic size. Am. J. Pediatr. Hematol. Oncol. 1986, 8, 329–333. [Google Scholar] [CrossRef]
- Nilesh, T.; Deepti, J.; Ingole, N.S.; Gangane, N.; Kajal, S.; Nilesh, T.T. Haemostatic alterations in patients of sickle cell trait and homozygous sickle cell disease–A hospital based case control study. Indian J. Med. Res. 2014, 3, 264–274. [Google Scholar]
- Raffini, L.J.; Niebanck, A.E.; Hrusovsky, J.; Stevens, A.; Blackwood-Chirchir, A.; Ohene-Frempong, K.; Kwiatkowski, J.L. Prolongation of the prothrombin time and activated partial thromboplastin time in children with sickle cell disease. Pediatr Blood Cancer. 2006, 7, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.B. Platelets, coagulation, and fibrinolysis in sickle cell disease: Their possible role in vascular occlusion. Blood Coagul. Fibrinolysis. 1991, 2, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Ataga, K.I.; Orringer, E.P. Hypercoagulability in sickle cell disease: A curious paradox. Am. J. Med. 2003, 115, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Westerman, M.P.; Green, D.; Gilman-Sachs, A. Anti-phospholipid antibodies, protein C and S, and coagulation changes in sickle cell disease. J. Lab. Clin. Med. 1999, 134, 352–362. [Google Scholar] [CrossRef]
- Roeloffzen, W.W.; Kluin-Nelemans, H.C.; Mulder, A.B.; Veeger, N.J.; Bosman, L.; de Wolf, J.T. In normal controls, both age and gender affect coagulability as measured by thrombelastography. Anesth Analg. 2010, 110, 987–994. [Google Scholar] [CrossRef]
HbAA | HbSS | HbSC | |
---|---|---|---|
Demographics | Frequency | Frequency | Frequency |
Age | 23.63 ± 2.92 | 25.93 ± 10.96 | 35.56 ± 15.72 |
Gender Male | 53(22.8%) | 34(14.7%) | 25(10.8%) |
Female | 18(7.8%) | 61(26.2%) | 41(17.7%) |
Total | 71(30.6%) | 95(40.9%) | 66(28.5%) |
Clinical | |||
Temperature (mean ± SD) (°C) | 36.9 ± 0.5 | 37.9 ± 1.3 | 37.3 ± 1.0 |
Pallor (%) | 1(0.4%) | 35 (15.1%) | 18 (7.8%) |
Fatigue | 1(0.4%) | 41 (17.7%) | 26 (11.2%) |
Pain crisis | 0 | 49 (21.1%) | 10 (4.3%) |
Dactylitis | 0 | 15 (6.5%) | 2 (0.8%) |
Frequent infections | 0 | 16 (6.9%) | 8 (3.4%) |
HbSS | HbSC | HbAA (Control) | Total | |
---|---|---|---|---|
Hb(g/dL) | Frequency | Frequency | Frequency | Frequency |
<8.0 (severe anaemia) | 49(30.4%) | 2(1.2%) | 51(31.7%) | |
8.0–10.9 (moderate anaemia) | 42(26.1%) | 32(19.9%) | 74 (45.9%) | |
11.0–11.9 (mild anaemia) | 2(1.2%) | 17(10.6%) | 7 (9.9%) | 26 (9.9%) |
Coagulation parameters | Mean ± SD | Mean ± SD | Mean ± SD | |
PT (sec) | 16.12 ± 0.6 | 15.39 ± 2.9 | 12.98 ± 1.22 | 14.83 ± 2.1 |
APTT (sec) | 42.81 ± 1.61 | 46.90 ± 3.4 | 28.83 ± 3.96 | 32.84 ± 2.9 |
Platelets (109/L) | 439.65 ± 183.13 | 325.43 ± 114.3 | 251.96 ± 18.39 | 339.01 ± 105.27 |
HbSS–Hb (g/dL) | PT(sec) Mean ± SD | p-Value | APTT(sec) Mean ± SD | p-Value | PLATELET (109/l) Mean ± SD | p-Value |
---|---|---|---|---|---|---|
<8.0 (severe anaemia) | 18.93 ± 1.62 | 0.039* | 43.00 ± 6.68 | 0.041* | 506.14 ± 171.14 | 0.010* |
8.0–10.5 (moderate anaemia) | 15.5 ± 1.62 | 0.645 | 32.90 ± 5.77 | 0.719 | 539.83 ± 219.72 | 0.025* |
11.0–11.9 (mild anaemia) | 13.95 ± 0.49 | 0.895 | 30.53 ± 0.75 | 0.815 | 273 ± 30.41 | 0.495 |
HbSC–Hb (g/dL) | ||||||
<8.0 (severe anaemia) | 16.35 ± 2.33 | 0.580 | 41.65 ± 8.98 | 0.044* | 275.50 ± 102.53 | 0.502 |
8.0–10.5 (moderate anaemia) | 14.64 ± 1.35 | 0.596 | 33.88 ± 5.95 | 0.746 | 381.56 ± 155.40 | 0.635 |
11.0–11.9 (mild anaemia) | 15.18 ± 1.75 | 0.614 | 33.19 ± 6.79 | 0.690 | 319.24 ± 91.99 | 0.521 |
Bonferroni | Mean Difference | |||
---|---|---|---|---|
Dependent Variable | (I) Geno | (J) Geno | (I-J) | P-Value |
Hb(g/L) | AA | SS | 5.428(0.228) | 0.000** |
SC | AA | –2.606(0.248) | 0.000** | |
SC | SS | 2.822(0.233) | 0.000** | |
PT(sec) | AA | SS | –2.713(0.234) | 0.001** |
SC | AA | 1.900(0.255) | 0.000** | |
SC | SS | –0.812(0.239) | 0.002** | |
APTT (sec) | AA | SS | –3.476(0.904) | 0.000** |
SC | AA | 4.889(0.986) | 0.000** | |
SC | SS | 1.413(0.924) | 0.382 | |
Platelet (×109/L) | AA | SS | –262.832(23.804) | 0.000** |
SC | AA | 107.012(25.944) | 0.000** | |
SC | SS | –155.820(24.314) | 0.001** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antwi-Baffour, S.; Kyeremeh, R.; Annison, L. Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients. Diseases 2019, 7, 59. https://doi.org/10.3390/diseases7040059
Antwi-Baffour S, Kyeremeh R, Annison L. Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients. Diseases. 2019; 7(4):59. https://doi.org/10.3390/diseases7040059
Chicago/Turabian StyleAntwi-Baffour, Samuel, Ransford Kyeremeh, and Lawrence Annison. 2019. "Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients" Diseases 7, no. 4: 59. https://doi.org/10.3390/diseases7040059
APA StyleAntwi-Baffour, S., Kyeremeh, R., & Annison, L. (2019). Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients. Diseases, 7(4), 59. https://doi.org/10.3390/diseases7040059