The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence
Abstract
:1. Introduction
2. The Influence of Diet on Cancer Development
3. Glucosinolate Hydrolysis Products and Their Chemopreventive Bioactivity
4. Nrf2/Keap1/ARE Signaling Cascade
5. In Vitro Evidence of ARE-Dependent Gene Induction by ITCs
6. Response of AO and PII Enzymes to ITC Treatment in Animal Studies
7. Clinical and Epidemiological Evidence for the Importance of ITCs in Chemoprevention
8. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [PubMed]
- Sonderby, I.E.; Geu-Flores, F.; Halkier, B.A. Biosynthesis of glucosinolates—Gene discovery and beyond. Trends Plant Sci. 2010, 15, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Agerbirk, N.; Olsen, C.E. Glucosinolate structures in evolution. Phytochemistry 2012, 77, 16–45. [Google Scholar] [CrossRef] [PubMed]
- Padilla, G.; Cartea, M.E.; Velasco, P.; de Haro, A.; Ordás, A. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 2007, 68, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Campo, C. Biology of Brassica coenospecies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 4. [Google Scholar]
- Bednarek, P.; Piślewska-Bednarek, M.; Ver Loren van Themaat, E.; Maddula, R.K.; Svatoš, A.; Schulze-Lefert, P. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytol. 2011, 192, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Wittstock, U.; Burow, M. Glucosinolate breakdown in Arabidopsis: Mechanism, regulation and biological significance. Arab. Book Am. Soc. Plant Biol. 2010, 8, e0134. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Bones, A.; Rossiter, J. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 1998, 206, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, O.A.; Davies, A.; Deeken, R.; Thorpe, M.R.; Tomos, A.D.; Hedrich, R. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 2000, 124, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, E.; Jorgensen, L.B.; Hoglund, A.S.; Rask, L.; Meijer, J. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 2001, 127, 1750–1763. [Google Scholar] [CrossRef] [PubMed]
- Vig, A.P.; Rampal, G.; Thind, T.S.; Arora, S. Bio-protective effects of glucosinolates–A review. LWT-Food Sci. Technol. 2009, 42, 1561–1572. [Google Scholar] [CrossRef]
- Wittstock, U.; Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 2002, 5, 300–307. [Google Scholar] [CrossRef]
- Burow, M.; Wittstock, U.; Gershenzon, J. Sulfur-containing secondary metabolites and their role in plant defense. In Sulfur Metabolism in Phototrophic Organisms; Springer: Dordrecht, The Netherlands, 2008; Volume 27, pp. 201–222. [Google Scholar]
- Hopkins, R.J.; van Dam, N.M.; van Loon, J.J.A. Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, I.; Rohloff, J.; Bones, A.M. Defence mechanisms of Brassicaceae: Implications for plant-insect interactions and potential for integrated pest management. A review. Agron. Sustain. Dev. 2010, 30, 311–348. [Google Scholar] [CrossRef]
- Talalay, P.; Fahey, J.W. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr. 2001, 131, 3027S–3033S. [Google Scholar] [PubMed]
- Razis, A.F.A.; Noor, N.M. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian PacJCancer Prev. 2013, 14, 1565–1570. [Google Scholar] [CrossRef]
- Yan, X.; Chen, S. Regulation of plant glucosinolate metabolism. Planta 2007, 226, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Agerbirk, N.; Olsen, C.E. Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones. Phytochemistry 2015, 115, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, L.W. Chemoprophylaxis of carcinogenesis: A review. Cancer Res. 1966, 26, 1520–1526. [Google Scholar] [PubMed]
- Sporn, M.B. Chemoprevention of cancer. Nature 1978, 272, 402–403. [Google Scholar] [CrossRef]
- Singh, S.V.; Singh, K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 2012, 33, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Agerbirk, N.; Vos, M.D.; Kim, J.H.; Jander, G. Indole glucosinolate breakdown and its biological effects. Phytochem. Rev. 2009, 8, 101–120. [Google Scholar] [CrossRef]
- Acharya, A.; Das, I.; Singh, S.; Saha, T. Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis. Recent Pat. Food Nutr. Agric. 2010, 2, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T. Chemoprotection against cancer by isothiocyanates: A focus on the animal models and the protective mechanisms. In Natural Products in Cancer Prevention and Therapy; Springer: Heidelberg, Germany, 2013; pp. 179–201. [Google Scholar]
- Gerhauser, C. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention: Curr. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Nho, C.W.; Jeffery, E. The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol. Appl. Pharmacol. 2001, 174, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [PubMed]
- Boddupalli, S.; Mein, J.R.; Lakkanna, S.; James, D.R. Induction of Phase 2 Antioxidant Enzymes by Broccoli Sulforaphane: Perspectives in Maintaining the Antioxidant Activity of Vitamins A, C, and E. Front. Genet. 2012, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; Podolsky, S.H.; Greene, J.A. The Burden of Disease and the Changing Task of Medicine. N. Engl. J. Med. 2012, 366, 2333–2338. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer statistics, 2008. CA-Cancer J. Clin. 2008, 58, 71–96. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA-Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, P.; Holm, N.; Verkasalo, P.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K. Environmental and heritable factors in the causation of cancer—Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000, 343, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Diet, nutrition, and avoidable cancer. Environ. Health Perspect. 1995, 103, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef] [PubMed]
- Benetou, V.; Trichopoulou, A.; Orfanos, P.; Naska, A.; Lagiou, P.; Boffetta, P.; Trichopoulos, D. Conformity to traditional Mediterranean diet and cancer incidence: The Greek EPIC cohort. Br. J. Cancer 2008, 99, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Erdman, J.W., Jr.; Jeffery, E.; Hendrickx, M.; Cross, A.J.; Lampe, J.W. Can Food Processing Enhance Cancer Protection? Nutr. Today 2014, 49, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Kontou, N.; Psatopouou, T.; Panagiotakos, D.; Dimopouos, M.A.; Linos, A. The Mediterranean Diet in Cancer Prevention: A Review. J. Med. Food 2011, 14, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, E.K.J. The Protective Effect of the Mediterranean Diet: Focus on Cancer and Cardiovascular Risk. Med. Princ. Pract. 2010, 20, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, G.; Verhoeven, D.T.; Verhagen, H.; Goldbohm, R.A. Brassica vegetables and cancer prevention. In Advances in Nutrition and Cancer 2; Springer: New York, NY, USA, 1999; pp. 159–168. [Google Scholar]
- Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Kapusta-Duch, J.; Kopec, A.; Piatkowska, E.; Borczak, B.; Leszczynska, T. The beneficial effects of Brassica vegetables on human health. Rocz. Panstwowego Zakadu Hig. 2012, 63, 389–395. [Google Scholar]
- Krajka-Kuźniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. The activation of the Nrf2/ARE pathway in HepG2 hepatoma cells by phytochemicals and subsequent modulation of phase II and antioxidant enzyme expression. J. Physiol. Biochem. 2015, 71, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Mansuy, D. Brief historical overview and recent progress on cytochromes P450: Adaptation of aerobic organisms to their chemical environment and new mechanisms of prodrug bioactivation. Ann. Pharm. Fr. 2011, 69, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Talalay, P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 2008, 52, S128–S138. [Google Scholar] [CrossRef] [PubMed]
- Mithen, R.F.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I.T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 2000, 80, 967–984. [Google Scholar] [CrossRef]
- Croom, E. 3 Metabolism of Xenobiotics of Human Environments. Prog. Mol. Biol. Transl. Sci. 2012, 112, 31. [Google Scholar] [PubMed]
- Omiecinski, C.J.; Vanden Heuvel, J.P.; Perdew, G.H.; Peters, J.M. Xenobiotic metabolism, disposition, and regulation by receptors: From biochemical phenomenon to predictors of major toxicities. Toxicol. Sci. Off. J. Soc. Toxicol. 2011, 120 Suppl 1, S49–S75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Talalay, P.; Cho, C.; Posner, G. A Major Inducer of Anticarcinogenic Protective Enzymes from Broccoli—Isolation and Elucidation of Structure. Proc. Natl. Acad. Sci. USA. 1992, 89, 2399–2403. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, H.J.; Talalay, P. Regulatory Mechanisms of Monofunctional and Bifunctional Anticarcinogenic Enzyme Inducers in Murine Liver. Cancer Res. 1988, 48, 4776–4782. [Google Scholar] [PubMed]
- Greer, M.A. Isolation from Rutabaga Seed of Progoitrin, the Precursor of the Naturally Occurring Antithyroid Compound, Goitrin (L-5-vinyl-2-thiooxazolidone). J. Am. Chem. Soc. 1956, 78, 1260–1261. [Google Scholar] [CrossRef]
- Nishie, K.; Daxenbichler, M. Toxicology of glucosinolates, related compounds (nitriles, R-goitrin, isothiocyanates) and vitamin U found in Cruciferae. Food Cosmet. Toxicol. 1980, 18, 159–172. [Google Scholar] [CrossRef]
- Schone, F.; Rudolph, B.; Kirchheim, U.; Knapp, G. Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets. Br. J. Nutr. 1997, 78, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.A.; Maciel, M.G.; de Ochoteco, M.B.; Zimmermann, R.N.; Lavinia, F.M.; Formentini, E.A.; de Ochoteco, M.B. Blindness in Holando Argentine calves due to ingestion of turnip (Brassica campestris). Vet. Argent. 1997, 14, 601–605. [Google Scholar]
- Ahlin, K.A.; Emanuelson, M.; Wiktorsson, H. Rapeseed Products from Double-Low Cultivars as Feed for Dairy-Cows—Effects of Long-Term Feeding on Thyroid-Function, Fertility and Animal Health. Acta Vet. Scand. 1994, 35, 37–53. [Google Scholar] [PubMed]
- Campbell, L.D. Incidence of Liver Hemorrhage among White Leghorn Strains Fed on Diets Containing Different Types of Rapeseed Meals. Br. Poult. Sci. 1979, 20, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Martland, M.F.; Butler, E.J.; Fenwick, G.R. Rapeseed Induced Liver Hemorrhage, Reticulolysis and Biochemical-Changes in Laying Hens—The Effects of Feeding High and Low Glucosinolate Meals. Res. Vet. Sci. 1984, 36, 298–309. [Google Scholar] [PubMed]
- Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.-F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; et al. Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells. Clin. Cancer Res. 2010, 16, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Mhawech-Fauceglia, P.; Munday, C.M.; Paonessa, J.D.; Tang, L.; Munday, J.S.; Lister, C.; Wilson, P.; Fahey, J.W.; Davis, W.; et al. Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res. 2008, 68, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Gamet-Payrastre, L.; Li, P.F.; Lumeau, S.; Cassar, G.; Dupont, M.A.; Chevolleau, S.; Gasc, N.; Tulliez, J.; Terce, F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000, 60, 1426–1433. [Google Scholar] [PubMed]
- Chuang, L.T.; Moqattash, S.T.; Gretz, H.F.; Nezhat, F.; Rahaman, J.; Chiao, J.-W. Sulforaphane induces growth arrest and apoptosis in human ovarian cancer cells. Acta Obstet. Gynecol. Scand. 2007, 86, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Suppipat, K.; Park, C.S.; Shen, Y.; Zhu, X.; Lacorazza, H.D. Sulforaphane Induces Cell Cycle Arrest and Apoptosis in Acute Lymphoblastic Leukemia Cells. PloS ONE 2012, 7, e51251. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Huang, M.-T.; Shen, G.; Yuan, X.; Lin, W.; Khor, T.O.; Conney, A.H.; Kong, A.-N.T. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006, 66, 8293–8296. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Xiao, D.; Lew, K.L.; Dhir, R.; Singh, S.V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 2004, 25, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.H.; Spinks, C.A.; Doleman, J.F.; Melchini, A.; Ball, R.Y.; Mills, R.D.; Mithen, R.F. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Mol. Cancer 2010, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.; Huang, M.-T.; Liu, Y.; Khor, T.O.; Conney, A.H.; Kong, A.-N. Impact of Nrf2 on UVB-Induced Skin Inflammation/Photoprotection and Photoprotective Effect of Sulforaphane. Mol. Carcinog. 2011, 50, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gordon, G.B. A strategy for cancer prevention: Stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther. 2004, 3, 885–893. [Google Scholar] [PubMed]
- Leibelt, D.A.; Hedstrom, O.R.; Fischer, K.A.; Pereira, C.B.; Williams, D.E. Evaluation of Chronic Dietary Exposure to Indole-3-Carbinol and Absorption-Enhanced 3,3′-Diindolylmethane in Sprague-Dawley Rats. Toxicol. Sci. 2003, 74, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, E.H.; Araya, M. Physiological effects of broccoli consumption. Phytochem. Rev. 2008, 8, 283–298. [Google Scholar] [CrossRef]
- La Marca, M.; Beffy, P.; Della Croce, C.; Gervasi, P.G.; Iori, R.; Puccinelli, E.; Longo, V. Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes. Food Chem. Toxicol. 2012, 50, 2822–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, D.; Devaraj, S.; Bellur, P.; Lakkanna, S.; Vicini, J.; Boddupalli, S. Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutr. Rev. 2012, 70, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Ernst, I.M.A.; Wagner, A.E.; Schuemann, C.; Storm, N.; Höppner, W.; Döring, F.; Stocker, A.; Rimbach, G. Allyl-, butyl- and phenylethyl-isothiocyanate activate Nrf2 in cultured fibroblasts. Pharmacol. Res. 2011, 63, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Ernst, I.M.A.; Schuemann, C.; Wagner, A.E.; Rimbach, G. 3,3′-Diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free Radic. Res. 2011, 45, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Kume, T.; Muto, C.; Takada-Takatori, Y.; Izumi, Y.; Sugimoto, H.; Akaike, A. Glutathione Biosynthesis via Activation of the Nuclear Factor E2–Related Factor 2 (Nrf2) – Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(Methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 2011, 115, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-Y.; Saw, C.L.-L.; Khor, T.O.; Pung, D.; Boyanapalli, S.S.S.; Kong, A.-N.T. In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: Involvement of Nrf2 and cell cycle/apoptosis signaling pathways. Mol. Carcinog. 2012, 51, 761–770. [Google Scholar] [CrossRef] [PubMed]
- McWalter, G.K.; Higgins, L.G.; McLellan, L.I.; Henderson, C.J.; Song, L.; Thornalley, P.J.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Transcription Factor Nrf2 Is Essential for Induction of NAD(P)H:Quinone Oxidoreductase 1, Glutathione S-Transferases, and Glutamate Cysteine Ligase by Broccoli Seeds and Isothiocyanates. J. Nutr. 2004, 134, 3499S–3506S. [Google Scholar] [PubMed]
- Thimmulappa, R.K.; Mai, K.H.; Srisuma, S.; Kensler, T.W.; Yamamoto, M.; Biswal, S. Identification of Nrf2-regulated Genes Induced by the Chemopreventive Agent Sulforaphane by Oligonucleotide Microarray. Cancer Res. 2002, 62, 5196–5203. [Google Scholar] [PubMed]
- Gasper, A.V.; Traka, M.; Bacon, J.R.; Smith, J.A.; Taylor, M.A.; Hawkey, C.J.; Barrett, D.A.; Mithen, R.F. Consuming Broccoli Does Not Induce Genes Associated with Xenobiotic Metabolism and Cell Cycle Control in Human Gastric Mucosa. J. Nutr. 2007, 137, 1718–1724. [Google Scholar] [PubMed]
- Hu, R.; Xu, C.; Shen, G.; Jain, M.R.; Khor, T.O.; Gopalkrishnan, A.; Lin, W.; Reddy, B.; Chan, J.Y.; Kong, A.-N.T. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett. 2006, 243, 170–192. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, C.; Leoncini, E.; Malaguti, M.; Angelini, S.; Hrelia, P.; Hrelia, S. Modulation of Phase II Enzymes by Sulforaphane: Implications for Its Cardioprotective Potential. J. Agric. Food Chem. 2009, 57, 5615–5622. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Buonfiglio, M.; Corona, G.; Chirafisi, J.; Vafeiadou, K.; Angeloni, C.; Hrelia, S.; Hrelia, P.; Spencer, J.P.E. Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol. Nutr. Food Res. 2010, 54, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Lii, C.-K.; Liu, K.-L.; Cheng, Y.-P.; Lin, A.-H.; Chen, H.-W.; Tsai, C.-W. Sulforaphane and α-Lipoic Acid Upregulate the Expression of the π Class of Glutathione S-Transferase through c-Jun and Nrf2 Activation. J. Nutr. 2010, 140, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.D.; Paton, V.G.; Vidanes, G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2001, 10, 949–954. [Google Scholar]
- Petri, N.; Tannergren, C.; Holst, B.; Mellon, F.A.; Bao, Y.; Plumb, G.W.; Bacon, J.; O’Leary, K.A.; Kroon, P.A.; Knutson, L.; et al. Absorption/Metabolism of Sulforaphane and Quercetin, and Regulation of Phase Ii Enzymes, in Human Jejunum in Vivo. Drug Metab. Dispos. 2003, 31, 805–813. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Itoh, K.; Yamamoto, M.; Chanas, S.A.; Henderson, C.J.; McLellan, L.I.; Wolf, C.R.; Cavin, C.; Hayes, J.D. The Cap “n” Collar Basic Leucine Zipper Transcription Factor Nrf2 (NF-E2 p45-related Factor 2) Controls Both Constitutive and Inducible Expression of Intestinal Detoxification and Glutathione Biosynthetic Enzymes. Cancer Res. 2001, 61, 3299–3307. [Google Scholar] [PubMed]
- Hu, R.; Xu, C.; Shen, G.; Jain, M.R.; Khor, T.O.; Gopalkrishnan, A.; Lin, W.; Reddy, B.; Chan, J.Y.; Kong, A.-N.T. Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sci. 2006, 79, 1944–1955. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Munday, C.M. Induction of phase II detoxification enzymes in rats by plant-derived isothlocyanates: Comparison of allyl isothiocyanate with sulforaphane and related compounds. J. Agric. Food Chem. 2004, 52, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Jensen, B.R.; Poulsen, H.E.; Deng, X.-S.; Tygstrup, N.; Dalhoff, K.; Loft, S. Effects of a Brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver. Food Chem. Toxicol. 2001, 39, 533–540. [Google Scholar] [CrossRef]
- Zhang, Y.; Munday, R.; Jobson, H.E.; Munday, C.M.; Lister, C.; Wilson, P.; Fahey, J.W.; Mhawech-Fauceglia, P. Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J. Agric. Food Chem. 2006, 54, 9370–9376. [Google Scholar] [CrossRef] [PubMed]
- Ritz, S.A.; Wan, J.; Diaz-Sanchez, D. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L33–L39. [Google Scholar] [CrossRef] [PubMed]
- Riedl, M.A.; Saxon, A.; Diaz-Sanchez, D. Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin. Immunol. Orlando Fla 2009, 130, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Szaefer, H.; Krajka-Kuźniak, V.; Licznerska, B.; Bartoszek, A.; Baer-Dubowska, W. Cabbage Juices and Indoles Modulate the Expression Profile of AhR, ERα, and Nrf2 in Human Breast Cell Lines. Nutr. Cancer 2015, 67, 1342–1354. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-L.; Shi, M.; Tang, H.; Han, W.; Spivack, S.D. Candidate Dietary Phytochemicals Modulate Expression of Phase II Enzymes GSTP1 and NQO1 in Human Lung Cells. J. Nutr. 2010, 140, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.E.; Sturm, C.; Piegholdt, S.; Wolf, I.M.A.; Esatbeyoglu, T.; De Nicola, G.R.; Iori, R.; Rimbach, G. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1—Studies in cultured HT-29 cells and mice. J. Nutr. Biochem. 2015, 26, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.; Gasper, A.V.; Smith, J.A.; Hawkey, C.J.; Bao, Y.; Mithen, R.F. Transcriptome Analysis of Human Colon Caco-2 Cells Exposed to Sulforaphane. J. Nutr. 2005, 135, 1865–1872. [Google Scholar] [PubMed]
- Bonnesen, C.; Eggleston, I.M.; Hayes, J.D. Dietary Indoles and Isothiocyanates That Are Generated from Cruciferous Vegetables Can Both Stimulate Apoptosis and Confer Protection against DNA Damage in Human Colon Cell Lines. Cancer Res. 2001, 61, 6120–6130. [Google Scholar] [PubMed]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Wade, K.L.; Jenkins, S.N.; Shapiro, T.A.; Fuchs, E.J.; Kerns, M.L.; Talalay, P. Induction of the Phase 2 Response in Mouse and Human Skin by Sulforaphane-containing Broccoli Sprout Extracts. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Dinkova-Kostova, A.T.; Talalay, P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: The indirect antioxidant effects of sulforaphane. Proc. Natl. Acad. Sci. USA 2001, 98, 15221–15226. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Talalay, P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc. Natl. Acad. Sci. USA 2004, 101, 10446–10451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, Z.-Y.; Khor, T.O.; Shu, L.; Kong, A.-N.T. Sulforaphane Enhances Nrf2 Expression in Prostate Cancer TRAMP C1 Cells through Epigenetic Regulation. Biochem. Pharmacol. 2013, 85, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.R.; Howie, A.F.; Beckett, G.J.; Mithen, R.; Bao, Y.P. Sulforaphane, erucin, and lberin up-regulate thioredoxin reductase 1 expression in human MCF-7 cells. J. Agric. Food Chem. 2005, 53, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Bacon, J.R.; Plumb, G.W.; Howie, A.F.; Beckett, G.J.; Wang, W.; Bao, Y. Dual Action of Sulforaphane in the Regulation of Thioredoxin Reductase and Thioredoxin in Human HepG2 and Caco-2 Cells. J. Agric. Food Chem. 2007, 55, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tanito, M.; Huang, Z.; Li, F.; Zhou, X.; Zaharia, A.; Yodoi, J.; McGinnis, J.F.; Cao, W. Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J. Neurochem. 2007, 101, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.-S.; Yu, S.; Kong, A.-N. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.L.; Kong, A.-N. Molecular Targets of Dietary Phenethyl Isothiocyanate and Sulforaphane for Cancer Chemoprevention. AAPS J. 2009, 12, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013, 27, 2179–2191. [Google Scholar] [CrossRef] [PubMed]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.-L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Chorley, B.N.; Campbell, M.R.; Wang, X.; Karaca, M.; Sambandan, D.; Bangura, F.; Xue, P.; Pi, J.; Kleeberger, S.R.; Bell, D.A. Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha. Nucleic Acids Res. 2012, 40, 7416–7429. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Thomas, N.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “Tethering” mechanism—A two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 2006, 281, 24756–24768. [Google Scholar] [CrossRef] [PubMed]
- Tong, K.I.; Kobayashi, A.; Katsuoka, F.; Yamamoto, M. Two-site substrate recognition model for the Keap1-Nrf2 system: A hinge and latch mechanism. Biol. Chem. 2006, 387, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Tong, K.I.; Katoh, Y.; Kusunoki, H.; Itoh, K.; Tanaka, T.; Yamamoto, M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Mol. Cell. Biol. 2006, 26, 2887–2900. [Google Scholar] [CrossRef] [PubMed]
- Tong, K.I.; Padmanabhan, B.; Kobayashi, A.; Shang, C.; Hirotsu, Y.; Yokoyama, S.; Yamamoto, M. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 2007, 27, 7511–7521. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Cole, R.N.; Itoh, K.; Wakabayashi, N.; Katoh, Y.; Yamamoto, M.; Talalay, P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002, 99, 11908–11913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Hannink, M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 2003, 23, 8137–8151. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Lamont, D.J.; Beattie, K.A.; Hayes, J.D. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. USA 2010, 107, 18838–18843. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, Y.; Katsuoka, F.; Funayama, R.; Nagashima, T.; Nishida, Y.; Nakayama, K.; Engel, J.D.; Yamamoto, M. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 2012, 40, 10228–10239. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Huang, H.C.; Pickett, C.B. Transcriptional regulation of the antioxidant response element—Activation by Nrf2 and repression by MafK. J. Biol. Chem. 2000, 275, 15466–15473. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, H.; Katsuoka, F.; Engel, J.D.; Yamamoto, M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 6379–6384. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 2004, 36, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, H.; Katsuoka, F.; Miyoshi, C.; Uchimura, Y.; Saitoh, H.; Francastel, C.; Engel, J.D.; Yamamoto, M. MafG Sumoylation Is Required for Active Transcriptional Repression. Mol. Cell. Biol. 2006, 26, 4652–4663. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K. Regulation of Antioxidant Response Element–Dependent Induction of Detoxifying Enzyme Synthesis. In Quinones and Quinone Enzymes, Part A; Enzymology, B.-M., Ed.; Academic Press: San Diego, CA, USA, 2004; Volume 378, pp. 221–238. [Google Scholar]
- Alnouti, Y.; Klaassen, C.D. Regulation of Sulfotransferase Enzymes by Prototypical Microsomal Enzyme Inducers in Mice. J. Pharmacol. Exp. Ther. 2008, 324, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Kalthoff, S.; Ehmer, U.; Freiberg, N.; Manns, M.P.; Strassburg, C.P. Interaction between Oxidative Stress Sensor Nrf2 and Xenobiotic-activated Aryl Hydrocarbon Receptor in the Regulation of the Human Phase II Detoxifying UDP-glucuronosyltransferase 1A10. J. Biol. Chem. 2010, 285, 5993–6002. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; McMahon, M.; Chowdhry, S.; Dinkova-Kostova, A.T. Cancer Chemoprevention Mechanisms Mediated Through the Keap1-Nrf2 Pathway. Antioxid. Redox Signal. 2010, 13, 1713–1748. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011, 16, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Zenkov, N.K.; Menshchikova, E.B.; Tkachev, V.O. Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochem. Mosc. 2013, 78, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, F.; Shu, L.; Lee, J.; Su, Z.-Y.; Lee, K.-R.; Kong, A.-N. Nrf2-Target Approaches in Cancer Chemoprevention Mediated by Dietary Phytochemicals. In Cancer Prevention; Methods in Pharmacology and Toxicology; Bode, A.M., Dong, Z., Eds.; Springer: New York, NY, USA, 2014; pp. 53–83. [Google Scholar]
- Becker, T.M.; Jeffery, E.H.; Juvik, J.A. Survey of variation for chemopreventive bioactivity, glucosinolate, and glucosinolate hydrolysis product profiles in common Brassica crop species. J. Agric. Food Chem. 2016. in preparation. [Google Scholar]
- Hu, C.; Eggler, A.L.; Mesecar, A.D.; van Breemen, R.B. Modification of Keap1 Cysteine Residues by Sulforaphane. Chem. Res. Toxicol. 2011, 24, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Lo, S.-C.; Sun, Z.; Habib, G.M.; Lieberman, M.W.; Hannink, M. Ubiquitination of Keap1, a BTB-Kelch Substrate Adaptor Protein for Cul3, Targets Keap1 for Degradation by a Proteasome-independent Pathway. J. Biol. Chem. 2005, 280, 30091–30099. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Freeman, M.L.; Liebler, D.C. Identification of Sensor Cysteines in Human Keap1 Modified by the Cancer Chemopreventive Agent Sulforaphane. Chem. Res. Toxicol. 2005, 18, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Lo, S.C.; Cross, J.V.; Templeton, D.J.; Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 2004, 24, 10941–10953. [Google Scholar] [CrossRef] [PubMed]
- Eggler, A.L.; Small, E.; Hannink, M.; Mesecar, A.D. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochem. J. 2009, 422, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Darvekar, S.R.; Elvenes, J.; Brenne, H.B.; Johansen, T.; Sjøttem, E. SPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1. PLoS ONE 2014, 9, e85262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.-Q.; Chen, C.; Yang, B.; Hebbar, V.; Kong, A.-N.T. Differential responses from seven mammalian cell lines to the treatments of detoxifying enzyme inducers. Life Sci. 2003, 72, 2243–2253. [Google Scholar] [CrossRef]
- Nair, S.; Barve, A.; Khor, T.-O.; Shen, G.; Lin, W.; Chan, J.Y.; Cai, L.; Kong, A.-N. Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol. Sin. 2010, 31, 1223–1240. [Google Scholar] [CrossRef] [PubMed]
- Švehlíková, V.; Wang, S.; Jakubíková, J.; Williamson, G.; Mithen, R.; Bao, Y. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis 2004, 25, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Talalay, P. Antioxidant Functions of Sulforaphane: A Potent Inducer of Phase II Detoxication Enzymes. Food Chem. Toxicol. 1999, 37, 973–979. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, C.E.; Calderón-Oliver, M.; Pedraza-Chaverri, J.; Chirino, Y.I. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp. Toxicol. Pathol. 2012, 64, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Dinkova-Kostova, A.T.; Wade, K.L.; Zhang, Y.; Shapiro, T.A.; Talalay, P. Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: Pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin. Chim. Acta 2002, 316, 43–53. [Google Scholar] [CrossRef]
- Yu, S.; Khor, T.O.; Cheung, K.-L.; Li, W.; Wu, T.-Y.; Huang, Y.; Foster, B.A.; Kan, Y.W.; Kong, A.-N. Nrf2 Expression Is Regulated by Epigenetic Mechanisms in Prostate Cancer of TRAMP Mice. PLoS ONE 2010, 5, e8579. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.K.; Mishra, P.C. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase. J. Phys. Chem. B 2015, 119, 7825–7836. [Google Scholar] [CrossRef] [PubMed]
- Keum, Y.-S.; Owuor, E.D.; Kim, B.-R.; Hu, R.; Kong, A.-N.T. Involvement of Nrf2 and JNK1 in the Activation of Antioxidant Responsive Element (ARE) by Chemopreventive Agent Phenethyl Isothiocyanate (PEITC). Pharm. Res. 2003, 20, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.J.; Shen, G.X.; Yuan, X.L.; Kim, J.H.; Gopalkrishnan, A.; Keum, Y.S.; Nair, S.; Kong, A.N.T. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 2006, 27, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yuan, X.; Pan, Z.; Shen, G.; Kim, J.-H.; Yu, S.; Khor, T.O.; Li, W.; Ma, J.; Kong, A.-N.T. Mechanism of action of isothiocyanates: The induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 2006, 5, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, Y. Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Carcinogenesis 2001, 22, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.-Z.; Zhang, X.; Wu, L.-X.; Wen, C.-J.; Hu, L.; Lv, Q.-L.; Shen, D.-Y.; Zhou, H.-H. Advances in Molecular Signaling Mechanisms of β-Phenethyl Isothiocyanate Antitumor Effects. J. Agric. Food Chem. 2015, 63, 3311–3322. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gao, X.; Chen, G.; Sun, J.; Chu, J.; Jing, K.; Li, P.; Zeng, R.; Wei, B. Indole-3-carbinol as inhibitors of glucocorticoid-induced apoptosis in osteoblastic cells through blocking ROS-mediated Nrf2 pathway. Biochem. Biophys. Res. Commun. 2015, 460, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Bradlow, H.L.; Zeligs, M.A. Diindolylmethane (DIM) Spontaneously Forms from Indole-3-carbinol (I3C) During Cell Culture Experiments. In Vivo 2010, 24, 387–391. [Google Scholar] [PubMed]
- De Kruif, C.A.; Marsman, J.W.; Venekamp, J.C.; Falke, H.E.; Noordhoek, J.; Blaauboer, B.J.; Wortelboer, H.M. Structure elucidation of acid reaction products of indole-3-carbinol: Detection in vivo and enzyme induction in vitro. Chem. Biol. Interact. 1991, 80, 303–315. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Ichikawa, H. Molecular Targets and Anticancer Potential of Indole-3-Carbinol and Its Derivatives. Cell Cycle 2005, 4, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Holst, B.; Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 2004, 21, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Li, X.; Zou, P.; Schwartz, S.J.; Sun, D. Kinetics of Sulforaphane in Mice after Consumption of Sulforaphane-Enriched Broccoli Sprout Preparation. Mol. Nutr. Food Res. 2013, 57. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.D.; Hsu, A.; Riedl, K.; Bella, D.; Schwartz, S.J.; Stevens, J.F.; Ho, E. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol. Res. 2011, 64, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Egner, P.A.; Chen, J.G.; Wang, J.B.; Wu, Y.; Sun, Y.; Lu, J.H.; Zhu, J.; Zhang, Y.H.; Chen, Y.S.; Friesen, M.D.; et al. Bioavailability of Sulforaphane from two broccoli sprout beverages: Results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev. Res. Phila. Pa 2011, 4, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Holtzclaw, W.D.; Wehage, S.L.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase. PLoS ONE 2015, 10, e0140963. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Kuo, Y.; Morris, M.E. Pharmacokinetics of Dietary Phenethyl Isothiocyanate in Rats. Pharm. Res. 2005, 22, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Liebes, L.; Conaway, C.C.; Hochster, H.; Mendoza, S.; Hecht, S.S.; Crowell, J.; Chung, F.-L. High-Performance Liquid Chromatography-Based Determination of Total Isothiocyanate Levels in Human Plasma: Application to Studies with 2-Phenethyl Isothiocyanate. Anal. Biochem. 2001, 291, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Guadagni, D.G.; Ling, L.C.; Seifert, R.M.; Lipton, W. Additional volatile components of cabbage, broccoli, and cauliflower. J. Agric. Food Chem. 1976, 24, 829–832. [Google Scholar] [CrossRef]
- Wilson, E.A.; Ennahar, S.; Marchioni, E.; Bergaentzle, M.; Bindler, F. Improvement in determination of isothiocyanates using high-temperature reversed-phase HPLC. J. Sep. Sci. 2012, 35, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.S. Inhibition of Carcinogenesis by Isothiocyanates. Drug Metab. Rev. 2000, 32, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-Y.; Huang, Y.; Zhang, C.; Su, Z.-Y.; Boyanapalli, S.; Khor, T.O.; Wang, H.; Lin, H.; Gounder, M.; Kagan, L.; et al. Pharmacokinetics and pharmacodynamics of 3,3′-diindolylmethane (DIM) in regulating gene expression of phase II drug metabolizing enzymes. J. Pharmacokinet. Pharmacodyn. 2015, 42, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Paltsev, M.; Kiselev, V.; Muyzhnek, E.; Drukh, V.; Kuznetsov, I.; Pchelintseva, O. Comparative preclinical pharmacokinetics study of 3,3′-diindolylmethane formulations: Is personalized treatment and targeted chemoprevention in the horizon? EPMA J. 2013, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Anderton, M.J.; Manson, M.M.; Verschoyle, R.; Gescher, A.; Steward, W.P.; Williams, M.L.; Mager, D.E. Physiological Modeling of Formulated and Crystalline 3,3′-Diindolylmethane Pharmacokinetics Following Oral Administration in Mice. Drug Metab. Dispos. 2004, 32, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Ku, K.-M.; Jeffery, E.H.; Juvik, J.A. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue. PloS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Ziegler, R.G.; Michaud, D.S.; Giovannucci, E.L.; Speizer, F.E.; Willett, W.C.; Colditz, G.A. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J. Natl. Cancer Inst. 2000, 92, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, L.E.; Goldbohm, R.A.; van Poppel, G.; Sturmans, F.; Hermus, R.J.J.; van den Brandt, P.A. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study - The Netherlands Cohort Study on Diet and Cancer. Am. J. Epidemiol. 2000, 152, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, L.; Goldbohm, R.; Verhoeven, D.; van Poppel, G.; Sturmans, F.; Hermus, R.; van den Brandt, P. Vegetable and fruit consumption and lung cancer risk in the Netherlands Cohort Study on diet and cancer. Cancer Causes Control 2000, 11, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Rimm, E.; Liu, Y.; Stampfer, M.; Willett, W. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 1403–1409. [Google Scholar] [PubMed]
- Neuhouser, M.; Patterson, R.; Thornquist, M.; Omenn, G.; King, I.; Goodman, G. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-Carotene and Retinol Efficacy Trial (CARET). Cancer Epidemiol. Biomarkers Prev. 2003, 12, 350–358. [Google Scholar] [PubMed]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2012; Volume 40. [Google Scholar]
- Verhoeven, D.; Goldbohm, R.; vanPoppel, G.; Verhagen, H.; vandenBrandt, P. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 733–748. [Google Scholar] [PubMed]
- Jeffery, E.H.; Keck, A. Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol. Nutr. Food Res. 2008, 52, S7–S17. [Google Scholar] [PubMed]
- Michaud, D.S.; Spiegelman, D.; Clinton, S.K.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J. Natl. Cancer Inst. 1999, 91, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Seow, A.; Lee, E.J.; Poh, W.T.; Teh, M.; Eng, P.; Wang, Y.T.; Tan, W.C.; Yu, M.C.; Lee, H.P. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2001, 10, 1063–1067. [Google Scholar]
- Zhang, S.M.; Hunter, D.J.; Rosner, B.A.; Giovannucci, E.L.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2000, 9, 477–485. [Google Scholar]
- Cohen, J.H.; Kristal, A.R.; Stanford, J.L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 2000, 92, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kolonel, L.N.; Hankin, J.H.; Whittemore, A.S.; Wu, A.H.; Gallagher, R.P.; Wilkens, L.R.; John, E.M.; Howe, G.R.; Dreon, D.M.; West, D.W.; et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2000, 9, 795–804. [Google Scholar]
- Fowke, J.H.; Chung, F.L.; Jin, F.; Qi, D.; Cai, Q.; Conaway, C.; Cheng, J.R.; Shu, X.O.; Gao, Y.T.; Zheng, W. Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res. 2003, 63, 3980–3986. [Google Scholar] [PubMed]
- Yuan, J.; Gago-Dominguez, M.; Castelao, J.E.; Hankin, J.H.; Ross, R.K.; Yu, M.C. Cruciferous vegetables in relation to renal cell carcinoma. Int. J. Cancer 1998, 77, 211–216. [Google Scholar] [CrossRef]
- Nagle, C.M.; Purdie, D.M.; Webb, P.M.; Green, A.; Harvey, P.W.; Bain, C.J. Dietary influences on survival after ovarian cancer. Int. J. Cancer 2003, 106, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Lin, Y.; Zhou, F.; Xie, L. The association of cruciferous vegetables intake and risk of bladder cancer: A meta-analysis. World J. Urol. 2013, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Luo, Y.; Lu, M.; Xu, X.; Lin, H.; Zheng, Z. Cruciferous vegetable consumption and the risk of pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2015, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Veeranki, O.L.; Bhattacharya, A.; Tang, L.; Marshall, J.R.; Zhang, Y. Cruciferous Vegetables, Isothiocyanates, and Prevention of Bladder Cancer. Curr. Pharmacol. Rep. 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tse, G.; Eslick, G.D. Cruciferous Vegetables and Risk of Colorectal Neoplasms: A Systematic Review and Meta-Analysis. Nutr. Cancer 2014, 66, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Cao, M.; Xie, L. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis. Int. J. Urol. 2011, 19, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, L. Cruciferous Vegetables Intake Is Associated with Lower Risk of Renal Cell Carcinoma: Evidence from a Meta-Analysis of Observational Studies. PLoS ONE 2013, 8, e75732. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hu, Y.; Hu, Y.; Zheng, S. Intake of cruciferous vegetables is associated with reduced risk of ovarian cancer: A meta-analysis. Asia Pac. J. Clin. Nutr. 2015, 24, 101. [Google Scholar] [PubMed]
- Bosetti, C.; Filomeno, M.; Riso, P.; Polesel, J.; Levi, F.; Talamini, R.; Montella, M.; Negri, E.; Franceschi, S.; La Vecchia, C. Cruciferous vegetables and cancer risk in a network of case-control studies. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2012, 23, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.A.; Fahey, J.W.; Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Stephenson, K.K.; Wade, K.L.; Ye, L.; Talalay, P. Safety, Tolerance, and Metabolism of Broccoli Sprout Glucosinolates and Isothiocyanates: A Clinical Phase I Study. Nutr. Cancer 2006, 55, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Wehage, S.L.; Holtzclaw, W.D.; Kensler, T.W.; Egner, P.A.; Shapiro, T.A.; Talalay, P. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev. Res. (Phila. Pa) 2012, 5, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J.W. Diet, genetic polymorphisms, detoxification, and health risks. Altern. Ther. Health Med. 2007, 13, S108–S111. [Google Scholar] [PubMed]
- Riso, P.; Brusamolino, A.; Moro, M.; Porrini, M. Absorption of bioactive compounds from steamed broccoli and their effect on plasma glutathione S-transferase activity. Int. J. Food Sci. Nutr. 2009, 60, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Seow, A.; Yuan, J.M.; Sun, C.L.; Van Den Berg, D.; Lee, H.P.; Yu, M.C. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 2002, 23, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Seow, A.; Shi, C.Y.; Chung, F.L.; Jiao, D.; Hankin, J.H.; Lee, H.P.; Coetzee, G.A.; Yu, M.C. Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: Relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemiol. Biomark. Prev. 1998, 7, 775–781. [Google Scholar]
- Gasper, A.V.; Al-Janobi, A.; Smith, J.A.; Bacon, J.R.; Fortun, P.; Atherton, C.; Taylor, M.A.; Hawkey, C.J.; Barrett, D.A.; Mithen, R.F. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am. J. Clin. Nutr. 2005, 82, 1283–1291. [Google Scholar] [PubMed]
- Budnowski, J.; Hanske, L.; Schumacher, F.; Glatt, H.; Platz, S.; Rohn, S.; Blaut, M. Glucosinolates Are Mainly Absorbed Intact in Germfree and Human Microbiota-Associated Mice. J. Agric. Food Chem. 2015, 63, 8418–8428. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Chen, J.-G.; Egner, P.A.; Fahey, J.W.; Jacobson, L.P.; Stephenson, K.K.; Ye, L.; Coady, J.L.; Wang, J.-B.; Wu, Y.; et al. Effects of Glucosinolate-Rich Broccoli Sprouts on Urinary Levels of Aflatoxin-DNA Adducts and Phenanthrene Tetraols in a Randomized Clinical Trial in He Zuo Township, Qidong, People’s Republic of China. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hullar, M.A.; Beresford, S.A.; Lampe, J.W. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br. J. Nutr. 2011, 106, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Talalay, P.; Kensler, T.W. Notes from the Field: “Green” Chemoprevention as Frugal Medicine. Cancer Prev. Res. (Phila. Pa.) 2012, 5, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Martini, D.; Visioli, F.; Martinetti, A.; Porrini, M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr. Cancer 2009, 61, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Martini, D.; Møller, P.; Loft, S.; Bonacina, G.; Moro, M.; Porrini, M. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis 2010, 25, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Del Bo’, C.; Vendrame, S.; Brusamolino, A.; Martini, D.; Bonacina, G.; Porrini, M. Modulation of plasma antioxidant levels, glutathione S-transferase activity and DNA damage in smokers following a single portion of broccoli: A pilot study. J. Sci. Food Agric. 2014, 94, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, P.; Clifford, C.; Milner, J. Diet and cancer prevention. Eur. J. Cancer 2001, 37, 948–965. [Google Scholar] [CrossRef]
- Spitz, M.R.; Duphorne, C.M.; Detry, M.A.; Pillow, P.C.; Amos, C.I.; Lei, L.; de Andrade, M.; Gu, X.; Hong, W.K.; Wu, X. Dietary intake of isothiocyanates: Evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2000, 9, 1017–1020. [Google Scholar]
- London, S.J.; Yuan, J.-M.; Chung, F.-L.; Gao, Y.-T.; Coetzee, G.A.; Ross, R.K.; Mimi, C.Y. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: A prospective study of men in Shanghai, China. Lancet 2000, 356, 724–729. [Google Scholar] [CrossRef]
- Fimognari, C.; Turrini, E.; Ferruzzi, L.; Lenzi, M.; Hrelia, P. Natural isothiocyanates: Genotoxic potential versus chemoprevention. Mutat. Res. Mutat. Res. 2012, 750, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Tang, L. Cancer-preventive isothiocyanates: Dichotomous modulators of oxidative stress. Free Radic. Biol. Med. 2005, 38, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, W.; Su, Z.; Kong, A.-N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J. Nutr. Biochem. 2015, 26, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
PII/AO Enzyme | GSHP | Dosage/Treatment | Type of Study; System Used | Fold Change a | Type of Change | Reference |
---|---|---|---|---|---|---|
CAT | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
CAT | I3C | 10 µM | in vitro; HepG2 cells | 1.7 | Expression | Krajka-Kuźniak et al. (2015) [44] |
CAT | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
CAT | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
CAT | PEITC | 1 µM | in vitro; HepG2 cells | 1.5 | Expression | Krajka-Kuźniak et al. (2015) [44] |
CAT | PEITC | 5 µM | in vitro; HepG2 cells | 1.6 | Expression | Krajka-Kuźniak et al. (2015) [44] |
CAT | PEITC | 1 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
CAT | PEITC | 5 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GCL | AITC | 5 µM | in vitro; NIH3T3 cells | 2.9 | Expression | Ernst et al. (2011) [74] |
GCL | AITC | 10 µM | in vitro; NIH3T3 cells | 4 | Expression | Ernst et al. (2011) [74] |
GCL | AITC | 25 µM | in vitro; NIH3T3 cells | 5 | Expression | Ernst et al. (2011) [74] |
GCL | BITC | 5 µM | in vitro; NIH3T3 cells | 1.5 | Expression | Ernst et al. (2011) [74] |
GCL | BITC | 10 µM | in vitro; NIH3T3 cells | 2 | Expression | Ernst et al. (2011) [74] |
GCL | BITC | 25 µM | in vitro; NIH3T3 cells | 3.2 | Expression | Ernst et al. (2011) [74] |
GCL | DIM | 5 µM | in vitro; NIH3T3 cells | 1.6 | Expression | Ernst et al. (2011) [75] |
GCL | DIM | 10 µM | in vitro; NIH3T3 cells | 1.9 | Expression | Ernst et al. (2011) [75] |
GCL | DIM | 25 µM | in vitro; NIH3T3 cells | 2.4 | Expression | Ernst et al. (2011) [75] |
GCL | PEITC | 5 µM | in vitro; NIH3T3 cells | 3.8 | Expression | Ernst et al. (2011) [74] |
GCL | SF | 5 µM | in vitro; NIH3T3 cells | 2.7 | Expression | Ernst et al. (2011) [75] |
GCL | SF | 5 µM | in vitro; NIH3T3 cells | 2.7 | Expression | Ernst et al. (2011) [74] |
GCL | SF | 10 µM | in vitro; NIH3T3 cells | 2.8 | Expression | Ernst et al. (2011) [75] |
GCL | SF | 10 µM | in vitro; NIH3T3 cells | 2.9 | Expression | Ernst et al. (2011) [74] |
GCL | SF | 0.1 µM | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 1.4 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 1 µM | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 2.1 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 1 µM; 6 h treatment | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 1.6 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 1 µM; 12 h treatment | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 3.1 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 1 µM; 24 h treatment | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 1.5 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 1 µM; 36 h treatment | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 0.6 | Protein | Mizuno et al. (2011) [76] |
GCL | SF | 10 µM | in vitro; fetal Wistar rats; primary striatal neuronal cultures | 1.7 | Protein | Mizuno et al. (2011) [76] |
GCLC | I3C | 25 µM | in vitro; TRAMP C1 cells | 3 | Expression | Wu et al. (2012) [77] |
GCLC | I3C | 50 µM | in vitro; TRAMP C1 cells | 3.4 | Expression | Wu et al. (2012) [77] |
GCLC | I3C | 75 µM | in vitro; TRAMP C1 cells | 5.2 | Expression | Wu et al. (2012) [77] |
GCLC | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vivo; Nrf2(+/+) mice; stomach and small intestine | 5 | Protein | McWalter et al. (2004) [78] |
GCLC | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 4 | Expression | Thimmulappa et al. (2002) [79] |
GCLM | SF | 344 µmol single dose | Human clinical; gastric mucosa | 3 (2.5) c | Expression | Gasper et al. (2007) [80] |
GPX | I3C | 2 µM | in vitro; HepG2 cells | 1.1 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GPX | I3C | 2 µM | in vitro; HepG2 cells | 1.1 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GPX | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GPX | I3C | 10 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GPX | PEITC | 1 µM | in vitro; HepG2 cells | 2.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GPX | PEITC | 1 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GPX | PEITC | 5 µM | in vitro; HepG2 cells | 3.4 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GPX | PEITC | 5 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GPX3 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.1 | Expression | Hu et al. (2006) [81] |
GSR | I3C | 2 µM | in vitro; HepG2 cells | 1.9 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSR | I3C | 2 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSR | I3C | 10 µM | in vitro; HepG2 cells | 2.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSR | I3C | 10 µM | in vitro; HepG2 cells | 1.4 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSR | PEITC | 1 µM | in vitro; HepG2 cells | 1.7 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSR | PEITC | 1 µM | in vitro; HepG2 cells | 1.4 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSR | PEITC | 5 µM | in vitro; HepG2 cells | 2.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSR | PEITC | 5 µM | in vitro; HepG2 cells | 1.5 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSR | SF | 5 µM | in vitro; rat cardiomyocytes | 1.9–2.1 d | Activity | Angeloni et al. (2009) [82] |
GSR | SF | 5 µM | in vitro; rat cardiomyocytes | 1.5–2 d | Expression | Angeloni et al. (2009) [82] |
GSR | SF | 5 µM | in vitro; rat cardiomyocytes | 1.2–1.5 d | Protein | Angeloni et al. (2009) [82] |
GSR | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2 | Expression | Hu et al. (2006) [81] |
GSR | SF | 0.1 µM | in vitro; mouse cortical neurons | 2 | Activity | Vauzour et al. (2010) [83] |
GSTA | I3C | 2 µM | in vitro; HepG2 cells | 1.9 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTA | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTA | I3C | 10 µM | in vitro; HepG2 cells | 1.8 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTA | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTA | PEITC | 1 µM | in vitro; HepG2 cells | 3.6 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTA | PEITC | 1 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTA | PEITC | 5 µM | in vitro; HepG2 cells | 5.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTA | PEITC | 5 µM | in vitro; HepG2 cells | 1.6 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTA | SF | 0.2 µM | in vitro; rat hepatic Clone 9 cells | 3.1 | Protein | Lii et al. (2010) [84] |
GSTA | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 4.5 | Protein | Lii et al. (2010) [84] |
GSTA | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 6.9 | Protein | Lii et al. (2010) [84] |
GSTA1 | SF | 5 µM | in vitro; rat cardiomyocytes | 1.5–2 d | Expression | Angeloni et al. (2009) [82] |
GSTA1 | SF | 10 µM | in vitro; human prostatic cancer cells (LNCaP) | 1.7 | Expression | Brooks et al. (2001) [85] |
GSTA1 | SF | 10 µM | in vitro; human prostatic cancer cells (MDA Pca 2A) | 1.7 | Expression | Brooks et al. (2001) [85] |
GSTA1 | SF | 10 µM | in vitro; human prostatic cancer cells (MDA Pca 2B) | 1.4 | Expression | Brooks et al. (2001) [85] |
GSTA1 | SF | 10 µM | in vitro; human prostatic cancer cells (PC3) | 1 | Expression | Brooks et al. (2001) [85] |
GSTA1 | SF | 10 µM | in vitro; human prostatic cancer cells (TSU-Pr1) | 1 | Expression | Brooks et al. (2001) [85] |
GSTA1 | SF | 11 µM in onion/broccoli extract | Human clinical; enterocytes | 2 | Expression | Petri et al. (2003) [86] |
GSTA1 | SF | 10 µM | in vitro; human Caco-2 cells | 3 | Expression | Petri et al. (2003) [86] |
GSTA1 | SF | 11 µM in onion/broccoli extract | in vitro; human Caco-2 cells | 1.7 | Expression | Petri et al. (2003) [86] |
GSTA1/2 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 2.3 | Protein | McMahon et al. (2001) [87] |
GSTA1/2 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.4 | Protein | McMahon et al. (2001) [87] |
GSTA2 | PEITC | 40 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.6 | Expression | Hu et al. (2006) [88] |
GSTA2 | SF | 90 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.8 | Expression | Hu et al. (2006) [81] |
GSTA2 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 4.4 | Expression | Hu et al. (2006) [81] |
GSTA3 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 2.2 | Protein | McMahon et al. (2001) [87] |
GSTA3 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.8 | Protein | McMahon et al. (2001) [87] |
GSTA4 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 3.8 | Protein | McMahon et al. (2001) [87] |
GSTA4 | SF | 90 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.1 (2) c | Expression | Hu et al. (2006) [81] |
GSTA4 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.5 (2.7) c | Expression | Hu et al. (2006) [81] |
GSTA4 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.9 | Protein | McMahon et al. (2001) [87] |
GST e | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 1.9 | Activity | Munday and Munday (2004) [ 89] |
GST e | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.1 | Activity | Munday and Munday (2004) [ 89] |
GSTe | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.4 | Activity | Munday and Munday (2004) [ 89] |
GST e | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 1.7 | Activity | Munday and Munday (2004) [ 89] |
GST e | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.1 | Activity | Munday and Munday (2004) [ 89] |
GST e | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.3 | Activity | Munday and Munday (2004) [ 89] |
GST e | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.3 | Activity | McMahon et al. (2001) [87] |
GST e | Iberin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 2.0 | Activity | Munday and Munday (2004) [ 89] |
GST e | Iberin | 40 µmol per·kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.0 | Activity | Munday and Munday (2004) [ 89] |
GST e | Iberin | 40 µmol per·kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.1 | Activity | Munday and Munday (2004) [ 89] |
GST e | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vivo; Nrf2(+/+) mice; stomach, small intestine, and liver | 1.5 | Activity | McWalter et al. (2004) [78] |
GST e | MIX b | Brussels sprouts extract (7 g tissue) for 4 d | in vivo; Wistar rats; hepatic cells | 1.3 | Expression | Sorensen et al. (2001) [90] |
GST e | MIX b | 40 µmol ITC per kg body wt. for 14 d | in vivo; Sprague-Dawley rats; bladder | 1.4 | Activity | Zhang et al. (2006) [91] |
GST e | MIX b | 160 µmol ITC per kg body wt. for 14 d | in vivo; Sprague-Dawley rats; bladder | 2.1 | Activity | Zhang et al. (2006) [91] |
GST e | MIX b | 40 µmol ITC per kg body wt. for 14 d | in vivo; Sprague-Dawley rats; duodenum | 1.5 | Activity | Zhang et al. (2006) [91] |
GST e | MIX b | 160 µmol ITC per kg body wt. for 14 d | in vivo; Sprague-Dawley rats; duodenum | 2.8 | Activity | Zhang et al. (2006) [91] |
GST e | SF | 5 µM | in vitro; rat cardiomyocytes | 2–2.5 d | Activity | Angeloni et al. (2009) [82] |
GST e | SF | 5 µM | in vitro; rat cardiomyocytes | 3–5 d | Protein | Angeloni et al. (2009) [82] |
GST e | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 2 | Activity | Lii et al. (2010) [84] |
GST e | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 2.6 | Activity | Lii et al. (2010) [84] |
GST e | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.5 | Activity | McMahon et al. (2001) [87] |
GST e | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 2.5 | Activity | Munday and Munday (2004) [ 89] |
GST e | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.3 | Activity | Munday and Munday (2004) [ 89] |
GST e | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.2 | Activity | Munday and Munday (2004) [ 89] |
GST e | SF | 313 nM | in vitro; human BEAS-2B cells | 1.1 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 625 nM | in vitro; human BEAS-2B cells | 1.2 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 1.25 µM | in vitro; human BEAS-2B cells | 1.4 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 2.5 µM | in vitro; human BEAS-2B cells | 1.7 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 5 µM | in vitro; human BEAS-2B cells | 2 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 10 µM | in vitro; human BEAS-2B cells | 2.1 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 313 nM | in vitro; human NHBE cells | 1.2 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 625 nM | in vitro; human NHBE cells | 1.7 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 1.25 µM | in vitro; human NHBE cells | 1.9 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 2.5 µM | in vitro; human NHBE cells | 2.5 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 5 µM | in vitro; human NHBE cells | 2.6 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 10 µM | in vitro; human NHBE cells | 2.8 | Activity | Ritz et al. (2007) [92] |
GST e | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 1.3 | Activity | Thimmulappa et al. (2002) [79] |
GST e | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 2.5–6 f | Expression | Thimmulappa et al. (2002) [79] |
GST e | SF | 0.1 µM | in vitro; mouse cortical neurons | 1.7 | Activity | Vauzour et al. (2010) [83] |
GST e | SF | 4 µM | in vitro; mouse embryonic fibroblasts | 1.5 | Activity | Zhang et al. (2006) [91] |
GST e | SF | 8 µM | in vitro; mouse embryonic fibroblasts | 1.5 | Activity | Zhang et al. (2006) [91] |
GST e | SF | 4 µM | in vitro; rat bladder NBT-II cells | 1.8 | Activity | Zhang et al. (2006) [91] |
GST e | SF | 8 µM | in vitro; rat bladder NBT-II cells | 2.1 | Activity | Zhang et al. (2006) [91] |
GSTM | I3C | 2 µM | in vitro; HepG2 cells | 2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTM | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTM | I3C | 10 µM | in vitro; HepG2 cells | 2.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTM | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTM | PEITC | 1 µM | in vitro; HepG2 cells | 3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTM | PEITC | 1 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTM | PEITC | 5 µM | in vitro; HepG2 cells | 4.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTM | PEITC | 5 µM | in vitro; HepG2 cells | 1.4 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTM | SF | 0.2 µM | in vitro; rat hepatic Clone 9 cells | 1.9 | Protein | Lii et al. (2010) [84] |
GSTM | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 3.5 | Protein | Lii et al. (2010) [84] |
GSTM | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 5.0 | Protein | Lii et al. (2010) [84] |
GSTM1 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.9 | Protein | McMahon et al. (2001) [87] |
GSTM1 | PEITC | 40 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.5 (2.3) c | Expression | Hu et al. (2006) [88] |
GSTM1 | PEITC | 40 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 1.9 (2.2) c | Expression | Hu et al. (2006) [88] |
GSTM1 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 4.4 | Expression | Hu et al. (2006) [81] |
GSTM1 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.4 | Protein | McMahon et al. (2001) [87] |
GSTM1 | SF | 13 µmol/d for 3 d | Human clinical; nasal lavage cells | 0.9 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 51 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.1 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 64 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.3 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 76 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.7 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 89 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.9 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 102 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.2 | Expression | Riedl et al. (2009) [93] |
GSTM1 | SF | 5 µM | in vitro; human BEAS-2B cells | 1 | Expression | Ritz et al. (2007) [92] |
GSTM1 | SF | 5 µM | in vitro; human NHBE cells | 2 | Expression | Ritz et al. (2007) [92] |
GSTM3 | PEITC | 40 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2 | Expression | Hu et al. (2006) [88] |
GSTM5 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 5.1 | Protein | McMahon et al. (2001) [87] |
GSTM5 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2 | Expression | Hu et al. (2006) [81] |
GSTM5 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 0.9 | Protein | McMahon et al. (2001) [87] |
GSTP | DIM | 5 µM | in vitro; MCF10A breast cells | 0.5 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MCF10A breast cells | 0.4 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 5 µM | in vitro; MCF10A breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MCF10A breast cells | 0.8 | Protein | Szaefer et al. (2015) [94] |
GSTP | DIM | 5 µM | in vitro; MCF7 breast cells | 1.2 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MCF7 breast cells | 1.8 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 5 µM | in vitro; MCF7 breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MCF7 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | DIM | 5 µM | in vitro; MDA-MB-231 breast cells | 1.2 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MDA-MB-231 breast cells | 1.8 | Expression | Szaefer et al. (2015) [94] |
GSTP | DIM | 5 µM | in vitro; MDA-MB-231 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | DIM | 10 µM | in vitro; MDA-MB-231 breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 2 µM | in vitro; HepG2 cells | 2.8 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTP | I3C | 10 µM | in vitro; HepG2 cells | 3.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTP | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTP | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTP | I3C | 10 µM | in vitro; MCF10A breast cells | 0.5 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MCF10A breast cells | 0.4 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 10 µM | in vitro; MCF10A breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MCF10A breast cells | 0.9 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 30 µM | in vitro; MCF7 breast cells | 1.5 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MCF7 breast cells | 1.8 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 30 µM | in vitro; MCF7 breast cells | 1.2 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MCF7 breast cells | 1.3 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 10 µM | in vitro; MDA-MB-231 breast cells | 1 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MDA-MB-231 breast cells | 1.5 | Expression | Szaefer et al. (2015) [94] |
GSTP | I3C | 10 µM | in vitro; MDA-MB-231 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | I3C | 50 µM | in vitro; MDA-MB-231 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
GSTP | PEITC | 1 µM | in vitro; HepG2 cells | 2.7 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTP | PEITC | 5 µM | in vitro; HepG2 cells | 5 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTP | PEITC | 1 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTP | PEITC | 5 µM | in vitro; HepG2 cells | 1.4 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTP | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 1 | Expression | Lii et al. (2010) [84] |
GSTP | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 5 | Expression | Lii et al. (2010) [84] |
GSTP | SF | 0.2 µM | in vitro; rat hepatic Clone 9 cells | 5 | Protein | Lii et al. (2010) [84] |
GSTP | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 7 | Protein | Lii et al. (2010) [84] |
GSTP | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 8.1 | Protein | Lii et al. (2010) [84] |
GSTP1 | MIX b | Broccoli sprout extract; 0.5 mg/L | in vitro; human A549 cells | 1.5 (24 h) g | Expression | Tan et al. (2010) [95] |
GSTP1 | MIX b | Broccoli sprout extract; 1 mg/L | in vitro; human A549 cells | 1.6 (24 h) g | Expression | Tan et al. (2010) [95] |
GSTP1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human A549 cells | 2.5 (24 h) g | Expression | Tan et al. (2010) [95] |
GSTP1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human immortalized HBE cells | 3.2 (24 h) g | Expression | Tan et al. (2010) [95] |
GSTP1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human NHBE cells | 2 (48 h) g | Expression | Tan et al. (2010) [95] |
GSTP1 | SF | 13 µmol/d for 3 d | Human clinical; nasal lavage cells | 1 | Expression | Riedl et al. (2009) [93] |
GSTP1 | SF | 51 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.1 | Expression | Riedl et al. (2009) [93] |
GSTP1 | SF | 64 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.4 | Expression | Riedl et al. (2009) [93] |
GSTP1 | SF | 76 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.8 | Expression | Riedl et al. (2009) [93] |
GSTP1 | SF | 89 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.9 | Expression | Riedl et al. (2009) [93] |
GSTP1 | SF | 102 µmol/d for 3 d | Human clinical; nasal lavage cells | 2 | Expression | Riedl et al. (2009) [93] |
GSTP1/2 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1 | Protein | McMahon et al. (2001) [87] |
GSTP1/2 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 0.9 | Protein | McMahon et al. (2001) [87] |
GSTT | I3C | 2 µM | in vitro; HepG2 cells | 1.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTT | I3C | 10 µM | in vitro; HepG2 cells | 1.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTT | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTT | I3C | 10 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTT | PEITC | 1 µM | in vitro; HepG2 cells | 1.5 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTT | PEITC | 5 µM | in vitro; HepG2 cells | 2.5 | Expression | Krajka-Kuźniak et al. (2015) [44] |
GSTT | PEITC | 1 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTT | PEITC | 5 µM | in vitro; HepG2 cells | 1.3 | Protein | Krajka-Kuźniak et al. (2015) [44] |
GSTT3 | PEITC | 40 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.8 | Expression | Hu et al. (2006) [88] |
HO-1 | AITC | 5 µM | in vitro; NIH3T3 cells | 10 | Expression | Ernst et al. (2011) [74] |
HO-1 | AITC | 10 µM | in vitro; NIH3T3 cells | 20 | Expression | Ernst et al. (2011) [74] |
HO-1 | AITC | 25 µM | in vitro; NIH3T3 cells | 45 | Expression | Ernst et al. (2011) [74] |
HO-1 | BITC | 5 µM | in vitro; NIH3T3 cells | 5 | Expression | Ernst et al. (2011) [74] |
HO-1 | BITC | 10 µM | in vitro; NIH3T3 cells | 11 | Expression | Ernst et al. (2011) [74] |
HO-1 | BITC | 25 µM | in vitro; NIH3T3 cells | 24 | Expression | Ernst et al. (2011) [74] |
HO-1 | DIM | 5 µM | in vitro; NIH3T3 cells | 4.3 | Expression | Ernst et al. (2011) [75] |
HO-1 | DIM | 10 µM | in vitro; NIH3T3 cells | 7 | Expression | Ernst et al. (2011) [75] |
HO-1 | DIM | 25 µM | in vitro; NIH3T3 cells | 13 | Expression | Ernst et al. (2011) [75] |
HO-1 | Erucin | 25 µM precursor + myrosinase; 6 h treatment | in vitro; HT-29 cells | 290 | Expression | Wagner et al. (2015) [96] |
HO-1 | Erucin | 20 mg/kg precursor + myrosinase for 7 d | in vivo; C57BL/6 mice; brain | 1.1 | Expression | Wagner et al. (2015) [96] |
HO-1 | Erucin | 20 mg/kg precursor + myrosinase for 7 d | in vivo; C57BL/6 mice; liver | 3 | Expression | Wagner et al. (2015) [96] |
HO-1 | Erucin | 20 mg/kg precursor + myrosinase for 7 d | in vivo; C57BL/6 mice; mucosae | 4.8 | Expression | Wagner et al. (2015) [96] |
HO-1 | I3C | 25 µM | in vitro; TRAMP C1 cells | 1.5 | Expression | Wu et al. (2012) [77] |
HO-1 | I3C | 50 µM | in vitro; TRAMP C1 cells | 1.8 | Expression | Wu et al. (2012) [77] |
HO-1 | I3C | 75 µM | in vitro; TRAMP C1 cells | 2.8 | Expression | Wu et al. (2012) [77] |
HO-1 | PEITC | 5 µM | in vitro; NIH3T3 cells | 33 | Expression | Ernst et al. (2011) [74] |
HO-1 | SF | 5 µM | in vitro; NIH3T3 cells | 18.6 | Expression | Ernst et al. (2011) [75] |
HO-1 | SF | 10 µM | in vitro; NIH3T3 cells | 27 | Expression | Ernst et al. (2011) [75] |
HO-1 | SF | 5 µM | in vitro; NIH3T3 cells | 18 | Expression | Ernst et al. (2011) [74] |
HO-1 | SF | 10 µM | in vitro; NIH3T3 cells | 27 | Expression | Ernst et al. (2011) [74] |
HO-1 | SF | 90 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 10.3 (12.2) c | Expression | Hu et al. (2006) [81] |
HO-1 | SF | 13 µmol/d for 3 d | Human clinical; nasal lavage cells | 1 | Expression | Riedl et al. (2009) [93] |
HO-1 | SF | 64 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.4 | Expression | Riedl et al. (2009) [93] |
HO-1 | SF | 76 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.1 | Expression | Riedl et al. (2009) [93] |
HO-1 | SF | 89 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.1 | Expression | Riedl et al. (2009) [93] |
HO-1 | SF | 102 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.2 | Expression | Riedl et al. (2009) [93] |
HO-1 | SF | 50 µM | in vitro; human Caco-2 cells | 3.8 | Expression | Traka et al. (2005) [97] |
NQO1 | AITC | 5 µM | in vitro; NIH3T3 cells | 2.2 | Expression | Ernst et al. (2011) [74] |
NQO1 | AITC | 10 µM | in vitro; NIH3T3 cells | 2.1 | Expression | Ernst et al. (2011) [74] |
NQO1 | AITC | 25 µM | in vitro; NIH3T3 cells | 1.9 | Expression | Ernst et al. (2011) [74] |
NQO1 | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 1.9 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.5 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | AITC | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.6 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | BITC | 50 µM | in vitro; human LS-174 cells | 1.5 | Activity | Bonnesen et al. (2001) [98] |
NQO1 | BITC | 50 µM | in vitro; human LS-174 cells | 15–20 h | Protein | Bonnesen et al. (2001) [98] |
NQO1 | BITC | 5 µM | in vitro; NIH3T3 cells | 2 | Expression | Ernst et al. (2011) [74] |
NQO1 | BITC | 10 µM | in vitro; NIH3T3 cells | 1.7 | Expression | Ernst et al. (2011) [74] |
NQO1 | BITC | 25 µM | in vitro; NIH3T3 cells | 1.6 | Expression | Ernst et al. (2011) [74] |
NQO1 | BITC | 2 µM | in vitro; human NHBE cells | 7.5 (24 h) g | Protein | Tan et al. (2010) [95] |
NQO1 | DIM | 300 µM | in vitro; human LS-174 cells | 1.1 | Activity | Bonnesen et al. (2001) [98] |
NQO1 | DIM | 300 µM | in vitro; human LS-174 cells | 2 | Protein | Bonnesen et al. (2001) [98] |
NQO1 | DIM | 5 µM | in vitro; NIH3T3 cells | 1.7 | Expression | Ernst et al. (2011) [75] |
NQO1 | DIM | 10 µM | in vitro; NIH3T3 cells | 1.7 | Expression | Ernst et al. (2011) [75] |
NQO1 | DIM | 25 µM | in vitro; NIH3T3 cells | 2 | Expression | Ernst et al. (2011) [75] |
NQO1 | DIM | 5 µM | in vitro; MCF10A breast cells | 1.3 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MCF10A breast cells | 1.5 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 5 µM | in vitro; MCF10A breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MCF10A breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | DIM | 5 µM | in vitro; MCF7 breast cells | 2.3 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MCF7 breast cells | 3.8 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 5 µM | in vitro; MCF7 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MCF7 breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | DIM | 5 µM | in vitro; MDA-MB-231 breast cells | 4.1 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MDA-MB-231 breast cells | 5.1 | Expression | Szaefer et al. (2015) [94] |
NQO1 | DIM | 5 µM | in vitro; MDA-MB-231 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | DIM | 10 µM | in vitro; MDA-MB-231 breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 1.7 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.5 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | Erucin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.3 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | I3C | 1 mM | in vitro; human LS-174 cells | 1.1 | Activity | Bonnesen et al. (2001) [98] |
NQO1 | I3C | 1 mM | in vitro; human LS-174 cells | 2 | Protein | Bonnesen et al. (2001) [98] |
NQO1 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.4 | Activity | McMahon et al. (2001) [87] |
NQO1 | I3C | 0.5% (w/w) supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 2.4 | Protein | McMahon et al. (2001) [87] |
NQO1 | I3C | 10 µM | in vitro; MCF10A breast cells | 1.2 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MCF10A breast cells | 1.8 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 10 µM | in vitro; MCF10A breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MCF10A breast cells | 1.1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 30 µM | in vitro; MCF7 breast cells | 2 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MCF7 breast cells | 2.7 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 30 µM | in vitro; MCF7 breast cells | 1.3 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MCF7 breast cells | 1.7 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 10 µM | in vitro; MDA-MB-231 breast cells | 2 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MDA-MB-231 breast cells | 3 | Expression | Szaefer et al. (2015) [94] |
NQO1 | I3C | 10 µM | in vitro; MDA-MB-231 breast cells | 1 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 50 µM | in vitro; MDA-MB-231 breast cells | 1.2 | Protein | Szaefer et al. (2015) [94] |
NQO1 | I3C | 25 µM | in vitro; TRAMP C1 cells | 1.7 | Expression | Wu et al. (2012) [77] |
NQO1 | I3C | 50 µM | in vitro; TRAMP C1 cells | 2.7 | Expression | Wu et al. (2012) [77] |
NQO1 | I3C | 75 µM | in vitro; TRAMP C1 cells | 3.8 | Expression | Wu et al. (2012) [77] |
NQO1 | Iberin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 2.2 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | Iberin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 1.8 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | Iberin | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.3 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vitro; mouse Hepa 1c1c7 cells | 3 | Activity | McWalter et al. (2004) [78] |
NQO1 | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vitro; rat RL-34 cells | 5 | Activity | McWalter et al. (2004) [78] |
NQO1 | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vivo; Nrf2(+/+) mice; stomach, small intestine, and liver | 1.5 | Activity | McWalter et al. (2004) [78] |
NQO1 | MIX b | 15% broccoli seed/85% RM1 feed for 7 d | in vivo; Nrf2(+/+) mice; stomach, small intestine, and liver | 2 | Protein | McWalter et al. (2004) [78] |
NQO1 | MIX b | Brussels sprouts extract (7 g tissue) for 4d | in vivo; Wistar rats; hepatic cells | 2.6 | Activity | Sorensen et al. (2001) [90] |
NQO1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human A549 cells | 1.9 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human immortalized HBE cells | 4 (6d) g | Expression | Tan et al. (2010) [95] |
NQO1 | MIX b | Broccoli sprout extract; 1 mg/L | in vitro; human NHBE cells | 2.1 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human NHBE cells | 4.5 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | MIX b | Broccoli sprout extract; 2 mg/L | in vitro; human NHBE cells | 5 (24 h) g | Protein | Tan et al. (2010) [95] |
NQO1 | MIX b | 40 µmol ITC per kg body wt for 14 d | in vivo; Sprague-Dawley rats; bladder | 2.4 | Activity | Zhang et al. (2006) [91] |
NQO1 | MIX b | 160 µmol ITC per kg body wt for 14 d | in vivo; Sprague-Dawley rats; bladder | 4.4 | Activity | Zhang et al. (2006) [91] |
NQO1 | MIX b | 40 µmol ITC per kg body wt for 14 d | in vivo; Sprague-Dawley rats; duodenum | 2.4 | Activity | Zhang et al. (2006) [91] |
NQO1 | MIX b | 160 µmol ITC per kg body wt for 14 d | in vivo; Sprague-Dawley rats; duodenum | 4.6 | Activity | Zhang et al. (2006) [91] |
NQO1 | PEITC | 50 µM | in vitro; human LS-174 cells | 1.4 | Activity | Bonnesen et al. (2001) [98] |
NQO1 | PEITC | 50 µM | in vitro; human LS-174 cells | 15–20 h | Protein | Bonnesen et al. (2001) [98] |
NQO1 | PEITC | 5 µM | in vitro; NIH3T3 cells | 1.7 | Expression | Ernst et al. (2011) [74] |
NQO1 | PEITC | 2 µM | in vitro; human immortalized HBE cells | 6 (48 h) g | Protein | Tan et al. (2010) [95] |
NQO1 | PEITC | 2 µM | in vitro; human NHBE cells | 10 (6d) g | Protein | Tan et al. (2010) [95] |
NQO1 | SF | 5 µM | in vitro; rat cardiomyocytes | 3–5 d | Activity | Angeloni et al. (2009) [82] |
NQO1 | SF | 5 µM | in vitro; rat cardiomyocytes | 1.5–2.2 d | Expression | Angeloni et al. (2009) [82] |
NQO1 | SF | 5 µM | in vitro; rat cardiomyocytes | 2–3 d | Protein | Angeloni et al. (2009) [82] |
NQO1 | SF | 50 µM | in vitro; human LS-174 cells | 2 | Activity | Bonnesen et al. (2001) [98] |
NQO1 | SF | 50 µM | in vitro; human LS-174 cells | 15–20 h | Protein | Bonnesen et al. (2001) [98] |
NQO1 | SF | 0.1 µM | in vitro; human prostatic cancer cells | 1 g | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 0.5 µM | in vitro; human prostatic cancer cells | 1.1 g | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 1 µM | in vitro; human prostatic cancer cells | 1.3 i | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 5 µM | in vitro; human prostatic cancer cells | 1.8 i | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 8 µM | in vitro; human prostatic cancer cells | 1.9 i | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells | 1.9 i | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 15 µM | in vitro; human prostatic cancer cells | 1.8 i | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells (LNCaP) | 2.6 | Expression | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells (MDA Pca 2A) | 2.2 | Expression | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells (MDA Pca 2B) | 1.9 | Expression | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells (PC3) | 1.8 | Expression | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; human prostatic cancer cells (TSU-Pr1) | 1.6 | Expression | Brooks et al. (2001) [85] |
NQO1 | SF | 0.1 µM | in vitro; normal human prostatic cells | 1.4 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 0.5 µM | in vitro; normal human prostatic cells | 1.6 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 1 µM | in vitro; normal human prostatic cells | 2.1 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 3 µM | in vitro; normal human prostatic cells | 2.5 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 5 µM | in vitro; normal human prostatic cells | 2 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 8 µM | in vitro; normal human prostatic cells | 1.8 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 10 µM | in vitro; normal human prostatic cells | 1.9 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 15 µM | in vitro; normal human prostatic cells | 1.8 | Activity | Brooks et al. (2001) [85] |
NQO1 | SF | 40 nmol | Human clinical; skin | 1 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 170 nmol | Human clinical; skin | 1.5 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 340 nmol | Human clinical; skin | 1.6 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 50 nmol/d for 3 d | Human clinical; skin | 2.8 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 100 nmol/d for 3 d | Human clinical; skin | 3 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 150 nmol/d for 3 d | Human clinical; skin | 4.5 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 200 nmol/d for 3 d | Human clinical; skin | 2.7 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 100 nmol/cm2; 1 dose | in vivo; SKH-1 hairless mice; skin | 1.6 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 100 nmol/cm2; 3 doses (1/d for 3 d) | in vivo; SKH-1 hairless mice; skin | 2.7 | Activity | Dinkova-Kostova et al. (2007) [99] |
NQO1 | SF | 5 µM | in vitro; NIH3T3 cells | 2.3 | Expression | Ernst et al. (2011) [74] |
NQO1 | SF | 10 µM | in vitro; NIH3T3 cells | 2.2 | Expression | Ernst et al. (2011) [74] |
NQO1 | SF | 5 µM | in vitro; NIH3T3 cells | 2.3 | Expression | Ernst et al. (2011) [75] |
NQO1 | SF | 10 µM | in vitro; NIH3T3 cells | 2.2 | Expression | Ernst et al. (2011) [75] |
NQO1 | SF | 156 nM | in vitro; human ARPE-19 cells | 1.1 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 313 nM | in vitro; human ARPE-19 cells | 1.4 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 625 nM | in vitro; human ARPE-19 cells | 1.6 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 1.25 µM | in vitro; human ARPE-19 cells | 1.8 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 2.5 µM | in vitro; human ARPE-19 cells | 2.0 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 5 µM | in vitro; human ARPE-19 cells | 2.2 | Activity | Gao et al. (2001) [100] |
NQO1 | SF | 156 nM | in vitro; human ARPE-19 cells | 1.4 | Activity | Gao et al. (2004) [101] |
NQO1 | SF | 313 nM | in vitro; human ARPE-19 cells | 1.7 | Activity | Gao et al. (2004) [101] |
NQO1 | SF | 625 nM | in vitro; human ARPE-19 cells | 2.1 | Activity | Gao et al. (2004) [101] |
NQO1 | SF | 1.25 µM | in vitro; human ARPE-19 cells | 2.6 | Activity | Gao et al. (2004) [101] |
NQO1 | SF | 2.5 µM | in vitro; human ARPE-19 cells | 3.3 | Activity | Gao et al. (2004) [101] |
NQO1 | SF | 0.2 µM | in vitro; rat hepatic Clone 9 cells | 5.1 | Protein | Lii et al. (2010) [84] |
NQO1 | SF | 1 µM | in vitro; rat hepatic Clone 9 cells | 6.6 | Protein | Lii et al. (2010) [84] |
NQO1 | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 3.9 | Activity | Lii et al. (2010) [84] |
NQO1 | SF | 5 µM | in vitro; rat hepatic Clone 9 cells | 7.8 | Protein | Lii et al. (2010) [84] |
NQO1 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.4 | Activity | McMahon et al. (2001) [87] |
NQO1 | SF | 3 µmol/g supplemented RM1 feed | in vivo; Nrf2(+/+) mice; intestinal cytosol | 1.2 | Protein | McMahon et al. (2001) [87] |
NQO1 | SF | 5 µM | in vitro; mouse Hepa 1c1c7 cells | 4.5 | Activity | McWalter et al. (2004) [78] |
NQO1 | SF | 5 µM | in vitro; rat RL-34 cells | 5.2 | Activity | McWalter et al. (2004) [78] |
NQO1 | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; bladder | 1.9 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; duodenum | 2.2 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | SF | 40 µmol per kg body wt. for 5 d | in vivo; Sprague-Dawley rats; forestomach | 1.2 | Activity | Munday and Munday (2004) [ 89] |
NQO1 | SF | 13 µmol/d for 3 d | Human clinical; nasal lavage cells | 1 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 51 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.1 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 64 µmol/d for 3 d | Human clinical; nasal lavage cells | 1.5 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 76 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.4 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 89 µmol/d for 3 d | Human clinical; nasal lavage cells | 2.6 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 102 µmol/d for 3 d | Human clinical; nasal lavage cells | 3 | Expression | Riedl et al. (2009) [93] |
NQO1 | SF | 5 µM | in vitro; human BEAS-2B cells | 15 | Expression | Ritz et al. (2007) [92] |
NQO1 | SF | 5 µM | in vitro; human NHBE cells | 3 | Expression | Ritz et al. (2007) [92] |
NQO1 | SF | 1 µM | in vitro; human immortalized HBE cells | 2 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | SF | 2 µM | in vitro; human immortalized HBE cells | 8 (48 h) g | Protein | Tan et al. (2010) [95] |
NQO1 | SF | 0.5 µM | in vitro; human NHBE cells | 3.5 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | SF | 1 µM | in vitro; human NHBE cells | 3.8 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | SF | 2 µM | in vitro; human NHBE cells | 1.9 (24 h) g | Expression | Tan et al. (2010) [95] |
NQO1 | SF | 2 µM | in vitro; human NHBE cells | 11.8 (6d) g | Protein | Tan et al. (2010) [95] |
NQO1 | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 1.6 | Activity | Thimmulappa et al. (2002) [79] |
NQO1 | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 2.5 | Expression | Thimmulappa et al. (2002) [79] |
NQO1 | SF | 50 µM | in vitro; human Caco-2 cells | 2.5 | Expression | Traka et al. (2005) [97] |
NQO1 | SF | 100 nM | in vitro; mouse cortical neurons | 8 | Activity | Vauzour et al. (2010) [83] |
NQO1 | SF | 4 µM | in vitro; mouse embryonic fibroblasts | 2.5 | Activity | Zhang et al. (2006) [91] |
NQO1 | SF | 8 µM | in vitro; mouse embryonic fibroblasts | 2.5 | Activity | Zhang et al. (2006) [91] |
NQO1 | SF | 4 µM | in vitro; rat bladder NBT-II cells | 2.3 | Activity | Zhang et al. (2006) [91] |
NQO1 | SF | 8 µM | in vitro; rat bladder NBT-II cells | 2.6 | Activity | Zhang et al. (2006) [91] |
NQO1 | SF | 1 µM | in vitro; TRAMP C1 cells | 2.1 | Expression | Zhang et al. (2013) [102] |
NQO1 | SF | 2.5 µM | in vitro; TRAMP C1 cells | 2.3 | Expression | Zhang et al. (2013) [102] |
SOD | I3C | 10 µM | in vitro; HepG2 cells | 1.3 | Expression | Krajka-Kuźniak et al. (2015) [44] |
SOD | I3C | 10 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
SOD | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Expression | Krajka-Kuźniak et al. (2015) [44] |
SOD | I3C | 2 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
SOD | PEITC | 1 µM | in vitro; HepG2 cells | 1.6 | Expression | Krajka-Kuźniak et al. (2015) [44] |
SOD | PEITC | 1 µM | in vitro; HepG2 cells | 1.2 | Protein | Krajka-Kuźniak et al. (2015) [44] |
SOD | PEITC | 5 µM | in vitro; HepG2 cells | 2.4 | Expression | Krajka-Kuźniak et al. (2015) [44] |
SOD | PEITC | 5 µM | in vitro; HepG2 cells | 1.4 | Protein | Krajka-Kuźniak et al. (2015) [44] |
TXNRD | Erucin | 1 µM | in vitro; human MCF-7 cells | 2.7 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Erucin | 12 µM | in vitro; human MCF-7 cells | 7.3 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Erucin | 3 µM | in vitro; human MCF-7 cells | 4.3 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Erucin | 6 µM | in vitro; human MCF-7 cells | 5.6 (24 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Erucin | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 4 | Activity | Wang et al. (2005) [103] |
TXNRD | Erucin | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 4 | Protein | Wang et al. (2005) [103] |
TXNRD | Iberin | 1 µM | in vitro; human MCF-7 cells | 3.7 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Iberin | 3 µM | in vitro; human MCF-7 cells | 4.4 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Iberin | 6 µM | in vitro; human MCF-7 cells | 5.6 (24 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Iberin | 12 µM | in vitro; human MCF-7 cells | 5.8 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | Iberin | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 4 | Activity | Wang et al. (2005) [103] |
TXNRD | Iberin | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 3 | Protein | Wang et al. (2005) [103] |
TXNRD | SF | 5 µM | in vitro; rat cardiomyocytes | 2–2.7 d | Activity | Angeloni et al. (2009) [82] |
TXNRD | SF | 5 µM | in vitro; rat cardiomyocytes | 1.2–1.5 d | Expression | Angeloni et al. (2009) [82] |
TXNRD | SF | 5 µM | in vitro; rat cardiomyocytes | 1.5–1.9 d | Protein | Angeloni et al. (2009) [82] |
TXNRD | SF | 10 µM | in vitro; human Caco-2 cells | 2.2 (25 m) g | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM | in vitro; human Caco-2 cells | 1.7 (50 m) g | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 2 µM; 24 h after treatment | in vitro; human Caco-2 cells | 1.1 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 5 µM; 24 h after treatment | in vitro; human Caco-2 cells | 1.7 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM; 24 h after treatment | in vitro; human Caco-2 cells | 2.2 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 20 µM; 24 h after treatment | in vitro; human Caco-2 cells | 3.5 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 2 µM; 48 h after treatment | in vitro; human Caco-2 cells | 1.1 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 5 µM; 48 h after treatment | in vitro; human Caco-2 cells | 1.4 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM; 48 h after treatment | in vitro; human Caco-2 cells | 1.6 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 20 µM; 48 h after treatment | in vitro; human Caco-2 cells | 1.5 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM | in vitro; human HepG2 cells | 4 (25 m) g | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM | in vitro; human HepG2 cells | 2.2 (50 m) g | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 2 µM; 24 h after treatment | in vitro; human HepG2 cells | 2.1 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 5 µM; 24 h after treatment | in vitro; human HepG2 cells | 2.7 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM; 24 h after treatment | in vitro; human HepG2 cells | 2.5 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 20 µM; 24 h after treatment | in vitro; human HepG2 cells | 0.8 | Expression | Bacon et al. (2007) [104] |
TXNRD | SF | 2 µM; 48 h after treatment | in vitro; human HepG2 cells | 1.5 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 5 µM; 48 h after treatment | in vitro; human HepG2 cells | 2 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 10 µM; 48 h after treatment | in vitro; human HepG2 cells | 2.7 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 20 µM; 48 h after treatment | in vitro; human HepG2 cells | 2.1 | Protein | Bacon et al. (2007) [104] |
TXNRD | SF | 102 µmol single dose | Human clinical; gastric mucosa | 1.5 | Expression | Gasper et al. (2007) [80] |
TXNRD | SF | 344 µmol single dose | Human clinical; gastric mucosa | 2.1 (1.6) c | Expression | Gasper et al. (2007) [80] |
TXNRD | SF | 50 mg per kg; 6 h after i.p. injection | in vivo; tub/tub P14 mice; retinal cells | 2.4 | Protein | Kong et al. (2007) [105] |
TXNRD | SF | 50 mg per kg; 12 h after i.p. injection | in vivo; tub/tub P14 mice; retinal cells | 1.8 | Protein | Kong et al. (2007) [105] |
TXNRD | SF | 50 µM | in vitro; human Caco-2 cells | 8.8 | Expression | Traka et al. (2005) [97] |
TXNRD | SF | 0.1 µM | in vitro; mouse cortical neurons | 2.6 | Activity | Vauzour et al. (2010) [83] |
TXNRD | SF | 1 µM | in vitro; human MCF-7 cells | 3.4 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | SF | 3 µM | in vitro; human MCF-7 cells | 4.1 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | SF | 6 µM | in vitro; human MCF-7 cells | 4.8 (24 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | SF | 12 µM | in vitro; human MCF-7 cells | 5.4 (8 h) g | Expression | Wang et al. (2005) [103] |
TXNRD | SF | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 5 | Activity | Wang et al. (2005) [103] |
TXNRD | SF | 12 µM; 48 h after treatment | in vitro; human MCF-7 cells | 3 | Protein | Wang et al. (2005) [103] |
TXNRD1 | SF | 90 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.6 | Expression | Hu et al. (2006) [81] |
TXNRD1 | SF | 90 mg/kg; 12 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2 | Expression | Hu et al. (2006) [81] |
TXNRD3 | SF | 90 mg/kg; 3 h after treatment | in vivo; Nrf2(+/+) mice; liver | 2.4 | Expression | Hu et al. (2006) [81] |
UGT family 2 | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 8 | Expression | Thimmulappa et al. (2002) [79] |
UGT1A1 | SF | 11 µM in onion/broccoli extract | Human clinical; enterocytes | 2.4 | Expression | Petri et al. (2003) [86] |
UGT1A1 | SF | 11 µM in onion/broccoli extract | in vitro; human Caco-2 cells | 1.5 | Expression | Petri et al. (2003) [86] |
UGT1A6 | SF | 9 µmol per day | in vivo; ICR mice; small intestine cells | 1.4 | Expression | Thimmulappa et al. (2002) [79] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, T.M.; Juvik, J.A. The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases 2016, 4, 22. https://doi.org/10.3390/diseases4020022
Becker TM, Juvik JA. The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases. 2016; 4(2):22. https://doi.org/10.3390/diseases4020022
Chicago/Turabian StyleBecker, Talon M., and John A. Juvik. 2016. "The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence" Diseases 4, no. 2: 22. https://doi.org/10.3390/diseases4020022
APA StyleBecker, T. M., & Juvik, J. A. (2016). The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases, 4(2), 22. https://doi.org/10.3390/diseases4020022