Genetics of Sudden Cardiac Death
Abstract
1. Introduction
2. Materials and Methods
3. Genetic Cardiomyopathies
3.1. Hypertrophic Cardiomyopathy
3.2. Dilated Cardiomyopathy
- (1)
- Male sex;
- (2)
- Presence of non-missense LMNA mutations;
- (3)
- First-degree or higher atrioventricular block;
- (4)
- Episodes of non-sustained ventricular tachycardia;
- (5)
- Reduced left ventricular ejection fraction [52].
3.3. Arrhythmogenic Cardiomyopathy
4. Inherited Channelopathies
4.1. Brugada Syndrome
4.2. Long QT Syndrome
- (1)
- Autosomal-dominant LQTS without extra-cardiac manifestation.
- (2)
- Autosomal-dominant LQTS with extra-cardiac manifestation, including Andersen–Tawil syndrome (LQT7), characterized by frequent ventricular arrhythmias, facial dysmorphology, and periodic paralysis, and Timothy Syndrome (LQT8), characterized by prolonged QT, cardiac malformations, syndactyly, autism spectrum disorder, and dysmorphism.
- (3)
- (1)
- Genes that reduce the outward potassium current: KCNQ1 and KCNH2 account for approximately 80% of genetically confirmed LQTS cases, as well as KCNE1 and KCNE2 are associated with milder phenotypes.
- (2)
- Genes that increase inward sodium current: SCN5A, which can cause overlapping syndromes such as LQTS, Brugada syndrome, and cardiac conduction abnormalities.
- (3)
- (1)
- LQT1: Broad-based T waves, with cardiac events typically triggered by exercise.
- (2)
- LQT2: Low-amplitude or notched T waves, with arrhythmias often triggered by auditory stimuli.
- (3)
- LQT3: A long isoelectric ST-segment, with cardiac events commonly occurring during sleep.
4.3. Short QT Syndrome
4.4. Catecholaminergic Polymorphic Ventricular Tachycardia
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACM | arrhythmogenic cardiomyopathy |
| ACTC1 | alpha cardiac actin |
| ACTN2 | actinin alpha 2 |
| AD | autosomal dominant |
| ALPK3 | alpha kinase 3 |
| ALVC | dominant-left arrhythmogenic cardiomyopathy |
| ARIC | Atherosclerosis Risk in Communities Study |
| ARVC | arrhythmogenic right ventricular cardiomyopathy |
| ARVC | dominant-right arrhythmogenic cardiomyopathy |
| AR | autosomal recessive |
| BrS | Brugada syndrome |
| Bi-VACM | biventricular disease variants |
| CACNA1C | calcium voltage-gated channel subunit alpha1 C |
| CALM1, CALM2, CALM3 | calmodulin 1-3 |
| CARES | Cardiac Arrest Registry to Enhance Survival |
| CPVT | catecholaminergic polymorphic ventricular tachycardia |
| CSRP3 | cysteine- and glycine-rich protein 3 |
| DCM | dilated cardiomyopathy |
| DES | desmin |
| DSC2 | desmocollin-2 |
| DSG2 | desmoglein-2 |
| DSP | desmoplakin |
| ECG | electrocardiogram |
| ENCODE | ENCyclopedia Of DNA Elements |
| FHOD3 | formin homology 2 domain containing 3 |
| FLNC | filamin C |
| GWASs | genome-wide association studies |
| HCM | hypertrophic cardiomyopathy |
| ICD | cardioverter defibrillator |
| JPH2 | junctophilin |
| JUP | plakoglobin |
| KLHL24 | Kelch-like family member |
| LCSD | left cardiac sympathetic denervation |
| LGE | late gadolinium enhancement |
| LMNA | lamin A/C |
| LP/P | likely pathogenic or pathogenic |
| LV | left ventricular |
| LVEF | left ventricular ejection fraction |
| LQTS | long QT syndrome |
| MR | magnetic resonance |
| MUT | mutations |
| MYBPC3 | myosin-binding protein C3 |
| MYH7 | beta myosin heavy chain |
| MYL2 | regulatory myosin light chain |
| MYL3 | essential myosin light chain |
| NSVT | non-sustained ventricular tachycardia |
| OHCA | out-of-hospital cardiac arrest |
| PKP2 | plakophillin |
| PLN | phospholamban |
| PM1 | alpha tropomyosin |
| PRSBrS | polygenic risk scores for Brugada syndrome |
| PES | Programmed Electrical Stimulation |
| PRKAG2 | protein kinase AMP-activated non-catalytic subunit gamma 2 |
| PRS | polygenic risk scores |
| PVCs | premature ventricular contractions |
| QTL | quantitative trait loci |
| RBM20 | RNA-binding motif protein 20 |
| RPL3L | ribosomal protein L3-like |
| RV | right ventricular |
| RyR | Ryanodine |
| RVEF | right ventricular ejection fraction |
| SCD | sudden cardiac death |
| SCN5A | sodium channel protein type 5 subunit alpha |
| SNP | single-nucleotide polymorphism |
| SQTS | short QT syndrome |
| SMVT | sustained monomorphic ventricular tachycardia |
| TdP | Torsades de Pointes |
| TMEM43 | transmembrane protein 43 |
| TNNC1 | troponin C, cardiac type |
| TNNI3 | troponin I, cardiac type |
| TPM1 | alpha tropomyosin |
| TRIM63 | tripartite motif containing |
| VCL | metavinculin |
References
- Zeppenfeld, K.; Tfelt-Hansen, J.; De Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Philippe, F.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Bidzimou, M.K.; Landstrom, A.P. From diagnostic testing to precision medicine: The evolving role of genomics in cardiac channelopathies and cardiomyopathies in children. Curr. Opin. Genet. Dev. 2022, 76, 101978. [Google Scholar] [CrossRef] [PubMed]
- Krahn, A.D.; Connolly, S.J.; Roberts, R.S.; Gent, M.; ATMA Investigators. Diminishing proportional risk of sudden death with advancing age: Implications for prevention of sudden death. Am. Heart J. 2004, 147, 837–840. [Google Scholar] [CrossRef]
- Bougouin, W.; Lamhaut, L.; Marijon, E.; Jost, D.; Dumas, F.; Deye, N.; Beganton, F.; Empana, J.P.; Chazelle, E.; Cariou, A.; et al. Characteristics and prognosis of sudden cardiac death in Greater Paris: Population-based approach from the Paris Sudden Death Expertise Center (Paris-SDEC). Intensive Care Med. 2014, 40, 846–854. [Google Scholar] [CrossRef]
- Agesen, F.N.; Lynge, T.H.; Blanche, P.; Banner, J.; Prescott, E.; Jabbari, R.; Hansen, J.T. Temporal trends and sex differences in sudden cardiac death in the Copenhagen City Heart Study. Heart 2021, 107, 1303–1309. [Google Scholar] [CrossRef]
- Zhao, D.; Post, W.S.; Blasco-Colmenares, E.; Cheng, A.; Zhang, Y.; Deo, R.; Pastor-Barriuso, R.; Michos, E.D.; Sotoodehnia, N.; Guallar, E.; et al. Racial differences in sudden cardiac death. Circulation 2019, 139, 1688–1697. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Weintraub, R.G.; Ingles, J.; Duflou, J.; Yeates, L.; Lam, L.; Davis, A.M.; Thompson, T.; Connell, V.; Wallace, J.; et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N. Engl. J. Med. 2016, 374, 2441–2452. [Google Scholar] [CrossRef]
- McNally, B.; Robb, R.; Mehta, M.; Vellano, K.; Valderrama, A.L.; Yoon, P.W.; Sasson, C.; Crouch, A.; Perez, A.B.; Merritt, R.; et al. Out-of-Hospital Cardiac Arrest Surveillance: Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005–December 31, 2010; US Department of Health and Human Services: Washington, DC, USA, 2011; Volume 60, pp. 1–19.
- Khera, A.V.; Mason-Suares, H.; Brockman, D.; Wang, M.; VanDenburgh, M.J.; Senol-Cosar, O.; Patterson, C.; Newton-Cheh, C.; Zekavat, S.M.; Pester, J.; et al. Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. J. Am. Coll. Cardiol. 2019, 74, 2623–2634. [Google Scholar] [CrossRef]
- Stallmeyer, B.; Schulze-Bahr, E. Cardiovascular disease and sudden cardiac death: Between genetics and genomics. Eur. Heart J. 2015, 36, 1643–1645. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Tadros, R.; Bezzina, C.R. When genetic burden reaches threshold. Eur. Heart J. 2020, 41, 3849–3855. [Google Scholar] [CrossRef]
- Claussnitzer, M.; Cho, J.H.; Collins, R.; Cox, N.J.; Dermitzakis, E.T.; Hurles, M.E.; Kathiresan, S.; Kenny, E.E.; Lindgren, C.M.; MacArthur, D.G.; et al. A brief history of human disease genetics. Nature 2020, 577, 179–189. [Google Scholar] [CrossRef]
- Roberts, R.; Marian, A.J.; Dandona, S.; Stewart, A.F. Genomics in cardiovascular disease. J. Am. Coll. Cardiol. 2013, 61, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, M.B.; Kundaje, A.; Hariharan, M.; Landt, S.G.; Yan, K.K.; Cheng, C.; Mu, X.J.; Khurana, E.; Rozowsky, J.; Alexander, R.; et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012, 489, 91–100. [Google Scholar] [CrossRef]
- Schunkert, H.; Konig, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Sabater-Lleal, M.; Huang, J.; Chasman, D.; Naitza, S.; Dehghan, A.; Johnson, A.D.; Teumer, A.; Reiner, A.P.; Folkersen, L.; Basu, S.; et al. Multiethnic meta-analysis of genome-wide association studies in >100,000 subjects identifies 23 fibrinogen-associated loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation 2013, 128, 1310–1324. [Google Scholar] [CrossRef]
- Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; Hwang, S.J.; et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.D.; Denny, J.C.; Zuvich, R.L.; Crawford, D.C.; Schildcrout, J.S.; Bastarache, L.; Ramirez, A.H.; Mosley, J.D.; Pulley, J.M.; Basford, M.A.; et al. Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation 2013, 127, 1377–1385. [Google Scholar] [CrossRef]
- Arking, D.E.; Pulit, S.L.; Crotti, L.; van der Harst, P.; Munroe, P.B.; Koopmann, T.T.; Sotoodehnia, N.; Rossin, E.J.; Morley, M.; Wang, X.; et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014, 46, 826–836. [Google Scholar] [CrossRef]
- Bezzina, C.R.; Barc, J.; Mizusawa, Y.; Remme, C.A.; Gourraud, J.B.; Simonet, F.; Verkerk, A.O.; Schwartz, P.J.; Crotti, L.; Dagradi, F.; et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 2013, 45, 1044–1049. [Google Scholar] [CrossRef]
- Turkowski, K.L.; Dotzler, S.M.; Tester, D.J.; Giudicessi, J.R.; Bos, J.M.; Speziale, A.D.; Vollenweider, J.M.; Ackerman, M.J.; Cheng, S.; Funke, B.H.; et al. Corrected QT interval-polygenic risk score and its contribution to type 1, type 2, and type 3 long-QT syndrome in probands and genotype-positive family members. Circ. Genom. Precis. Med. 2020, 13, e002922. [Google Scholar] [CrossRef] [PubMed]
- Wijeyeratne, Y.D.; Tanck, M.W.; Mizusawa, Y.; Batchvarov, V.; Barc, J.; Crotti, L.; Bos, J.M.; Tester, D.J.; Muir, A.; Veltmann, C.; et al. SCN5A mutation type and a genetic risk score associate variably with Brugada syndrome phenotype in SCN5A families. Circ. Genom. Precis. Med. 2020, 13, e002911. [Google Scholar] [CrossRef]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg , O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Bezzina, C.R.; Lahrouchi, N.; Priori, S.G. Genetics of Sudden Cardiac Death. Circ. Res. 2015, 116, 1919–1936. [Google Scholar] [CrossRef]
- Maron, B.J.; Maron, M.S. Hypertrophic cardiomyopathy. Lancet 2013, 381, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gruner, C.; Chan, R.H.; Care, M.; Siminovitch, K.; Williams, L.; Woo, A.; Rakowski, H. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ. Cardiovasc. Genet. 2014, 7, 416–422. [Google Scholar] [CrossRef]
- Ingles, J.; Goldstein, J.; Thaxton, C.; Caleshu, C.; Corty, E.W.; Crowley, S.B.; Dougherty, K.; Harrison, S.M.; McGlaughon, J.; Milko, L.V.; et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 2019, 12, e002460. [Google Scholar] [CrossRef]
- Ahmad, F.; McNally, E.M.; Ackerman, M.J.; Baty, L.C.; Day, S.M.; Kullo, I.J.; Madueme, P.C.; Maron, M.S.; Martinez, M.W.; Salberg, L.; et al. Establishment of specialized clinical cardiovascular genetics programs: Recognizing the need and meeting standards: A scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 2019, 12, e000054. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Ingles, J.; Dinger, M.E.; Cowley, M.J.; Ross, S.B.; Minoche, A.E.; Lal, S.; Turner, C.; Colley, A.; Rajagopalan, S.; et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2018, 72, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.L.; Ormondroyd, E.; Harper, A.R.; Dent, T.; McGuire, K.; Baksi, J.; Blair, E.; Brennan, P.; Buchan, R.; Bueser, T.; et al. Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet. Med. 2019, 21, 1576–1584. [Google Scholar] [CrossRef]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef]
- Dewars, E.R.; Landstrom, A.P. The Genetic Basis of Sudden Cardiac Death: From Diagnosis to Emerging Genetic Therapies. Annu. Rev. Med. 2025, 76, 283–299. [Google Scholar] [CrossRef]
- Gollob, M.H.; Seger, J.J.; Gollob, T.N.; Tapscott, T.; Gonzales, O.; Bachinski, L.; Roberts, R. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001, 104, 3030–3033. [Google Scholar] [CrossRef]
- Maron, B.J.; Roberts, W.C.; Arad, M.; Haas, T.S.; Spirito, P.; Wright, G.B.; Almquist, A.K.; Baffa, J.M.; Saul, J.P.; Ho, C.Y.; et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 2009, 301, 1253–1259. [Google Scholar] [CrossRef]
- Elliott, P.; Baker, R.; Pasquale, F.; Quarta, G.; Ebrahim, H.; Mehta, A.B.; Hughes, D.A.; Anastasakis, A.; Autore, C.; Musumeci, M.B.; et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: The European Anderson-Fabry Disease survey. Heart 2011, 97, 1957–1960. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef] [PubMed]
- van Capelle, C.I.; Poelman, E.; Frohn-Mulder, I.M.; Koopman, L.P.; van den Hout, J.M.P.; Regal, L.; Cools, B.; Helbing, W.A.; van der Ploeg, A.T. Cardiac outcome in classic infantile Pompe disease after 13years of treatment with recombinant human acid alpha-glucosidase. Int. J. Cardiol. 2018, 269, 104–110. [Google Scholar] [CrossRef]
- Miron, A.; Lafreniere-Roula, M.S.; Fan, C.P.; Armstrong, K.R.; Dragulescu, A.; Papaz, T.; Manlhiot, C.; Kaufman, B.; Butts, R.J.; Gardin, L.; et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 2020, 142, 217–229. [Google Scholar] [CrossRef]
- Ingles, J.; Doolan, A.; Chiu, C.; Seidman, J.; Seidman, C.; Semsarian, C. Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J. Med. Genet. 2005, 42, e59. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A. Inherited cardiomyopathies. Circ. J. 2014, 78, 2347–2356. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef]
- Petretta, M.; Pirozzi, F.; Sasso, L.; Paglia, A.; Bonaduce, D. Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am. J. Cardiol. 2011, 108, 1171–1176. [Google Scholar] [CrossRef]
- Kayvanpour, E.; Sedaghat-Hamedani, F.; Amr, A.; Lai, A.; Haas, J.; Holzer, D.B.; Frese, K.S.; Keller, A.; Jensen, K.; Katus, H.A.; et al. Genotype-phenotype associations in dilated cardiomyopathy: Meta-analysis on more than 8000 individuals. Clin. Res. Cardiol. 2017, 106, 127–139. [Google Scholar] [CrossRef]
- Van den Hoogenhof, M.M.G.; Beqqali, A.; Amin, A.S.; van der Made, I.; Aufiero, S.; Khan, M.A.F.; Schumacher, C.A.; Jansweijer, J.A.; van Spaendonck-Zwarts, K.Y.; Remme, C.A.; et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 2018, 138, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Behere, S.P.; Weindling, S.N. Inherited arrhythmias: The cardiac channelopathies. Ann. Pediatr. Cardiol. 2015, 8, 210–220. [Google Scholar] [CrossRef]
- Ader, F.; De Groote, P.; Réant, P.; Rooryck-Thambo, C.; Dupin-Deguine, D.; Rambaud, C.; Khraiche, D.; Perret, C.; Pruny, J.F.; Mathieu-Dramard, M.; et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin. Genet. 2019, 96, 317–329. [Google Scholar] [CrossRef]
- Gigli, M.; Merlo, M.; Graw, S.L.; Barbati, G.; Rowland, T.J.; Slavov, D.B.; Stolfo, D.; Haywood, M.E.; Dal Ferro, M.; Altinier, A.; et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2019, 74, 1480–1490. [Google Scholar] [CrossRef]
- Haas, J.; Frese, K.S.; Peil, B.; Kloos, W.; Keller, A.; Nietsch, R.; Feng, Z.; Müller, S.; Kayvanpour, E.; Vogel, B.; et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 2015, 36, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.; Hershberger, R.E. Considering complexity in the genetic evaluation of dilated cardiomyopathy. Heart 2021, 107, 106–112. 361. [Google Scholar] [CrossRef] [PubMed]
- Garnier, S.; Harakalova, M.; Weiss, S.; Mokry, M.; Regitz-Zagrosek, V.; Hengstenberg, C.; Cappola, T.P.; Isnard, R.; Arbustini, E.; Cook, S.A.; et al. Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur. Heart. J. 2021, 42, 2000–2011. [Google Scholar] [CrossRef]
- Wahbi, K.; Yaou, B.; Gandjbakhch, E.; Anselme, F.; Gossios, T.; Lakdawala, N.K.; Stalens, C.; Sacher, F.; Babuty, D.; Trochu, J.N.; et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation 2019, 140, 293–302. [Google Scholar] [CrossRef]
- Barriales-VillaabJuan, P.R.; Ochoa, J.P.; Larrañaga-Moreiraa, J.M.; Salazar-Mendiguchíac, J.; Díez-López, C.; Restrepo-Córdoba, M.A.; Álvarez-Rubio, J.; Robles-Mezcua, A.; Olmo-Conesa, M.C.; Nicolás-Rocamora, E.; et al. Risk predictors in a Spanish cohort with cardiac laminopathies. The REDLAMINA registry. Rev. Esp. Cardiol. 2021, 74, 208–910. [Google Scholar]
- Wahbi, K.; Behin, A.; Charron, P.; Dunand, M.; Richard, P.; Meune, C.; Vicart, P.; Laforêt, P.; Stojkovic, T.; Bécane, H.M.; et al. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: A 10-year longitudinal study. Neuromuscul. Disord. 2012, 22, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; van Tintelen, P.J.; McKenna, W.J.; Hauer, R.N.W.; Anastastakis, A.; Asimaki, A.; Basso, C.; Bauce, B.; Brunckhorst, C.; Bucciarelli-Ducci, C.; et al. Arrhythmogenic right ventricular cardiomyopathy: Evaluation of the current diagnostic criteria and differential diagnosis. Eur. Heart J. 2020, 41, 1414–1429. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.; Hamilton, R.; et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011, 8, 1308–1339. [Google Scholar] [CrossRef]
- Marcus, F.I.; Edson, S.; Towbin, J.A. Genetics of arrhythmogenic right ventricular cardiomyopathy: A practical guide for physicians. J. Am. Coll. Cardiol. 2013, 61, 1945–1948. [Google Scholar] [CrossRef]
- Kapplinger, J.D.; Landstrom, A.P.; Salisbury, B.A.; Callis, T.E.; Pollevick, G.D.; Tester, D.J.; Cox, M.G.P.J.; Bhuiyan, Z.; Bikker, H.; Wiesfeld, A.C.P.; et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J. Am. Coll. Cardiol. 2011, 57, 2317–2327. [Google Scholar] [CrossRef]
- Rigato, I.; Bauce, B.; Rampazzo, A.; Zorzi, A.; Pilichou, K.; Mazzotti, E.; Migliore, F.; Perazzolo Marra, M.; Lorenzon, A.; De Bortoli, M.; et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 2013, 6, 533–542. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, M.; Song, H.; Wang, B.; Chen, H.; Wang, J.; Wang, W.; Feng, S.; Zhang, F.; Ju, W.; et al. Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy. Eur. J. Med. Genet. 2015, 58, 258–265. [Google Scholar] [CrossRef]
- Quarta, G.; Muir, A.; Pantazis, A.; Syrris, P.; Gehmlich, K.; Garcia-Pavia, P.; Ward, D.; Sen-Chowdhry, S.; Elliott, P.M.; McKenna, W.J.; et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: Impact of genetics and revised task force criteria. Circulation 2011, 123, 2701–2709. [Google Scholar] [CrossRef]
- Protonotarios, A.; Bariani, R.; Cappelletto, C.; Pavlou, M.; García-García, A.; Cipriani, A.; Protonotarios, I.; Rivas, A.; Wittenberg, R.; Graziosi, M.; et al. Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator. Eur. Heart J. 2022, 43, 3053–3067. [Google Scholar] [CrossRef]
- Carrick, R.T.; Gasperetti, A.; Protonotarios, A.; Murray, B.; Laredo, M.; van der Schaaf, I.; Dooijes, D.; Syrris, P.; Cannie, D.; Tichnell, C.; et al. A novel tool for arrhythmic risk stratification in desmoplakin gene variant carriers. Eur. Heart J. 2024, 45, 2968–2979. [Google Scholar] [CrossRef]
- Chivulescu, M.; Lie, Ø.H.; Popescu, B.A.; Skulstad, H.; Edvardsen, T.; Jurcut, R.O.; Haugaa, K.H. High penetrance and similar disease progression in probands and in family members with arrhythmogenic cardiomyopathy. Eur. Heart J. 2020, 41, 1401–1410. [Google Scholar] [CrossRef]
- Bhonsale, A.; James, C.A.; Tichnell, C.; Murray, B.; Gagarin, D.; Philips, B.; Dalal, D.; Tedford, R.; Russell, S.D.; Abraham, T.; et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J. Am. Coll. Cardiol. 2011, 58, 1485–1496. [Google Scholar] [CrossRef]
- Fernandez-Falgueras, A.; Sarquella-Brugada, G.; Brugada, J.; Brugada, R.; Campuzano, O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology 2017, 6, 7. [Google Scholar] [CrossRef]
- Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C.; Blom, N.; Brugada, J.; Chiang, C.E.; Huikuri, H.; et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013, 10, 1932–1963. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.O. Molecular biology of sodium channels and their role in cardiac arrhythmias. Am. J. Med. 2001, 110, 296–305. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Amin, A.S. Clinical spectrum of SCN5A mutations: Long QT syndrome, Brugada syndrome, and cardiomyopathy. J. Am. Coll. Cardiol. EP 2018, 4, 569–579. [Google Scholar]
- Probst, V.; Wilde, A.A.; Barc, J.; Sacher, F.; Babuty, D.; Mabo, P.; Mansourati, J.; Le Scouarnec, S.; Kyndt, F.; Le Caignec, C.; et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2009, 2, 552–557. [Google Scholar] [CrossRef]
- Tadros, R.; Tan, H.L.; ESCAPE-NET Investigators; El Mathari, S.; Kors, J.A.; Postema, P.G.; Lahrouchi, N.; Beekman, L.; Radivojkov-Blagojevic, M.; Amin, A.S.; et al. Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur. Heart J. 2019, 40, 3097–3107. [Google Scholar] [CrossRef] [PubMed]
- Peltenburg, P.J.; Blom, N.A.; Vink, A.S.; Kammeraad, J.A.E.; Breur, H.; Rammeloo, L.A.J.; Wilde, A.A.M.; Clur, S.A.B. In children and adolescents from Brugada syndrome-families, only SCN5A mutation carriers develop a type-1 ECG pattern induced by fever. Circulation 2020, 142, 89–91. [Google Scholar] [CrossRef]
- Moss, A.J. Long QT syndrome. JAMA 2003, 289, 2041–2044. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Crotti, L.; Insolia, R. Long-QT syndrome: From genetics to management. Circ. Arrhythm. Electrophysiol. 2012, 5, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Krahn, A.D.; Laksman, Z.; Sy, R.W.; Postema, P.G.; Ackerman, M.J.; Wilde, A.A.M.; Han, H.C. Congenital Long QT Syndrome. JACC Clin. Electrophysiol. 2022, 8, 687–706. [Google Scholar] [CrossRef] [PubMed]
- Tawil, R.; Ptacek, L.J.; Pavlakis, S.G.; DeVivo, D.C.; Penn, A.S.; Ozdemir, C.; Griggs, R.C. Andersen’s syndrome: Potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann. Neurol. 1994, 35, 326–330. [Google Scholar] [CrossRef]
- Splawski, I.; Timothy, K.W.; Decher, N.; Kumar, P.; Sachse, F.B.; Beggs, A.H.; Sanguinetti, M.C.; Keating, M.T. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 8089–8096; discussion 8086–8088. [Google Scholar] [CrossRef]
- Jervell, A.; Lange-Nielsen, F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am. Heart J. 1957, 54, 59–68. [Google Scholar] [CrossRef]
- Crotti, L.; Odening, K.E.; Sanguinetti, M.C. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc. Res. 2020, 116, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Crotti, L.; Shimizu, W.; Pedrazzini, M.; Cantu, F.D.; Filippo, P.; Kishiki, K.; Miyazaki, A.; Ikeda, T.; Schwartz, P.J.; et al. Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ. Arrhythm. Electrophysiol. 2008, 1, 370–378. [Google Scholar] [CrossRef]
- Adler, A.; Novelli, V.; Amin, A.S.; Abiusi, E.; Care, M.; Nannenberg, E.A.; Feilotter, H.; Amenta, S.; Mazza, D.; Bikker, H.; et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 2020, 141, 418–428. [Google Scholar] [CrossRef]
- Crotti, L.; Spazzolini, C.; Tester, D.J.; Ghidoni, A.; Baruteau, A.E.; Beckmann, B.M.; Behr, E.R.; Bennett, J.S.; Bezzina, C.R.; Bhuiyan, Z.A.; et al. Calmodulin mutations and life-threatening cardiac arrhythmias: Insights from the International Calmodulinopathy Registry. Eur. Heart J. 2019, 40, 2964–2975. [Google Scholar] [CrossRef]
- Wang, Q.; Curran, M.E.; Splawski, I.; Burn, T.C.; Millholland, J.M.; VanRaay, T.J.; Shen, J.; Timothy, K.W.; Vincent, G.M.; de Jager, T.; et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 1996, 12, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.E.; Splawski, I.; Timothy, K.W.; Vincen, G.M.; Green, E.D.; Keating, M.T. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, J.; Splawski, I.; Atkinson, D.; Li, Z.; Robinson, J.L.; Moss, A.J.; Towbin, J.A.; Keating, M.T. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995, 80, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, A.; Maragna, R.; Vacanti, G.; Monteforte, N.; Bloise, R.; Marino, M.; Braghieri, L.; Gambelli, P.; Memmi, M.; Pagan, E.; et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J. Am. Coll. Cardiol. 2018, 71, 1663–1671. [Google Scholar] [CrossRef]
- Mazzanti, A.; Trancuccio, A.; Kukavica, D.; Pagan, E.; Wang, M.; Mohsin, M.; Peterson, D.; Bagnardi, V.; Zareba, W.; Priori, S.G.; et al. Independent validation and clinical implications of the risk prediction model for long QT syndrome (1-2-3-LQTS-Risk). EP Europace 2022, 24, 614–619. [Google Scholar] [CrossRef]
- Goldenberg, I.; Horr, S.; Moss, A.J.; Lopes, C.M.; Barsheshet, A.; McNitt, S.; Zareba, W.; Andrews, M.L.; Robinson, J.L.; Locati, E.H.; et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 2011, 57, 51–59. [Google Scholar] [CrossRef]
- Barsheshet, A.; Goldenberg, I.; O-Uchi, J.; Moss, A.J.; Jons, C.; Shimizu, W.; Wilde, A.A.; McNitt, S.; Peterson, D.R.; Zareba, W.; et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of lifethreatening events: Implications for mutation-specific response to betablocker therapy in type 1 long-QT syndrome. Circulation 2012, 125, 1988–1996. [Google Scholar] [CrossRef]
- Dusi, V.; Pugliese, L.; De Ferrari, G.M.; Odero, A.; Crotti, L.; Dagradi, F.; Castelletti, S.; Vicentini, A.; Rordorf, R.; Li, C.; et al. Left cardiac sympathetic denervation for long QT syndrome: 50 years’ experience provides guidance for management. JACC Clin. Electrophysiol. 2021, 8, 281–294. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Spazzolini, C.; Moss, A.J.; Vincent, G.M.; Napolitano, C.; Denjoy, I.; Guicheney, P.; Breithardt, G.; Keating, M.T.; et al. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation 2001, 103, 89–95. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Locati, E.H.; Napolitano, C.; Cantu, F.; Towbin, J.A.; Keating, M.T.; Hammoude, H.; Brown, A.M.; Chen, L.S.; et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995, 92, 3381–3386. [Google Scholar] [CrossRef]
- Bos, J.M.; Crotti, L.; Rohatgi, R.K.; Castelletti, S.; Dagradi, F.; Schwartz, P.J.; Ackerman, M.J. Mexiletine shortens the QT interval in patients with potassium channelmediated type 2 long QT syndrome. Circ. Arrhythm. Electrophysiol. 2019, 12, e007280. [Google Scholar] [CrossRef]
- Nezu, J.; Tamai, I.; Oku, A.; Ohashi, R.; Yabuuchi, H.; Hashimoto, N.; Nikaido, H.; Sai, Y.; Koizumi, A.; Shoji, Y.; et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 1999, 21, 91–94. [Google Scholar] [CrossRef]
- Roussel, J.; Labarthe, F.; Thireau, J.; Ferro, F.; Farah, C.; Roy, J.; Horiuchi, M.; Tardieu, M.; Lefort, B.; François Benoist, J.; et al. Carnitine deficiency induces a short QT syndrome. Heart Rhythm 2016, 13, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, A.; Lucet, V.; Denjoy, I.; Grau, F.; Ngoc, D.D.; Coumel, P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995, 91, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Domingo, A.; Bhuiyan, Z.A.; Tester, D.J.; Hofman, N.; Bikker, H.; van Tintelen, J.P.; Mannens, M.M.A.M.; Wilde, A.A.M.; Ackerman, M.J. The RYR2encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: A comprehensive open reading frame mutational analysis. J. Am. Coll. Cardiol. 2009, 54, 2065–2074. [Google Scholar] [PubMed]
- Priori, S.G.; Napolitano, C.; Tiso, N.; Memmi, M.; Vignati, G.; Bloise, R.; Sorrentino, V.; Danieli, G.A. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001, 103, 196–200. [Google Scholar] [CrossRef]
- Laitinen, P.J.; Brown, K.M.; Piippo, K.; Swan, H.; Devaney, J.M.; Brahmbhatt, B.; Donarum, E.A.; Marino, M.; Tiso, N.; Viitasalo, M.; et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001, 103, 485–490. [Google Scholar] [CrossRef]
- Arking, D.E.; Chugh, S.S.; Chakravarti, A.; Spooner, P.M. Genomics in Sudden Cardiac Death. Circ. Res. 2004, 94, 712–723. [Google Scholar] [CrossRef]
- Tester, D.J.; Arya, P.; Will, M.; Haglund, C.M.; Farley, A.L.; Makielski, J.C.; Ackerman, M.J. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm 2006, 3, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Swan, H.; Amarouch, M.Y.; Leinonen, J.; Marjamaa, A.; Kucera, J.P.; Laitinen-Forsblom, P.; Lahtinen, A.M.; Palotie, A.; Kontula, K.; Toivonen, L.; et al. Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ. Cardiovasc. Genet. 2014, 7, 771–781. [Google Scholar] [CrossRef]
- Tester, D.J.; Ackerman, J.P.; Giudicessi, J.R.; Ackerman, N.C.; Cerrone, M.; Delmar, M.; Delmar, M.; McNally, E.M.; Wilde, A.A.M.; Priori, S.G.; et al. Plakophilin-2 truncation variants in patients clinically diagnosed with catecholaminergic polymorphic ventricular tachycardia and decedents with exercise-associated autopsy negative sudden unexplained death in the young. JACC Clin. Electrophysiol. 2019, 5, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Roston, T.M.; Jones, K.; Hawkins, N.M.; Bos, J.M.; Schwartz, P.J.; Perry, F.; Sy, R.W.; James, C.A.; Bhonsale, A.; Tichnell, C.; et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: A systematic review. Heart Rhythm 2018, 15, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| MYBPC3 | locus 11p11.2, myosin-binding protein C3 | AD |
| MYH7 | locus 14q11.2-q12, beta myosin heavy chain | AD |
| TNNI3 | locus 19q13.49, troponin I, cardiac type | AD |
| TNNC1 | locus 3p21.1, troponin C, cardiac type | AD |
| TPM1 | locus 15q22.2, alpha tropomyosin | AD |
| ACTC1 | locus 15q.14, alpha cardiac actin | AD |
| MYL2 | locus 12q24.11, regulatory myosin light chain | AD |
| MYL3 | locus 3p21.31, essential myosin light chain | AD |
| PM1 | locus 15q22.2, alpha tropomyosin | AD |
| FHOD3 | locus 18q12.2, formin homology 2 domain containing 3 | AD |
| FLNC | locus 7q32.1, filamin C | AD |
| ALPK3 | locus 15q25.3, alpha kinase 3 | AR |
| PRKAG2 | locus 7q36.1, protein kinase AMP-activated non-catalytic subunit γ 2 | AD |
| CACNA1C | locus 12p13.33, calcium voltage-gated channel subunit alpha1 C | AD |
| ACTN2 | locus 1q43, actinin alpha 2 | AD |
| CSRP3 | locus 11p15.1, cysteine- and glycine-rich protein 3 | AD, AR |
| TNNT2 | locus 1q32.1, troponin T, cardiac type | AD |
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| KLHL24 | locus 3q27.1, Kelch-like family member | AR |
| TRIM63 | locus 1p36.11, tripartite motif containing | AR |
| JPH2 | locus 20q13.12, junctophilin | AD |
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| BAG3 | locus 10q26.11, myopathy BAG family molecular chaperone regulator 3 | AD |
| DES | locus 2q35, desmin | AD |
| FLNC | locus 7q32.1, filamin-C | AD |
| LMNA | locus 1q22, lamin A/C | AD |
| MYH7 | locus 14q11.2, β myosin heavy chain | AD |
| RBM20 | locus 10q25.2 RNA-binding motif protein 20 | AD |
| SCN5A | locus 3p22.2, sodium channel protein type 5 subunit alpha | AD |
| TNNC1 | locus 3p21.1, cardiac troponin C | AD |
| TTN | locus 2q31.2, titin | AD |
| TNNT2 | locus 1q32.1, troponin T | AD |
| JPH2 | locus 20q13.12, junctophilin 2 | AR |
| TNNI3 | locus 19q13.4, cardiac troponin I | AD |
| VCL | locus 10q22.2, metavinculin | AD |
| LDB3 | AR | |
| NRAP | AR | |
| PPA2 | AR |
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| ACTC1 | locus 15q11q14, cardiac alpha-actin | AD |
| BAG5 | myopathy BAG family molecular chaperone regulator 3 | AR |
| RPL3L | ribosomal protein L3-like | AR |
| FLII | AR | |
| MYLK3 | AD | |
| MYZAP | AR |
| Gene | Specifics | Phenotype of ACM | Inheritance Pattern |
|---|---|---|---|
| DSC2 | locus 18q12.1, desmocollin 2 (desmosome) | ARVC, less frequent BiVACM and ALVC | AD |
| DSG2 | locus 18q12.1, desmoglein 2 (desmosome) | BiVACM and ALVC | AD |
| DSP | locus 6p24.3, desmoplakin (desmosome) | BiVACM and ALVC | AD |
| PKP2 | locus 12p11.21, plakophilin 2 (desmosome) | ARVC, less frequent BiVACM and ALVC | AD |
| TMEM43 | locus 3p25.1, transmembrane protein 43 (nuclear envelope) | ARVC and BiVACM | AD |
| Gene | Specifics | Phenotype of ACM | Inheritance Pattern |
|---|---|---|---|
| PLN | locus 6q22.31, phospholamban (sarcoplasmic reticulum; calcium handling) | ALVC/DCM | AD |
| DES | locus 2q35, desmin (cytoskeleton) | ALVC with conduction system abnormalities | AD |
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| CALM1 | locus 14q32.11, L-type calcium channel | AD |
| CALM2 | locus 2p21, L-type calcium channel | AD |
| CALM3 | locus 19q13.32, L-type calcium channel | AD |
| KCNQ1 | locus 11p15.5, loss-of-IKs channel function 40–55% | AD |
| KCNH2 | locus 7q35-36, loss-of-IKr channel function 30–45% | AD |
| SCN5A | locus 3p21-p24, increase in INa1.5 channel function 5–10% | AD |
| TRDN | locus 6q22.31, L-type calcium channel | AR |
| Gene | Specifics | Inheritance Pattern |
|---|---|---|
| RyR2 | locus 1q43, inappropriate Ca2+ release from the SR | AD |
| CASQ2 | locus 1p13.1, inappropriate Ca2+ release from the SR | AR |
| TECRLa | locus 4q13.1, altered Ca2+ homeostasis, possibly linked to fatty acid/lipid metabolism | AR |
| TRDNa | locus 6q22.31, expression leading to remodeling of the cardiac dyad/calcium release unit | AR |
| KCNJ2 | locus 17q24.3, loss-of-IK1 channel function | AD |
| Genetically Associated Cardiac Condition | Inheritance Pattern |
|---|---|
| hypertrophic cardiomyopathy (HCM) | AD, AR, and X-linked |
| dilated cardiomyopathy (DCM) | AD, AR, X-linked, and mitochondrial |
| arrhythmogenic cardiomyopathy (ACM) | AD, AR |
| long QT syndrome (LQTS) | AD, AR |
| short QT syndrome (SQTS) | AD, AR, and sporadic cases |
| Brugada syndrome (BrS) | AD, AR, X-linked, de novo mutations, and polygenic pattern |
| catecholaminergic polymorphic ventricular tachycardia (CPVT) | AD, AR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lovrić Benčić, M.; Levicki, R. Genetics of Sudden Cardiac Death. Diseases 2026, 14, 7. https://doi.org/10.3390/diseases14010007
Lovrić Benčić M, Levicki R. Genetics of Sudden Cardiac Death. Diseases. 2026; 14(1):7. https://doi.org/10.3390/diseases14010007
Chicago/Turabian StyleLovrić Benčić, Martina, and Rea Levicki. 2026. "Genetics of Sudden Cardiac Death" Diseases 14, no. 1: 7. https://doi.org/10.3390/diseases14010007
APA StyleLovrić Benčić, M., & Levicki, R. (2026). Genetics of Sudden Cardiac Death. Diseases, 14(1), 7. https://doi.org/10.3390/diseases14010007

