Targeting Myocardial Mechanics in Children and Adolescents with Obesity and Non-Elevated Blood Pressure: A Meta-Regression Study
Abstract
1. Introduction
2. Methods
2.1. Methodology of the Primary Analysis
2.2. Statistical Methods
3. Results
3.1. Population
3.2. Meta-Regression Analysis
3.2.1. LV Mechanics According to GLS Metric
3.2.2. LV Mechanics According to GCS Metric
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safiri, S.; Grieger, J.A.; Ghaffari Jolfayi, A.; Mousavi, S.E.; Nejadghaderi, S.A.; Fazlollahi, A.; Sullman, M.J.M.; Karamzad, N.; Sahin, F.; Singh, K.; et al. Burden of diseases attributable to excess body weight in 204 countries and territories, 1990–2019. Nutr. J. 2025, 24, 23. [Google Scholar] [CrossRef]
- Hennekens, C.H.; Sherling, D.H.; Caceres, A.; Benson, K.; Rubenstein, A.; Ferris, A.H.; Kitsantas, P.; Wood, S.K. Navigating the global pandemic in pediatric overweight and obesity: Emerging challenges and proposed solutions. Matern. Child Health J. 2024, 28, 2001–2005. [Google Scholar] [CrossRef]
- Muyulema, S.L.; Carpio-Arias, T.V.; Verdezoto, N.; Guanga Lara, V.E.; Manzano, A.S.; Pulgar, H.; Vinueza Veloz, M.F. Worldwide trends in childhood overweight and obesity over the last 20 years. Clin. Nutr. ESPEN 2025, 65, 453–460. [Google Scholar] [CrossRef]
- GBD 2021 US Obesity Forecasting Collaborators. National-level and state-level prevalence of overweight and obesity among children, adolescents, and adults in the USA, 1990–2021, and forecasts up to 2050. Lancet 2024, 404, 2278–2298. [Google Scholar]
- Ge, C.; Xiong, J.; Zhu, R.; Hong, Z.; He, Y. The global burden of high BMI among adolescents between 1990 and 2021. Commun. Med. 2025, 5, 125. [Google Scholar] [CrossRef]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Ben-Ami Shor, D.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R. American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young, Council on Nutrition, Physical Activity and Metabolism, and Council on Clinical Cardiology. Severe obesity in children and adolescents: Identification, associated health risks, and treatment approaches: A scientific statement from the American Heart Association. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Srinivasan, S.R.; Daniels, S.R.; Davis, P.H.; Chen, W.; et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, F.; Wang, W.; Zhang, K.; Fan, M.; Lin, R. The global burden of disease attributable to high body mass index in 204 countries and territories from 1990 to 2021 with projections to 2050: An analysis of the Global Burden of Disease Study 2021. Eur. J. Heart Fail. 2025, 27, 354–365. [Google Scholar] [CrossRef]
- Alansari, H.; Lazzara, G.; Taha, M.B.; Gorthi, J.R. The impact of obesity on cardiovascular diseases: Heart failure. Methodist Debakey Cardiovasc. J. 2025, 21, 44–52. [Google Scholar] [CrossRef]
- Rodrigues, M.M.; Falcão, L.M. Pathophysiology of heart failure with preserved ejection fraction in overweight and obesity. Clinical and treatment implications. Int. J. Cardiol. 2025, 430, 133182. [Google Scholar] [CrossRef] [PubMed]
- Haass, M.; Kitzman, D.W.; Anand, I.S.; Miller, A.; Zile, M.R.; Massie, B.M.; Carson, P.E. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: Results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ. Heart Fail. 2011, 4, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Sen, A.; Norat, T.; Janszky, I.; Romundstad, P.; Tonstad, S.; Vatten, L.J. Body mass index, abdominal fatness, and heart failure incidence and mortality: A systematic review and dose-response meta-analysis of prospective studies. Circulation 2016, 133, 639–649. [Google Scholar] [CrossRef]
- Manta, E.; Iliakis, P.; Fragoulis, C.; Leontsinis, I.; Stamoulopoulos, I.; Chrysohoou, C.; Tsioufis, K. Tracking pathways linking obesity with heart failure. Nutrients 2025, 17, 1250. [Google Scholar] [CrossRef] [PubMed]
- Elagizi, A.; Kachur, S.; Carbone, S.; Lavie, C.J.; Blair, S.N. A review of obesity, physical activity, and cardiovascular disease. Curr. Obes. Rep. 2020, 9, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.H.; Walsh, A.; Urbina, E.M. Hypertension, obesity, and target organ injury in children: An emerging health care crisis. Curr. Hypertens. Rep. 2025, 27, 12. [Google Scholar] [CrossRef]
- Cai, S.; Zhu, T.; Ding, Y.; Cheng, B.; Zhang, A.; Bao, Q.; Sun, J.; Li, M.; Liu, X.; Wang, S. The relationship between the weight-adjusted-waist index and left ventricular hypertrophy in Chinese hypertension adults. Hypertens. Res. 2023, 46, 253–260. [Google Scholar] [CrossRef]
- Lee, T.C.; Jin, Z.; Homma, S.; Nakanishi, K.; Elkind, M.S.V.; Rundek, T.; Tugcu, A.; Matsumoto, K.; Sacco, R.L.; Di Tullio, M.R. Changes in left ventricular mass and geometry in the older adults: Role of body mass and central obesity. J. Am. Soc. Echocardiogr. 2019, 32, 1318–1325. [Google Scholar] [CrossRef]
- Saltijeral, A.; Perez de Isla, L. Obese children and myocardial deformation changes: Some discrepancies but a large number of common points. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 473. [Google Scholar] [CrossRef]
- Di Salvo, G.; Pacileo, G.; Del Giudice, E.M.; Natale, F.; Limongelli, G.; Verrengia, M.; Rea, A.; Fratta, F.; Castaldi, B.; D’Andrea, A.; et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: An ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur. Heart J. 2006, 27, 2689–2695. [Google Scholar] [CrossRef]
- Ghandi, Y.; Sharifi, M.; Habibi, D.; Dorreh, F.; Hashemi, M. Evaluation of left ventricular function in obese children without hypertension by a tissue Doppler imaging study. Ann. Pediatr. Cardiol. 2018, 11, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shu, W.; Li, M.; Xu, L.; Amaerjiang, N.; Zunong, J.; Vermund, S.H.; Huang, D.; Chong, M.; Hu, Y. Sex-specific differences in left ventricular mass and volumes with body mass index among children aged 6 to 8: A cross-sectional study in China. Nutrients 2023, 15, 3066. [Google Scholar] [CrossRef]
- Cabeza, J.F.; Aristizábal-Duque, C.H.; Sánchez, I.M.B.; Ortiz, M.R.; Almodóvar, A.R.; Ortega, M.D.; Martínez, F.E.; Saldaña, M.R.; Del Pozo, F.J.F.; Álvarez-Ossorio, M.P.; et al. Relationship between overweight and obesity and cardiac dimensions and function in a paediatric population. Eur. J. Pediatr. 2022, 181, 1943–1949. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Rider, O.; Cvijic, M.; Valkovič, L.; Remme, E.W.; Voigt, J.U. Myocardial strain imaging: Theory, current practice, and the future. JACC Cardiovasc. Imaging 2025, 18, 340–381. [Google Scholar] [CrossRef] [PubMed]
- Cantinotti, M.; Capponi, G.; Marchese, P.; Franchi, E.; Santoro, G.; Assanta, N.; Gowda, K.; Kutty, S.; Giordano, R.J. Normal values for speckle-tracking echocardiography in children: A review, update, and guide for clinical use of speckle-tracking echocardiography in pediatric patients. Clin. Med. 2025, 14, 1090. [Google Scholar] [CrossRef]
- Popp, T.J.; Henshaw, M.H.; Carter, J.; Thomas, T.N.; Chowdhury, S.M. Racial differences in myocardial deformation in obese children: Significance of inflammatory state. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 378–382. [Google Scholar] [CrossRef]
- Mannarino, S.; Santacesaria, S.; Raso, I.; Garbin, M.; Pipolo, A.; Ghiglia, S.; Tarallo, G.; De Silvestri, A.; Vandoni, M.; Lucini, D.; et al. Benefits in cardiac function from a remote exercise program in children with obesity. Int. J. Environ. Res. Public Health 2023, 20, 1544. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Tajik, A.J.; Chandrasekaran, K.; Khandheria, B.K. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging 2008, 1, 366–376. [Google Scholar] [CrossRef]
- Buckberg, G.; Hoffman, J.I.; Mahajan, A.; Saleh, S.; Coghlan, C. Cardiac mechanics revisited: The relationship of cardiac architecture to ventricular function. Circulation 2008, 118, 2571–2587. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Fu, R.; Gartlehner, G.; Grant, M.; Shamliyan, T.; Sedrakyan, A.; Wilt, T.J.; Griffith, L.; Oremus, M.; Raina, P.; Ismaila, A.; et al. Conducting Quantitative Synthesis When Comparing Medical Interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 2008, 64, 1187–1197. [Google Scholar] [CrossRef]
- Koopman, L.P.; McCrindle, B.W.; Slorach, C.; Chahal, N.; Hui, W.; Sarkola, T.; Manlhiot, C.; Jaeggi, E.T.; Bradley, T.J.; Mertens, L. Interaction between myocardial and vascular changes in obese children: A pilot study. J. Am. Soc. Echocardiogr. 2012, 25, 401–410. [Google Scholar] [CrossRef]
- Labombarda, F.; Zangl, E.; Dugue, A.E.; Bougle, D.; Pellissier, A.; Ribault, V.; Maragnes, P.; Milliez, P.; Saloux, E. Alterations of left ventricular myocardial strain in obese children. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.A.; Mota, C.C.; Simões ESilva, A.C.; Nunes Mdo, C.; Barbosa, M.M. Assessing pre-clinical ventricular dysfunction in obese children and adolescents: The value of speckle tracking imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Obert, P.; Gueugnon, C.; Nottin, S.; Vinet, A.; Gayrard, S.; Rupp, T.; Dumoulin, G.; Tordi, N.; Mougin, F. Impact of diet and exercise training-induced weight loss on myocardial mechanics in severely obese adolescents. Obesity 2013, 21, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.K.; Vitola, B.E.; Holland, M.R.; Sekarski, T.; Patterson, B.W.; Magkos, F.; Klein, S. Alterations in ventricular structure and function in obese adolescents with nonalcoholic fatty liver disease. J. Pediatr. 2013, 162, 1160–1168. [Google Scholar] [CrossRef]
- Mangner, N.; Scheuermann, K.; Winzer, E.; Wagner, I.; Hoellriegel, R.; Sandri, M.; Zimmer, M.; Mende, M.; Linke, A.; Kiess, W.; et al. Childhood obesity: Impact on cardiac geometry and function. JACC Cardiovasc. Imaging 2014, 7, 1198–1205. [Google Scholar] [CrossRef]
- Vitarelli, A.; Martino, F.; Capotosto, L.; Martino, E.; Colantoni, C.; Ashurov, R.; Ricci, S.; Conde, Y.; Maramao, F.; Vitarelli, M.; et al. Early myocardial deformation changes in hypercholesterolemic and obese children and adolescents: A 2D and 3D speckle tracking echocardiography study. Medicine 2014, 93, e71. [Google Scholar] [CrossRef]
- Kibar, A.E.; Pac, F.A.; Ece, İ.; Oflaz, M.B.; Ballı, Ş.; Bas, V.N.; Aycan, Z. Effect of obesity on left ventricular longitudinal myocardial strain by speckle tracking echocardiography in children and adolescents. Balk. Med. J. 2015, 32, 56–63. [Google Scholar] [CrossRef]
- Binnetoğlu, F.K.; Yıldırım, Ş.; Topaloğlu, N.; Tekin, M.; Kaymaz, N.; Aylanç, H.; Karakurt, H. Early detection of myocardial deformation by 2D speckle tracking echocardiography in normotensive obese children and adolescents. Anatol. J. Cardiol. 2015, 15, 151–157. [Google Scholar] [CrossRef]
- Sanchez, A.A.; Levy, P.T.; Sekarski, T.J.; Arbelaez, A.M.; Hildebolt, C.F.; Holland, M.R.; Singh, G.K. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J. Pediatr. 2015, 166, 660–665. [Google Scholar] [CrossRef]
- Xie, L.; Man, E.; Cheung, P.T.; Cheung, Y.F. Myocardial integrated backscatter in obese adolescents: Associations with measures of adiposity and left ventricular deformation. PLoS ONE 2015, 10, e0141149. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, P.; Truong, U.; Dorosz, J.L.; Cree-Green, M.; Baumgartner, A.; Coe, G.; Pyle, L.; Regensteiner, J.G.; Reusch, J.E.; Nadeau, K.J. Cardiopulmonary dysfunction and adiponectin in adolescents with type 2 diabetes. J. Am. Heart Assoc. 2016, 5, e002804. [Google Scholar] [CrossRef]
- Kulkarni, A.; Gulesserian, T.; Lorenzo, J.M.M.D.; Haroonian, Y.; Ngyuyen, M.; Lo, Y.; Wang, D.; Hsu, D.; Kaskel, F.; Mahgerefteh, J. Left ventricular remodelling and vascular adaptive changes in adolescents with obesity. Pediatr. Obes. 2018, 13, 541–549. [Google Scholar] [CrossRef]
- Zhang, P.; Li, D.; Su, Y.; Wang, X.; Sun, J.; Xu, Y.; Sun, J. Assessment of myocardial strain in children with risk factors for atherosclerosis with use of 3D speckle tracking echocardiography. Echocardiography 2018, 35, 487–493. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Y.; Liu, Y.; Xu, Y.; Liu, Y.; Zhang, L.; Chen, X.; Xie, M.; Ge, S. Preclinical cardiovascular changes in children with obesity: A real-time 3-dimensional speckle tracking imaging study. PLoS ONE 2018, 13, e0205177. [Google Scholar] [CrossRef] [PubMed]
- Corica, D.; Oreto, L.; Pepe, G.; Calabrò, M.P.; Longobardo, L.; Morabito, L.; Pajno, G.B.; Alibrandi, A.; Aversa, T.; Wasniewska, M. Precocious preclinical cardiovascular sonographic markers in metabolically healthy and unhealthy childhood obesity. Front. Endocrinol. 2020, 11, 56. [Google Scholar] [CrossRef]
- El Amrousy, D.; Elgendy, E.; Awad, M.E.; El Razaky, O. Three-dimensional speckle tracking echocardiography for early detection of left ventricular dysfunction in children with non-alcoholic fatty liver diseases. Cardiol. Young 2021, 31, 562–567. [Google Scholar] [CrossRef]
- Imerbtham, T.; Thitiwuthikiat, P.; Jongjitwimol, J.; Nuamchit, T.; Yingchoncharoen, T.; Siriwittayawan, D. Leptin levels are associated with subclinical cardiac dysfunction in obese adolescents. Diabetes. Metab. Syndr. Obes. 2020, 13, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Paysal, J.; Merlin, E.; Rochette, E.; Terral, D.; Nottin, S.J. Global and Regional Myocardial Work in Female Adolescents with Weight Disorders. Clin. Med. 2021, 10, 4671. [Google Scholar] [CrossRef]
- Šileikienė, R.; Adamonytė, K.; Ziutelienė, A.; Ramanauskienė, E.; Vaškelytė, J.J. Atrial and ventricular structural and functional alterations in obese children. Medicina 2021, 57, 562. [Google Scholar] [CrossRef]
- Siurana, J.M.; Ventura, P.S.; Yeste, D.; Riaza-Martin, L.; Arciniegas, L.; Clemente, M.; Torres, M.; Amigó, N.; Giralt, G.; Roses-Noguer, F.; et al. Myocardial geometry and dysfunction in morbidly obese adolescents (BMI 35–40 kg/m2). Am. J. Cardiol. 2021, 157, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rakha, S.; Salem, N.; Razek, A.A.K.A.; Sobh, D.M.; El-Moslemany, F.; Elmarsafawy, H. The relevance of left ventricular functions to clinical and metabolic characteristics of prepubertal children with obesity. Cardiol. Young 2022, 32, 1246–1253. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Z.; Du, B.; Ye, Y.; Wang, H.; Niu, Y.; Chen, S.; Wu, Y.; Jin, H.; Zhang, X.; et al. Different associations of systolic blood pressure and body mass index with cardiac structure and function in young children. Hypertension 2022, 79, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Aristizábal-Duque, C.H.; Fernández Cabeza, J.; Blancas Sánchez, I.M.; Delgado Ortega, M.; Aparicio-Martinez, P.; Romero Saldaña, M.; Fonseca Del Pozo, F.J.; Álvarez-Ossorio, M.P.; Ruíz Ortiz, M.; Mesa Rubio, M.D. The effects of obesity on longitudinal ventricular and atrial strain in a rural population of Spanish children and adolescents, evaluated by a new strain software. Pediatr. Obes. 2023, 18, e13069. [Google Scholar] [CrossRef]
- Riaño-Méndez, B.; Ruiz del Campo, M.; García-Navas, P.; Ibiricu-Lecumberri, A.; Ruiz del Prado, M.Y. Subclinical left ventricular disfunction in obese children: Are we late? Cardiol. Cardiovasc. Med. 2023, 7, 336–342. [Google Scholar] [CrossRef]
- Verpalen, V.A.; Ververs, F.A.; Slieker, M.; Nuboer, R.; Swart, J.F.; van der Ent, C.K.; Fejzic, Z.; Westenberg, J.J.M.; Leiner, T.; Grotenhuis, H.B.; et al. Enhanced aortic stiffness in adolescents with chronic disease is associated with decreased left ventricular global longitudinal strain. Int. J. Cardiol. Heart Vasc. 2024, 52, 101385. [Google Scholar] [CrossRef]
- Dehghan, B.; Sedighi, M.; Rostampour, N.; Hashemi, E.; Hovsepian, S.; Sabri, M.R.; Ghaderian, M.; Mahdavi, C.; Ahmadi, A.; Esnaashari, A. Childhood obesity is associated with subclinical left ventricular dysfunction detected by speckle tracking echocardiography. Clin. Pediatr. 2024, 63, 936–941. [Google Scholar] [CrossRef]
- Faggiano, A.; Gherbesi, E.; Sala, C.; Carugo, S.; Grassi, G.; Tadic, M.; Cuspidi, C. Obesity and Left Ventricular Mechanics in Children and Adolescents: A Systematic Review and Meta-Analysis. High Blood Press. Cardiovasc. Prev. 2025, 1–15. [Google Scholar] [CrossRef]
- Voigt, J.U.; Cvijic, M. 2- and 3-Dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, S.; Dahlslett, T.; Grenne, B.; Sjøli, B.; Smiseth, O.; Edvardsen, T.; Brunvand, H. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc. Ultrasound 2019, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xie, M.; Zhang, L.; Zhang, Y.; Zhang, P.; Chen, X.; Ji, M.; Gao, L.; He, Q.; Wu, Z.; et al. Prognostic value of lv global longitudinal strain by 2d and 3d speckle-tracking echocardiography in patients with HFpEF. Circ. Cardiovasc. Imaging 2025, 18, e016975. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Henein, M.Y. Left ventricular ejection fraction: Clinical, pathophysiological, and technical limitations. Front. Cardiovasc. Med. 2024, 11, 1340708. [Google Scholar] [CrossRef] [PubMed]
- Rayner, J.J.; Banerjee, R.; Holloway, C.J.; Lewis, A.J.M.; Peterzan, M.A.; Francis, J.M.; Neubauer, S.; Rider, O.J. The relative contribution of metabolic and structural abnormalities to diastolic dysfunction in obesity. Int. J. Obes. 2018, 42, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Poirier, P.; Després, J.P. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef]
- Gherbesi, E.; Faggiano, A.; Sala, C.; Carugo, S.; Grassi, G.; Tadic, M.; Cuspidi, C. Left ventricular systolic dysfunction in obesity: A meta-analysis of speckle tracking echocardiographic studies. J. Hypertens. 2024, 42, 1449–1459. [Google Scholar] [CrossRef]
- Wang, H.; Qin, Y.; Niu, J.; Chen, H.; Lu, X.; Wang, R.; Han, J. Evolving perspectives on evaluating obesity: From traditional methods to cutting-edge techniques. Ann. Med. 2025, 57, 2472856. [Google Scholar] [CrossRef]
- Blüher, S.; Schwarz, P. Metabolically healthy obesity from childhood to adulthood-does weight status alone matter? Metabolism 2014, 63, 1084–1092. [Google Scholar] [CrossRef]
- Genovesi, S.; Tassistro, E.; Giussani, M.; Lieti, G.; Patti, I.; Orlando, A.; Montemerlo, M.; Antolini, L.; Parati, G. Association of obesity phenotypes with left ventricular mass index and left ventricular hypertrophy in children and adolescents. Front. Endocrinol. 2022, 13, 1006588. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.B.; Marwick, T.H. Normal ranges of left ventricular strain: A meta-analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Tao, J.M.; Wei, W.; Ma, X.Y.; Huo, Y.X.; Hu, M.D.; Li, X.F.; Chen, X. Diagnostic accuracy of anthropometric indices for discriminating elevated blood pressure in pediatric population: A systematic review and a meta-analysis. BMC Pediatr. 2022, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Ralston, M.R.; McCreath, G.; Lees, Z.J.; Salt, I.P.; Sim, M.A.B.; Watson, M.J.; Freeman, D.J. Beyond body mass index: Exploring the role of visceral adipose tissue in intensive care unit outcomes. BJA Open 2025, 14, 100391. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Bing, C.; Griffiths, H.R. Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy. Adipocyte 2025, 14, 2485927. [Google Scholar] [CrossRef] [PubMed]
Variables | N Studies | N Subjects | Mean Values ± SE | Lower–Upper Limit |
---|---|---|---|---|
Age (years) | 27 | 1398 | 12.6 ± 1.8 | 9.0/16.2 |
Height (cm) | 16 | 891 | 150.3 ± 6.7 | 137.1/163.6 |
Weight (kg) | 15 | 863 | 67.3 ± 7.8 | 51.8/82.8 |
BMI (kg/m2) | 23 | 1214 | 29.9 ± 1.3 | 27.4/32.4 |
SBP (mmHg) | 25 | 1294 | 113.8 ± 2.3 | 109.3/118.4 |
DBP (mmHg) | 24 | 1235 | 67.5 ± 1.3 | 64.9/70.1 |
LVEF (%) | 22 | 1159 | 64.5 ± 0.7 | 63.2/65.8 |
LVMI (g/h2.7) | 15 | 709 | 35.3 ± 6.4 | 22.7/47.8 |
LVMI (g/m2) | 10 | 605 | 78.7 ± 4.9 | 69.0/88.3 |
E/A ratio | 19 | 1092 | 1.79 ± 0.06 | 1.67/1.91 |
E/e’ ratio | 13 | 739 | 7.04 ± 0.38 | 6.29/7.79 |
GLS (%) | 27 | 1398 | 17.1 ± 0.5 | 16.1/18.1 |
GCS (%) | 13 | 672 | 19.0 ± 0.1 | 17.1/20.9 |
Meta-Regression | N Studies | N Subjects | Coefficient | Lower–Upper Limits | p Value |
---|---|---|---|---|---|
BMI (kg/m2) | 23 | 1214 | −0.329 ± 0.111 | −0.547/−0.111 | 0.003 |
Fat Mass (%) | 6 | 222 | −0.187 ± 0.067 | −0.318/−0.056 | 0.005 |
WC (cm) | 8 | 498 | −0.044 ± 0.068 | −0.178/0.089 | 0.516 |
Height (cm) | 16 | 891 | −0.068 ± 0.051 | −0.167/0.032 | 0.183 |
SBP (mmHg) | 25 | 1294 | −0.060 ± 0.063 | −0.183/0.063 | 0.343 |
DBP (mmHg) | 24 | 1235 | −0.128 ± 0.098 | −0.320/0.064 | 0.192 |
HR (b/min) | 19 | 896 | −0.022 ± 0.081 | −0.181/0.137 | 0.792 |
Blood glucose (mg/dL) | 14 | 692 | −0.043 ± 0.045 | −0.131/0.046 | 0.345 |
Insulin (mU/L) | 13 | 497 | 0.299 ± 0.161 | −0.016/0.14 | 0.063 |
HOMA IR | 11 | 480 | 0.274 ± 0.774 | −1.242/1.790 | 0.723 |
Total Cholesterol (mg/dL, mml/L) | 13 | 851 | 0.022 ± 0.027 | −0.031/0.075 | 0.408 |
LDL Cholesterol (mg/dL, mml/L) | 11 | 771 | 0.024 ± 0034 | −0.043/0.091 | 0.476 |
Triglycerides (mg/dL, mml/L) | 10 | 816 | −0.015 ± 0.025 | −0.064/0.034 | 0.550 |
LVMI (g/h2.7) | 15 | 709 | −0.018 ± 0.050 | −0.116/0.079 | 0.711 |
E/A ratio | 19 | 1092 | 1.855 ± 2.338 | −2.726/6.437 | 0.427 |
E/e’ ratio | 13 | 800 | −0.014 ± 0.500 | −0.993/0.965 | 0.977 |
Meta-Regression | N Studies | N Subjects | Coefficient | Lower–Upper Limits | p Value |
---|---|---|---|---|---|
BMI (kg/m2) | 11 | 567 | −0.261 ± 0.361 | −0.969/0.447 | 0.470 |
Fat Mass (%) | 4 | 141 | 0.135 ± 0.098 | −0.057/0.326 | 0.169 |
Height (cm) | 10 | 527 | −0.103 ± 0.103 | −0.306/0.099 | 0.317 |
SBP (mmHg) | 11 | 548 | −0.118 ± 0.161 | −0.433/0.197 | 0.464 |
DBP (mmHg) | 11 | 548 | 0.190 ± 0.216 | −0.234/0.614 | 0.379 |
HR (b/min) | 7 | 418 | −0.020 ± 0.187 | −0.386/0.346 | 0.914 |
WC (cm) | 6 | 402 | −0.036 ± 0.209 | −0.445/0.374 | 0.862 |
Blood Glucose (mg/dL) | 8 | 477 | −0.347 ± 0.232 | −0.801/0.107 | 0.134 |
Insulin (mU/L) | 6 | 253 | −0.072 ± 0.178 | −0.421/0.278 | 0.688 |
HOMA IR | 6 | 253 | −0.665 ± 0.759 | −2.154/0.822 | 0.381 |
Total Cholesterol (mg/dL, mml/L) | 9 | 477 | 0.086 ± 0.040 | 0.009/0.164 | 0.9 |
LDL Cholesterol (mg/dL, mml/L) | 8 | 437 | 0.084 ± 0.041 | 0.004/0.165 | 0.9 |
Triglycerides (mg/dL, mml/L) | 8 | 442 | −0.073 ± 0.112 | −0.292/0.145 | 0.511 |
LVMI (g/h2.7) | 7 | 299 | 0.028 ± 0.062 | −0.093/0.149 | 0.647 |
E/A ratio | 11 | 612 | −1.984/4.142 | −10.102/6.134 | 0.632 |
E/e’ ratio | 9 | 539 | 0.233 ± 0.792 | −1.320/1.785 | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggiano, A.; Gherbesi, E.; Sala, C.; Carugo, S.; Grassi, G.; Tadic, M.; Cuspidi, C. Targeting Myocardial Mechanics in Children and Adolescents with Obesity and Non-Elevated Blood Pressure: A Meta-Regression Study. Diseases 2025, 13, 301. https://doi.org/10.3390/diseases13090301
Faggiano A, Gherbesi E, Sala C, Carugo S, Grassi G, Tadic M, Cuspidi C. Targeting Myocardial Mechanics in Children and Adolescents with Obesity and Non-Elevated Blood Pressure: A Meta-Regression Study. Diseases. 2025; 13(9):301. https://doi.org/10.3390/diseases13090301
Chicago/Turabian StyleFaggiano, Andrea, Elisa Gherbesi, Carla Sala, Stefano Carugo, Guido Grassi, Marijana Tadic, and Cesare Cuspidi. 2025. "Targeting Myocardial Mechanics in Children and Adolescents with Obesity and Non-Elevated Blood Pressure: A Meta-Regression Study" Diseases 13, no. 9: 301. https://doi.org/10.3390/diseases13090301
APA StyleFaggiano, A., Gherbesi, E., Sala, C., Carugo, S., Grassi, G., Tadic, M., & Cuspidi, C. (2025). Targeting Myocardial Mechanics in Children and Adolescents with Obesity and Non-Elevated Blood Pressure: A Meta-Regression Study. Diseases, 13(9), 301. https://doi.org/10.3390/diseases13090301