Prevention and Management of Perioperative Acute Kidney Injury: A Narrative Review
Abstract
1. Introduction
1.1. Pathophysiology and Risk Factors of Perioperative AKI
1.1.1. Pathophysiological Mechanisms
1.1.2. Patient and Procedure-Related Risk Factors
1.2. Strategies for Prevention of Perioperative AKI
1.2.1. Preoperative Measures
1.2.2. Intraoperative Measures
1.2.3. Postoperative Measures
1.3. Clinical Management of Established AKI
1.3.1. Diagnostic Workup
1.3.2. Supportive Management
1.3.3. Renal Replacement Therapy
1.4. Patient Outcomes
1.4.1. Short-Term Outcomes
1.4.2. Long-Term Implications
1.4.3. Patient-Reported Outcomes
1.5. Comparing Effectiveness of Prevention Strategies
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- O’Connor, M.E.; Kirwan, C.J.; Pearse, R.M.; Prowle, J.R. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 2016, 42, 521–530. [Google Scholar] [CrossRef]
- Thakar, C.V. Perioperative acute kidney injury. Adv. Chronic Kidney Dis. 2013, 20, 67–75. [Google Scholar] [CrossRef]
- Molinari, L.; Sakhuja, A.; Kellum, J.A. Perioperative Renoprotection: General Mechanisms and Treatment Approaches. Anesth. Analg. 2020, 131, 1679–1692. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. [Google Scholar] [PubMed]
- Gumbert, S.D.; Kork, F.; Jackson, M.L.; Vanga, N.; Ghebremichael, S.J.; Wang, C.Y.; Eltzschig, H.K. Perioperative Acute Kidney Injury. Anesthesiology 2020, 132, 180–204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hobson, C.E.; Yavas, S.; Segal, M.S.; Schold, J.D.; Tribble, C.G.; Layon, A.J.; Bihorac, A. Acute Kidney Injury Is Associated with Increased Long-Term Mortality After Cardiothoracic Surgery. Circulation 2009, 119, 2444–2453. [Google Scholar] [CrossRef]
- Shalabi, A. Impact of Pneumoperitoneum on the Post-Operative Renal Function and Level of Acute Kidney Injury Markers: Comparison between Laparoscopic and Open Nephrectomy. Int. Arch. Urol. Complicat. 2017, 3, 1493. [Google Scholar] [CrossRef]
- Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J.; Kellum, J.A. A Unified Theory of Sepsis-Induced Acute Kidney Injury: Inflammation, Microcirculatory Dysfunction, Bioenergetics, and the Tubular Cell Adaptation to Injury. Shock 2014, 41, 3. [Google Scholar] [CrossRef]
- Ortega-Loubon, C.; Fernández-Molina, M.; Carrascal-Hinojal, Y.; Fulquet-Carreras, E. Cardiac surgery-associated acute kidney injury. Ann. Card. Anaesth. 2016, 19, 687–698. [Google Scholar] [CrossRef]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet Lond. Engl. 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Groothof, D.; Post, A.; Polinder-Bos, H.A.; Erler, N.S.; Flores-Guerrero, J.L.; Kootstra-Ros, J.E.; Pol, R.A.; de Borst, M.H.; Gansevoort, R.T.; Gans, R.O.B.; et al. Muscle mass and estimates of renal function: A longitudinal cohort study. J. Cachexia Sarcopenia Muscle 2022, 13, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Benoit, S.; Ciccia, E.A.; Devarajan, P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef]
- Coca, S.G.; Jammalamadaka, D.; Sint, K.; Philbrook, H.T.; Shlipak, M.G.; Zappitelli, M.; Devarajan, P.; Hashim, S.; Garg, A.X.; Parikh, C.R. Pre-operative Proteinuria predicts Acute Kidney Injury in Patients Undergoing Cardiac Surgery. J. Thorac. Cardiovasc. Surg. 2012, 143, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-D.; Li, Y.-Y.; Fan, Z.; Wu, Y.-G. Preoperative proteinuria may be a risk factor for postoperative acute kidney injury: A meta-analysis. Ren. Fail. 2021, 43, 958–967. [Google Scholar] [CrossRef]
- KDIGO. KDIGO 2023 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease; Kidney Disease: Improving Global Outcomes (KDIGO): Brussels, Belgium, 2023; Available online: https://kdigo.org/guidelines/acute-kidney-injury/ (accessed on 2 July 2025).
- Cheungpasitporn, W.; Thongprayoon, C.; Srivali, N.; O’Corragain, O.A.; Edmonds, P.J.; Ungprasert, P.; Kittanamongkolchai, W.; Erickson, S.B. Preoperative renin–angiotensin system inhibitors use linked to reduced acute kidney injury: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2015, 30, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Kassa Birarra, M.; Mekonnen, G.B.; Gelayee, D.A.; Assimamaw, N.T.; Kifle, Z.D. Drug dose adjustment in patients with renal impairment attending a specialized referral hospital, Northwest Ethiopia. Metab. Open 2022, 16, 100211. [Google Scholar] [CrossRef]
- Grams, M.E.; Sang, Y.; Ballew, S.H.; Gansevoort, R.T.; Kimm, H.; Kovesdy, C.P.; Naimark, D.; Oien, C.; Smith, D.H.; Coresh, J.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Age, Race, and Sex with Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 591–601. [Google Scholar] [CrossRef]
- Sun, R.; Li, S.; Wei, Y.; Hu, L.; Xu, Q.; Zhan, G.; Yan, X.; He, Y.; Wang, Y.; Li, X.; et al. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: A retrospective cohort study. Int. J. Surg. 2024, 110, 2950–2962. [Google Scholar] [CrossRef]
- Pruna, A.; Losiggio, R.; Landoni, G.; Kotani, Y.; Redaelli, M.B.; Veneziano, M.; Lee, T.C.; Zangrillo, A.; Gaudino, M.F.L.; Bellomo, R.; et al. Amino Acid Infusion for Perioperative Functional Renal Protection: A Meta-analysis. J. Cardiothorac. Vasc. Anesth. 2024, 38, 3076–3085. [Google Scholar] [CrossRef]
- Buliga-Finis, O.N.; Ouatu, A.; Badescu, M.C.; Dima, N.; Tanase, D.M.; Richter, P.; Rezus, C. Beyond the Cardiorenal Syndrome: Pathophysiological Approaches and Biomarkers for Renal and Cardiac Crosstalk. Diagnostics 2022, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wijeysundera, D.; Tait, G.; Beattie, W.S. Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery. Anesthesiology 2015, 123, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Hariri, G.; Collet, L.; Duarte, L.; Martin, G.L.; Resche-Rigon, M.; Lebreton, G.; Bouglé, A.; Dechartres, A. Prevention of cardiac surgery-associated acute kidney injury: A systematic review and meta-analysis of non-pharmacological interventions. Crit. Care 2023, 27, 354. [Google Scholar] [CrossRef]
- Romagnoli, S.; Ricci, Z.; Ronco, C. Perioperative Acute Kidney Injury: Prevention, Early Recognition, and Supportive Measures. Nephron 2018, 140, 105–110. [Google Scholar] [CrossRef]
- Shaw, A.D.; Bagshaw, S.M.; Goldstein, S.L.; Scherer, L.A.; Duan, M.; Schermer, C.R.; Kellum, J.A. Major Complications, Mortality, and Resource Utilization After Open Abdominal Surgery: 0.9% Saline Compared to Plasma-Lyte. Ann. Surg. 2012, 255, 821. [Google Scholar] [CrossRef]
- Chen, J.-J.; Lee, T.H.; Kuo, G.; Huang, Y.-T.; Chen, P.-R.; Chen, S.-W.; Yang, H.-Y.; Hsu, H.-H.; Hsiao, C.-C.; Yang, C.-H.; et al. Strategies for post–cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 2022, 9, 960581. [Google Scholar] [CrossRef]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Hoffmeier, A.; Van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med. 2017, 43, 1551–1561. [Google Scholar] [CrossRef]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2016, 68, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Snel, L.I.P.; Oosterom-Eijmael, M.J.P.; Rampanelli, E.; Lankadeva, Y.R.; Plummer, M.P.; Preckel, B.; Hermanides, J.; van Raalte, D.H.; Hulst, A.H. SGLT2 inhibition reduces cardiac surgery-associated acute kidney injury: An open-label randomized study. 2024; preprint. [Google Scholar] [CrossRef]
- Zarbock, A.; Küllmar, M.; Ostermann, M.; Lucchese, G.; Baig, K.; Cennamo, A.; Rajani, R.; McCorkell, S.; Arndt, C.; Wulf, H.; et al. Prevention of Cardiac Surgery-Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. Anesth. Analg. 2021, 133, 292–302. [Google Scholar] [CrossRef]
- Ahmed, F.R.; Al-Yateem, N.; Nejadghaderi, S.A.; Gamil, R.; AbuRuz, M.E. Effect of acute kidney injury care bundle on kidney outcomes in cardiac patients receiving critical care: A systematic review and meta-analysis. BMC Nephrol. 2025, 26, 17. [Google Scholar] [CrossRef]
- Fu, Z.; Hao, X.; Lv, Y.; Hong, Q.; Feng, Z.; Liu, C. Effect of electronic alerts on the care and outcomes in patients with acute kidney injury: A meta-analysis and trial sequential analysis. BMC Med. 2024, 22, 408. [Google Scholar] [CrossRef]
- White, K.C.; Nasser, A.; Gatton, M.L.; Laupland, K.B. Current management of fluid balance in critically ill patients with acute kidney injury: A scoping review. Crit. Care Resusc. 2023, 25, 126–135. [Google Scholar] [CrossRef]
- Vaara, S.T.; Ostermann, M.; Bitker, L.; Schneider, A.; Poli, E.; Hoste, E.; Fierens, J.; Joannidis, M.; Zarbock, A.; van Haren, F.; et al. Restrictive fluid management versus usual care in acute kidney injury (REVERSE-AKI): A pilot randomized controlled feasibility trial. Intensive Care Med. 2021, 47, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Wald, R. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N. Engl. J. Med. 2020, 383, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Castro, I.; Relvas, M.; Gameiro, J.; Lopes, J.A.; Monteiro-Soares, M.; Coentrão, L. The impact of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury on mortality and clinical outcomes: A meta-analysis. Clin. Kidney J. 2022, 15, 1932–1945. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Li, Q.; Zhou, F. Timing of renal replacement therapy initiation for acute kidney injury in critically ill patients: A systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Crit. Care Lond. Engl. 2021, 25, 15. [Google Scholar] [CrossRef]
- Gaudry, S.; Hajage, D.; Martin-Lefevre, L.; Lebbah, S.; Louis, G.; Moschietto, S.; Titeca-Beauport, D.; Combe, B.L.; Pons, B.; de Prost, N.; et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): A multicentre, open-label, randomised, controlled trial. Lancet Lond. Engl. 2021, 397, 1293–1300. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N. Engl. J. Med. 2016, 375, 122–133. [Google Scholar] [CrossRef]
- See, C.Y.; Pan, H.-C.; Chen, J.-Y.; Wu, C.-Y.; Liao, H.-W.; Huang, Y.-T.; Liu, J.-H.; Wu, V.-C.; Ostermann, M. Improvement of composite kidney outcomes by AKI care bundles: A systematic review and meta-analysis. Crit. Care 2023, 27, 390. [Google Scholar] [CrossRef]
- Schaubroeck, H.A.I.; Vargas, D.; Vandenberghe, W.; Hoste, E.A.J. Impact of AKI care bundles on kidney and patient outcomes in hospitalized patients: A systematic review and meta-analysis. BMC Nephrol. 2021, 22, 335. [Google Scholar] [CrossRef]
- Mehta, S.; Chauhan, K.; Patel, A.; Patel, S.; Pinotti, R.; Nadkarni, G.N.; Parikh, C.R.; Coca, S.G. The prognostic importance of duration of AKI: A systematic review and meta-analysis. BMC Nephrol. 2018, 19, 91. [Google Scholar] [CrossRef]
- Brown, J.R.; Kramer, R.S.; Coca, S.G.; Parikh, C.R. Duration of Acute Kidney Injury Impacts Long-Term Survival After Cardiac Surgery. Ann. Thorac. Surg. 2010, 90, 1142–1148. [Google Scholar] [CrossRef]
- Ye, N.; Xu, Y.; Bellomo, R.; Gallagher, M.; Wang, A.Y. Effect of nephrology follow-up on long-term outcomes in patients with acute kidney injury: A systematic review and meta-analysis. Nephrology 2020, 25, 607–615. [Google Scholar] [CrossRef]
- Rhee, H.; Jang, K.S.; Park, J.M.; Kang, J.S.; Hwang, N.K.; Kim, I.Y.; Song, S.H.; Seong, E.Y.; Lee, D.W.; Lee, S.B.; et al. Short- and Long-Term Mortality Rates of Elderly Acute Kidney Injury Patients Who Underwent Continuous Renal Replacement Therapy. PLoS ONE 2016, 11, e0167067. [Google Scholar] [CrossRef]
- Siew, E.D.; Peterson, J.F.; Eden, S.K.; Hung, A.M.; Speroff, T.; Ikizler, T.A.; Matheny, M.E. Outpatient Nephrology Referral Rates after Acute Kidney Injury. J. Am. Soc. Nephrol. JASN 2012, 23, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Hattori, K.; Sakaguchi, Y.; Oka, T.; Asahina, Y.; Kawaoka, T.; Doi, Y.; Hashimoto, N.; Kusunoki, Y.; Yamamoto, S.; Yamato, M.; et al. Estimated Effect of Restarting Renin-Angiotensin System Inhibitors after Discontinuation on Kidney Outcomes and Mortality. J. Am. Soc. Nephrol. JASN 2024, 35, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Janse, R.J.; Fu, E.L.; Clase, C.M.; Tomlinson, L.; Lindholm, B.; van Diepen, M.; Dekker, F.W.; Carrero, J.-J. Stopping versus continuing renin-angiotensin-system inhibitors after acute kidney injury and adverse clinical outcomes: An observational study from routine care data. Clin. Kidney J. 2022, 15, 1109–1119. [Google Scholar] [CrossRef]
- Bidulka, P.; Fu, E.L.; Leyrat, C.; Kalogirou, F.; McAllister, K.S.L.; Kingdon, E.J.; Mansfield, K.E.; Iwagami, M.; Smeeth, L.; Clase, C.M.; et al. Stopping renin-angiotensin system blockers after acute kidney injury and risk of adverse outcomes: Parallel population-based cohort studies in English and Swedish routine care. BMC Med. 2020, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Switzer, G.E.; Puttarajappa, C.M.; Kane-Gill, S.L.; Fried, L.F.; Abebe, K.Z.; Kellum, J.A.; Jhamb, M.; Bruce, J.G.; Kuniyil, V.; Conway, P.T.; et al. Patient-Reported Experiences after Acute Kidney Injury across Multiple Health-Related Quality-of-Life Domains. Kidney360 2022, 3, 426. [Google Scholar] [CrossRef]
- Diamantidis, C.J.; Burks, E.; Mohottige, D.; Riley, J.; Bowman, C.; Lunyera, J.; Russell, J.S.C. What Do Acute Kidney Injury Survivors Want to Know About Their Condition: A Qualitative Study. Kidney Med. 2022, 4, 100423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Zarychanski, R.; Abou-Setta, A.M.; Turgeon, A.F.; Houston, B.L.; McIntyre, L.; Marshall, J.C.; Fergusson, D.A. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: A systematic review and meta-analysis. JAMA 2013, 309, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients with Septic Shock: The VANISH Randomized Clinical Trial. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef]
- Asfar, P.; Meziani, F.; Hamel, J.-F.; Grelon, F.; Megarbane, B.; Anguel, N.; Mira, J.-P.; Dequin, P.-F.; Gergaud, S.; Weiss, N.; et al. High versus low blood-pressure target in patients with septic shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef]
- Landry, D.W.; Levin, H.R.; Gallant, E.M.; Ashton, R.C.; Seo, S.; D’Alessandro, D.; Oz, M.C.; Oliver, J.A. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 1997, 95, 1122–1125. [Google Scholar] [CrossRef]
- Argalious, M.; Xu, M.; Sun, Z.; Smedira, N.; Koch, C.G. Preoperative statin therapy is not associated with a reduced incidence of postoperative acute kidney injury after cardiac surgery. Anesth. Analg. 2010, 111, 324–330. [Google Scholar] [CrossRef]
- Bellomo, R.; Chapman, M.; Finfer, S.; Hickling, K.; Myburgh, J. Low-dose dopamine in patients with early renal dysfunction: A placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet Lond. Engl. 2000, 356, 2139–2143. [Google Scholar] [CrossRef]
- Bove, T.; Belletti, A.; Putzu, A.; Pappacena, S.; Denaro, G.; Landoni, G.; Bagshaw, S.M.; Zangrillo, A. Intermittent furosemide administration in patients with or at risk for acute kidney injury: Meta-analysis of randomized trials. PLoS ONE 2018, 13, e0196088. [Google Scholar] [CrossRef]
- Mehta, L.S.; Warnes, C.A.; Bradley, E.; Burton, T.; Economy, K.; Mehran, R.; Safdar, B.; Sharma, G.; Wood, M.; Valente, A.M.; et al. Cardiovascular Considerations in Caring for Pregnant Patients: A Scientific Statement From the American Heart Association. Circulation 2020, 141, e884–e903. [Google Scholar] [CrossRef]
- Redfors, B.; Bragadottir, G.; Sellgren, J.; Swärd, K.; Ricksten, S.-E. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011, 37, 60–67. [Google Scholar] [CrossRef]
- Cannesson, M.; Pestel, G.; Ricks, C.; Hoeft, A.; Perel, A. Hemodynamic monitoring and management in patients undergoing high risk surgery: A survey among North American and European anesthesiologists. Crit. Care Lond. Engl. 2011, 15, R197. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Koyner, J.L.; Hoste, E.A.J.; Kellum, J.A. Update on Perioperative Acute Kidney Injury. Anesth. Analg. 2018, 127, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Perner, A.; Prowle, J.; Joannidis, M.; Young, P.; Hjortrup, P.B.; Pettilä, V. Fluid management in acute kidney injury. Intensive Care Med. 2017, 43, 807–815. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; McCullough, P.A.; Kashani, K.; Chawla, L.S.; Joannidis, M.; Shaw, A.D.; Feldkamp, T.; Uettwiller-Geiger, D.L.; McCarthy, P.; Shi, J.; et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2014, 29, 2054–2061. [Google Scholar] [CrossRef]
- Billings, F.T.; Hendricks, P.A.; Schildcrout, J.S.; Shi, Y.; Petracek, M.R.; Byrne, J.G.; Brown, N.J. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: A randomized clinical trial. JAMA 2016, 315, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Bhatraju, P.K.; Zelnick, L.R.; Katz, R.; Mikacenic, C.; Kosamo, S.; Hahn, W.O.; Dmyterko, V.; Kestenbaum, B.; Christiani, D.C.; Liles, W.C.; et al. A Prediction Model for Severe AKI in Critically Ill Adults That Incorporates Clinical and Biomarker Data. Clin. J. Am. Soc. Nephrol. CJASN 2019, 14, 506–514. [Google Scholar] [CrossRef]
Condition | Definition/Criteria | Time Frame |
---|---|---|
AKI | Increase in serum creatinine by ≥0.3 mg/dL within 48 h or ≥1.5× baseline within 7 days or urine output < 0.5 mL/kg/h for ≥6 h [4] | ≤7 days |
AKD | Persistence of AKI criteria or eGFR < 60 mL/min without meeting CKD criteria [4] | >7 days to <3 months |
CKD | Structural or functional kidney abnormality (e.g., proteinuria, imaging, biopsy findings) or eGFR < 60 mL/min for ≥3 months [4] | ≥3 months |
Study | Population/Exposure | Key Findings | Clinical Implications |
---|---|---|---|
O’Connor et al. [1] | Patients undergoing major abdominal surgery with postoperative AKI | AKI associated with a 12.6× increase in mortality, longer ICU and hospital stays, and higher complication rates | Perioperative AKI is a critical determinant of early adverse outcomes and resource utilization |
Mehta et al. [45] | Meta-analysis of 18 studies assessing AKI duration | Longer AKI duration significantly associated with increased long-term mortality (RR 2.28), CHF, MI, and CKD progression | AKI duration should be considered in prognostic models and discharge planning |
See et al. [43] | Critically ill patients receiving KDIGO care bundles, with or without biomarkers | Bundle use led to significant reductions in MAKE-30, RRT need, and short-term mortality | Standardized bundle implementation can mitigate short-term AKI complications |
Ye et al. [47] | AKI survivors with vs. without post-discharge nephrology follow-up | Follow-up associated with lower long-term mortality and reduced CKD progression | Structured nephrology care improves post-AKI outcomes and supports transition planning |
Switzer et al. [53] | Online survey of 124 AKI survivors via AAKP | 84% reported severe physical and emotional impact, 67% had family/work concerns, only 52% rated provider communication as “very good” | Highlights gaps in education, discharge counseling, and patient engagement post-AKI |
Author (Year) | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|
Zarbock (2021) [67] | Cardiac surgery patients; Remote ischemic preconditioning vs. control | RIPC group had significantly lower incidence of AKI; fewer needed dialysis | Supports RIPC use in high-risk cardiac patients |
Semler (2022) [55] | ICU patients; Balanced crystalloids vs. saline | Balanced fluids reduced incidence of AKI and need for renal replacement therapy | Balanced crystalloids preferred over saline in critical care |
Argalious (2023) [61] | Vascular surgery patients; Preoperative statins vs. no statins | Lower rate of postoperative AKI in statin group | Preoperative statins may reduce AKI risk |
Russell (2023) [59] | Patients with vasodilatory shock; Vasopressin vs. norepinephrine | Both agents maintained MAP, vasopressin group had lower creatinine rise | Vasopressin may offer renal benefits in select patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Dell Duplechin, M.; Folds, G.T.; Duplechin, D.P.; Ahmadzadeh, S.; Myers, S.H.; Shekoohi, S.; Kaye, A.D. Prevention and Management of Perioperative Acute Kidney Injury: A Narrative Review. Diseases 2025, 13, 295. https://doi.org/10.3390/diseases13090295
O’Dell Duplechin M, Folds GT, Duplechin DP, Ahmadzadeh S, Myers SH, Shekoohi S, Kaye AD. Prevention and Management of Perioperative Acute Kidney Injury: A Narrative Review. Diseases. 2025; 13(9):295. https://doi.org/10.3390/diseases13090295
Chicago/Turabian StyleO’Dell Duplechin, Mary, Garrett T. Folds, Drake P. Duplechin, Shahab Ahmadzadeh, Sarah H. Myers, Sahar Shekoohi, and Alan D. Kaye. 2025. "Prevention and Management of Perioperative Acute Kidney Injury: A Narrative Review" Diseases 13, no. 9: 295. https://doi.org/10.3390/diseases13090295
APA StyleO’Dell Duplechin, M., Folds, G. T., Duplechin, D. P., Ahmadzadeh, S., Myers, S. H., Shekoohi, S., & Kaye, A. D. (2025). Prevention and Management of Perioperative Acute Kidney Injury: A Narrative Review. Diseases, 13(9), 295. https://doi.org/10.3390/diseases13090295