In Vitro Activity of Silver-Bound Titanium Dioxide (Tiab) Against Multidrug-Resistant Bacteria from Dermatological Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Preparation of TiAB Suspension
2.3. Media and Culture Conditions
2.4. MIC and MBC Determination
2.5. Time-Kill Assay
3. Results
Time-Kill Assay Results
4. Discussion
4.1. Interpretation of Results and Relevance to Antimicrobial Applications
4.2. Differential Response Between Gram-Negative and Gram-Positive Bacteria
4.3. Safety Profile and Dermatological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
CFU | Colony Forming Units |
TiAB | Titanium dioxide microcrystals with silver ions |
CLSI | Clinical and Laboratory Standards Institute |
References
- Moffarah, A.S.; Al Mohajer, M.; Hurwitz, B.L.; Armstrong, D.G. Skin and Soft Tissue Infections. Microbiol. Spectr. 2016, 26, 691–708. [Google Scholar] [CrossRef] [PubMed]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Garousi, M.; MonazamiTabar, S.; Mirazi, H.; Farrokhi, Z.; Khaledi, A.; Shakerimoghaddam, A. Epidemiology of Pseudomonas aeruginosa in diabetic foot infections: A global systematic review and meta-analysis. Germs 2023, 13, 362–372. [Google Scholar] [CrossRef]
- Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al. Prevention and treatment of pressure ulcers/injuries: The protocol for the second update of the international Clinical Practice Guideline 2019. J. Tissue Viability 2019, 28, 51–58. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Aytekin Aydin, M.T.; Hosgun, H.L.; Dede, A.; Guven, K. Synthesis, characterization and antibacterial activity of silver-doped TiO2 nanotubes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 503–507. [Google Scholar] [CrossRef]
- Percival, S.L.; Thomas, J.G.; Williams, D.W. Biofilms and bacterial imbalances in chronic wounds: Anti-Koch. Int. Wound J. 2010, 7, 169–175. [Google Scholar] [CrossRef]
- Puca, V.; Traini, T.; Guarnieri, S.; Carradori, S.; Sisto, F.; Macchione, N.; Muraro, R.; Mincione, G.; Grande, R. The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection. Molecules 2019, 24, 2280. [Google Scholar] [CrossRef]
- Hao, D.; Zhang, Y.; Ding, Y.; Yan, Q. Preparation and properties of silver-carrying nano-titanium dioxide antimicrobial agents and silicone composite. Sci. Rep. 2024, 14, 18870. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 2014, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, B.; Kempf, M.; Kimble, R.; Supaphol, P.; Cuttle, L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver®. Burns 2014, 40, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Rathore, C.; Yadav, V.K.; Gacem, A.; AbdelRahim, S.K.; Verma, R.K.; Chundawat, R.S.; Gnanamoorthy, G.; Yadav, K.K.; Choudhary, N.; Sahoo, D.K.; et al. Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: A review. Front. Microbiol. 2023, 14, 1270245. [Google Scholar] [CrossRef] [PubMed]
- Swolana, D.; Wojtyczka, R.D. Activity of Silver Nanoparticles against Staphylococcus spp. Int. J. Mol. Sci. 2022, 23, 4298. [Google Scholar] [CrossRef]
- Zhang, E.; Li, F.; Wang, H.; Liu, J.; Wang, C.; Li, M.; Yang, K. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4280–4287. [Google Scholar] [CrossRef]
- Pathi, B.K.; Mishra, S.; Moharana, N.; Kanungo, A.; Mishra, A.; Sahu, S.; Dash, R.K.; Dubey, R.; Das, M.K. Effect of Topical Silver Nanoparticle Formulation on Wound Bacteria Clearance and Healing in Patients with Infected Wounds Compared to Standard Topical Antibiotic Application: A Randomized Open-Label Parallel Clinical Trial. Cureus 2024, 16, e60569. [Google Scholar] [CrossRef]
- Hochvaldova, L.; Panacek, D.; Valkova, L.; Vecerova, R.; Kolar, M.; Prucek, R.; Kvítek, L.; Panáček, A. E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways. Commun. Biol. 2024, 7, 1552. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2016, 6, 279–289. [Google Scholar] [CrossRef]
- Kumar, M.; Curtis, A.; Hoskins, C. Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance. Pharmaceutics 2018, 10, 11. [Google Scholar] [CrossRef]
- Simoes, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonca, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment Strategies for Infected Wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, R.; He, T.; Xu, K.; Du, D.; Zhao, N.; Cheng, X.; Yang, J.; Shi, H.; Lin, Y. Biomedical Potential of Ultrafine Ag/AgCl Nanoparticles Coated on Graphene with Special Reference to Antimicrobial Performances and Burn Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 15067–15075. [Google Scholar] [CrossRef]
Bacterial Species | No. of Isolates | MIC Median (% w/v) | MBC Median (% w/v) | IQR (MIC) (% w/v) |
---|---|---|---|---|
Staphylococcus aureus (MSSA) | 15 | 2.0 | 4.0 | 1.5–2.0 |
Staphylococcus aureus (MRSA) | 15 | 2.0 | 4.0 | 2.0–4.0 |
Staphylococcus epidermidis (MSSE) | 10 | 2.0 | 4.0 | 2.0–4.0 |
Staphylococcus epidermidis (MRSE) | 10 | 2.0 | 4.0 | 2.0–4.0 |
Streptococcus pyogenes | 15 | 2.0 | 4.0 | 1.0–2.0 |
Escherichia coli | 15 | 1.0 | 2.0 | 0.5–1.0 |
Escherichia coli (ESBL+) | 15 | 1.0 | 2.0 | 0.5–1.0 |
Klebsiella pneumoniae | 15 | 1.0 | 2.0 | 0.5–1.0 |
Enterobacter cloacae | 15 | 1.0 | 2.0 | 0.5–1.0 |
Enterococcus spp. | 15 | 2.0 | 4.0 | 1.5–2.0 |
Pseudomonas aeruginosa | 15 | 1.0 | 2.0 | 0.5–1.0 |
Pathogen | Strahin | MIC (% w/v) 48 h |
---|---|---|
Streptococcus pyogenes | 11 | 4% |
Staphylococcus aureus (MSSA) | 4 | 4% |
Staphylococcus aureus (MRSA) | 3 | 8% |
Staphylococcus epidermidis (MSSE) | 6 | 4% |
Staphylococcus epidermidis (MRSE) | 8 | 8% |
Enterococcus spp. | 6 | 1% |
7 | 0.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drago, L.; Giarritiello, F.; Deflorio, L.; Uslenghi, A.; Minasi, V.; Covi, M.; De La Motte, L.R. In Vitro Activity of Silver-Bound Titanium Dioxide (Tiab) Against Multidrug-Resistant Bacteria from Dermatological Infections. Diseases 2025, 13, 277. https://doi.org/10.3390/diseases13090277
Drago L, Giarritiello F, Deflorio L, Uslenghi A, Minasi V, Covi M, De La Motte LR. In Vitro Activity of Silver-Bound Titanium Dioxide (Tiab) Against Multidrug-Resistant Bacteria from Dermatological Infections. Diseases. 2025; 13(9):277. https://doi.org/10.3390/diseases13090277
Chicago/Turabian StyleDrago, Lorenzo, Fabiana Giarritiello, Loredana Deflorio, Angela Uslenghi, Vincenzo Minasi, Matteo Covi, and Luigi Regenburgh De La Motte. 2025. "In Vitro Activity of Silver-Bound Titanium Dioxide (Tiab) Against Multidrug-Resistant Bacteria from Dermatological Infections" Diseases 13, no. 9: 277. https://doi.org/10.3390/diseases13090277
APA StyleDrago, L., Giarritiello, F., Deflorio, L., Uslenghi, A., Minasi, V., Covi, M., & De La Motte, L. R. (2025). In Vitro Activity of Silver-Bound Titanium Dioxide (Tiab) Against Multidrug-Resistant Bacteria from Dermatological Infections. Diseases, 13(9), 277. https://doi.org/10.3390/diseases13090277