In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach
Abstract
1. Introduction
Aim of Work
2. Materials and Methods
2.1. Data Retrieval and Comparative Proteomic Analysis Using a Reverse Vaccinology Approach
2.2. Bioinformatic Characterization of the Candidate Proteins
2.3. Epitope Mapping
2.3.1. Linear B-Lymphocyte (LBL) Epitope Prediction
- Isotype prediction was performed using IgPred (https://webs.iiitd.edu.in/raghava/igpred/pep-fix-pred.html (accessed on 1 August 2023)), which predicts specific B-cell isotypes (IgG, IgA, or IgE) using a fixed-length epitope model with a threshold of 0.7 [76].
- Allergenicity was evaluated using Allertop v.2 (https://www.ddg-pharmfac.net/allertop/ (accessed on 1 August 2023)) [77].
- Toxicity was assessed via ToxinPred (http://crdd.osdd.net/raghava/toxinpred/ (accessed on 1 August 2023)) [78].
- Virulence potential was analyzed using VirulentPred (https://bioinfo.icgeb.res.in/virulent/submit.html (accessed on 1 August 2023)).
2.3.2. Cytotoxic T-Lymphocyte (CTL) Epitope Prediction
2.3.3. Helper T-Lymphocyte (HTL) Epitope Prediction
- The IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/predict.php (accessed on 1 August 2023)) was used to predict the ability of HTL epitopes to induce interferon-gamma (IFN-γ) production [84].
- The IL4pred server (https://webs.iiitd.edu.in/raghava/il4pred/design.php (accessed on 1 August 2023)) with a threshold of 0.2 was used to assess HTL epitopes for interleukin-4 (IL-4) production [85].
- The IL10pred server (https://webs.iiitd.edu.in/raghava/il10pred/predict3.php (accessed on 1 August 2023)) was utilized to predict IL-10 production by HTL epitopes [86].
2.4. Construction of a Multiepitope Vaccine (MEV)
2.5. Physicochemical Properties, Solubility Profile, Antigenicity, and Allergenicity of the Constructed MEV
2.6. Secondary Structure Prediction
2.7. Tertiary Structure Prediction, Refining and Validation
2.8. Disulfide Engineering
2.9. Prediction of Glycosylation
2.10. Molecular Docking of MEV
2.11. Immune Stimulation
3. Results
3.1. The Identification of Potential Vaccine Candidates That Are Not Shared with Nonpathogenic E. coli, Have Outer Membrane, Are Antigenic and Are Important for Virulence
- (1)
- Antigenicity—Proteins with a VaxiJen score > 0.4 were considered antigenic.
- (2)
- Transmembrane Helix—Proteins without predicted transmembrane helices were prioritized, ensuring full surface accessibility.
- (3)
- Conservation—Candidates conserved across multiple E. coli O104:H4 strains and also present in other pathogenic strains, such as E. coli O157:H7, were selected to ensure broad-spectrum protection.
- (4)
- Specificity—Proteins not shared with other nonpathogenic E. coli strains, such as HS and W3110, were chosen to confirm their pathogenic-specific nature and minimize cross-reactivity with commensal strains.
- (5)
- Human Proteome Exclusion—Proteins were checked against the human proteome via the NCBI database to avoid potential autoimmunity.
3.2. Identification and Mapping of B-Cell and T-Cell Epitopes
3.2.1. Predication of Linear B-Cell Epitopes
3.2.2. Predication of Cytotoxic T-Lymphocyte Epitope
3.2.3. Predication of Helper T-Lymphocyte Epitope
3.3. Design of the MEV Construct
3.4. Features of the Construct
3.5. Tertiary Structure Modeling and Structure Refining and Validation
3.6. Disulfide Bond Engineering Results
3.7. Glycosylation Site Prediction
3.8. Molecular Docking of MEV with TLR4
3.9. Predicted Immune Responses Induced by the MEV
4. Discussion
5. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, M.; Tainter, C.R. Escherichia coli Infection; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Centers for Disease Control and Prevention. ivCopyright Page. In CDC Yellow Book 2024: Health Information for International Travel; Nemhauser, J.B., Ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.G.; Davis, B.R.; Wachsmuth, I.K.; Riley, L.W.; Remis, R.S.; Sokolow, R.; Morris, G.K. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol. 1983, 18, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Ameer, M.A.; Wasey, A.; Salen, P. Escherichia coli (E. coli 0157 H7). In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gambushe, S.M.; Zishiri, O.T.; El Zowalaty, M.E. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect. Drug Resist. 2022, 15, 4645–4673. [Google Scholar] [CrossRef]
- Karmali, M.A.; Steele, B.T.; Petric, M.; Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1983, 1, 619–620. [Google Scholar] [CrossRef]
- Michino, H.; Araki, K.; Minami, S.; Takaya, S.; Sakai, N.; Miyazaki, M.; Ono, A.; Yanagawa, H. Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 1999, 150, 787–796. [Google Scholar] [CrossRef]
- Grant, J.; Wendelboe, A.M.; Wendel, A.; Jepson, B.; Torres, P.; Smelser, C.; Rolfs, R.T. Spinach-associated Escherichia coli O157:H7 outbreak, Utah and New Mexico, 2006. Emerg. Infect. Dis. 2008, 14, 1633–1636. [Google Scholar] [CrossRef]
- Laidler, M.R.; Tourdjman, M.; Buser, G.L.; Hostetler, T.; Repp, K.K.; Leman, R.; Samadpour, M.; Keene, W.E. Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin. Infect. Dis. 2013, 57, 1129–1134. [Google Scholar] [CrossRef]
- Soderstrom, A.; Osterberg, P.; Lindqvist, A.; Jonsson, B.; Lindberg, A.; Blide Ulander, S.; Welinder-Olsson, C.; Lofdahl, S.; Kaijser, B.; De Jong, B.; et al. A large Escherichia coli O157 outbreak in Sweden associated with locally produced lettuce. Foodborne Pathog. Dis. 2008, 5, 339–349. [Google Scholar] [CrossRef]
- Hrudey, S.E.; Payment, P.; Huck, P.M.; Gillham, R.W.; Hrudey, E.J. A fatal waterborne disease epidemic in Walkerton, Ontario: Comparison with other waterborne outbreaks in the developed world. Water Sci. Technol. 2003, 47, 7–14. [Google Scholar] [CrossRef]
- Correa-Martinez, C.L.; Leopold, S.R.; Köck, R.; Kossow, A.; Bauwens, A.; Mellmann, A. Enterohemorrhagic E. coli (EHEC): Environmental-Vehicle-Human Interface. In Zoonoses: Infections Affecting Humans and Animals; Sing, A., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 355–372. [Google Scholar] [CrossRef]
- Warmate, D.; Onarinde, B.A. Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. Int. J. Food Microbiol. 2023, 398, 110240. [Google Scholar] [CrossRef]
- Karch, H.; Mellmann, A.; Bielaszewska, M. Epidemiology and pathogenesis of enterohaemorrhagic Escherichia coli. Berl. Munch. Tierarztl. Wochenschr. 2009, 122, 417–424. [Google Scholar]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins 2020, 12, 67. [Google Scholar] [CrossRef]
- Jansen, A.; Kielstein, J.T. The new face of enterohaemorrhagic Escherichia coli infections. Euro Surveill. 2011, 16, 19898. [Google Scholar] [CrossRef]
- Frank, C.; Werber, D.; Cramer, J.P.; Askar, M.; Faber, M.; an der Heiden, M.; Bernard, H.; Fruth, A.; Prager, R.; Spode, A.; et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 2011, 365, 1771–1780. [Google Scholar] [CrossRef]
- Gault, G.; Weill, F.X.; Mariani-Kurkdjian, P.; Jourdan-da Silva, N.; King, L.; Aldabe, B.; Charron, M.; Ong, N.; Castor, C.; Mace, M.; et al. Outbreak of haemolytic uraemic syndrome and bloody diarrhoea due to Escherichia coli O104:H4, south-west France, June 2011. Euro Surveill. 2011, 16, 19905. [Google Scholar] [CrossRef]
- Borgatta, B.; Kmet-Lunaček, N.; Rello, J. E. coli O104:H4 outbreak and haemolytic-uraemic syndrome. Med. Intensiv. 2012, 36, 576–583. [Google Scholar] [CrossRef][Green Version]
- Buchholz, U.; Bernard, H.; Werber, D.; Böhmer, M.M.; Remschmidt, C.; Wilking, H.; Deleré, Y.; an der Heiden, M.; Adlhoch, C.; Dreesman, J.; et al. German outbreak of Escherichia coli O104:H4 associated with sprouts. N. Engl. J. Med. 2011, 365, 1763–1770. [Google Scholar] [CrossRef]
- Manitz, J.; Kneib, T.; Schlather, M.; Helbing, D.; Brockmann, D. Origin Detection During Food-borne Disease Outbreaks—A Case Study of the 2011 EHEC/HUS Outbreak in Germany. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Thomas, G.A.; Paradell Gil, T.; Müller, C.T.; Rogers, H.J.; Berger, C.N. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol. 2024, 117, 104389. [Google Scholar] [CrossRef]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef]
- Bae, W.K.; Lee, Y.K.; Cho, M.S.; Ma, S.K.; Kim, S.W.; Kim, N.H.; Choi, K.C. A case of hemolytic uremic syndrome caused by Escherichia coli O104:H4. Yonsei Med. J. 2006, 47, 437–439. [Google Scholar] [CrossRef]
- Mellmann, A.; Bielaszewska, M.; Köck, R.; Friedrich, A.W.; Fruth, A.; Middendorf, B.; Harmsen, D.; Schmidt, M.A.; Karch, H. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 2008, 14, 1287–1290. [Google Scholar] [CrossRef]
- Jones, G.; Mariani-Kurkdjian, P.; Cointe, A.; Bonacorsi, S.; Lefèvre, S.; Weill, F.-X.; Le Strat, Y. Sporadic Shiga Toxin–Producing Escherichia coli Associated Pediatric Hemolytic Uremic Syndrome, France, 2012–2021. Emerg. Infect. Dis. J. 2023, 29, 2054. [Google Scholar] [CrossRef]
- Bahgat, O.T.; Rizk, D.E.; Kenawy, H.I.; Barwa, R. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt. BMC Microbiol. 2024, 24, 488. [Google Scholar] [CrossRef]
- Foley, C.; Harvey, E.; Bidol, S.A.; Henderson, T.; Njord, R.; DeSalvo, T.; Haupt, T.; Mba-Jonas, A.; Bailey, C.; Bopp, C.; et al. Outbreak of Escherichia coli O104:H4 infections associated with sprout consumption—Europe and North America, May–July 2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 1029–1031. [Google Scholar]
- Aldharman, S.S.; Almutairi, S.M.; Alharbi, A.A.; Alyousef, M.A.; Alzankrany, K.H.; Althagafi, M.K.; Alshalahi, E.E.; Al-Jabr, K.H.; Alghamdi, A.; Jamil, S.F. The Prevalence and Incidence of Hemolytic Uremic Syndrome: A Systematic Review. Cureus 2023, 15, e39347. [Google Scholar] [CrossRef]
- Brzuszkiewicz, E.; Thürmer, A.; Schuldes, J.; Leimbach, A.; Liesegang, H.; Meyer, F.D.; Boelter, J.; Petersen, H.; Gottschalk, G.; Daniel, R. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch. Microbiol. 2011, 193, 883–891. [Google Scholar] [CrossRef]
- Rohde, H.; Qin, J.; Cui, Y.; Li, D.; Loman, N.J.; Hentschke, M.; Chen, W.; Pu, F.; Peng, Y.; Li, J.; et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl. J. Med. 2011, 365, 718–724. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Remuzzi, G. A German outbreak of haemolytic uraemic syndrome. Lancet 2011, 378, 1057–1058. [Google Scholar] [CrossRef]
- Finton, M.D.; Meisal, R.; Porcellato, D.; Brandal, L.T.; Lindstedt, B.-A. Comparative genomics of clinical hybrid Escherichia coli strains in Norway. Int. J. Med. Microbiol. 2025, 318, 151651. [Google Scholar] [CrossRef]
- Detzner, J.; Pohlentz, G.; Müthing, J. Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int. J. Mol. Sci. 2022, 23, 6884. [Google Scholar] [CrossRef] [PubMed]
- Moriel, D.G.; Rosini, R.; Seib, K.L.; Serino, L.; Pizza, M.; Rappuoli, R. Escherichia coli: Great diversity around a common core. mBio 2012, 3, e00118-12. [Google Scholar] [CrossRef] [PubMed]
- Gonyar, L.A.; Smith, R.M.; Giron, J.A.; Zachos, N.C.; Ruiz-Perez, F.; Nataro, J.P. Aggregative Adherence Fimbriae II of Enteroaggregative Escherichia coli Are Required for Adherence and Barrier Disruption during Infection of Human Colonoids. Infect. Immun. 2020, 88, e00176-20. [Google Scholar] [CrossRef] [PubMed]
- Eurosurveillance Editorial Team. EFSA publishes scientific report on the public health risk of Shiga-toxin producing Escherichia coli (STEC) in fresh vegetables. Euro Surveill. 2011, 16, 19888. [Google Scholar]
- Denamur, E. The 2011 Shiga toxin-producing Escherichia coli O104:H4 German outbreak: A lesson in genomic plasticity. Clin. Microbiol. Infect. 2011, 17, 1124–1125. [Google Scholar] [CrossRef]
- Turner, M. German E. coli outbreak caused by previously unknown strain. Nature 2011, 474, 137–138. [Google Scholar] [CrossRef]
- Nawrocki Erin, M.; Mosso Hillary, M.; Dudley Edward, G. A Toxic Environment: A Growing Understanding of How Microbial Communities Affect Escherichia coli O157:H7 Shiga Toxin Expression. Appl. Environ. Microbiol. 2020, 86, e00509–e00520. [Google Scholar] [CrossRef]
- Liu, Y.; Thaker, H.; Wang, C.; Xu, Z.; Dong, M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins 2022, 15, 10. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Beutel, G.; Fleig, S.; Steinhoff, J.; Meyer, T.N.; Hafer, C.; Kuhlmann, U.; Bramstedt, J.; Panzer, U.; Vischedyk, M.; et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: An analysis of the German STEC-HUS registry. Nephrol. Dial. Transplant. 2012, 27, 3807–3815. [Google Scholar] [CrossRef]
- Karpman, D. Management of Shiga toxin-associated Escherichia coli-induced haemolytic uraemic syndrome: Randomized clinical trials are needed. Nephrol. Dial. Transplant. 2012, 27, 3669–3674. [Google Scholar] [CrossRef]
- Mengistu, D.Y.; Mengesha, Y. New approaches for severity intervention and rapid diagnosis of enterohemorrhagic Escherichia coli: A review. All Life 2023, 16, 2218582. [Google Scholar] [CrossRef]
- Oluwarinde, B.O.; Ajose, D.J.; Abolarinwa, T.O.; Montso, P.K.; Du Preez, I.; Njom, H.A.; Ateba, C.N. Safety Properties of Escherichia coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety. Foods 2023, 12, 3989. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Stimson, W.H. Production and characterization of monoclonal antibodies with therapeutic potential against Shiga toxin. J. Clin. Lab. Immunol. 1990, 33, 11–16. [Google Scholar] [PubMed]
- Skinner, C.; Patfield, S.; Stanker, L.H.; Fratamico, P.; He, X. New high-affinity monoclonal antibodies against Shiga toxin 1 facilitate the detection of hybrid Stx1/Stx2 in vivo. PLoS ONE 2014, 9, e99854. [Google Scholar] [CrossRef]
- Henrique, I.M.; Sacerdoti, F.; Ferreira, R.L.; Henrique, C.; Amaral, M.M.; Piazza, R.M.F.; Luz, D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front. Cell. Infect. Microbiol. 2022, 12, 825856. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, M.-S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell. Infect. Microbiol. 2020, 10, 2020. [Google Scholar] [CrossRef] [PubMed]
- Mody, R.K.; Hoekstra, R.M.; Scott, M.K.; Dunn, J.; Smith, K.; Tobin-D’Angelo, M.; Shiferaw, B.; Wymore, K.; Clogher, P.; Palmer, A.; et al. Risk of Hemolytic Uremic Syndrome Related to Treatment of Escherichia coli O157 Infection with Different Antimicrobial Classes. Microorganisms 2021, 9, 1997. [Google Scholar] [CrossRef]
- Bowser, S.; Melton-Celsa, A.; Chapartegui-González, I.; Torres, A.G. Further Evaluation of Enterohemorrhagic Escherichia coli Gold Nanoparticle Vaccines Utilizing Citrobacter rodentium as the Model Organism. Vaccines 2024, 12, 508. [Google Scholar] [CrossRef]
- Anderson, J.D.t.; Bagamian, K.H.; Muhib, F.; Baral, R.; Laytner, L.A.; Amaya, M.; Wierzba, T.; Rheingans, R. Potential impact and cost-effectiveness of future ETEC and Shigella vaccines in 79 low- and lower middle-income countries. Vaccine X 2019, 2, 100024. [Google Scholar] [CrossRef]
- Khalid, K.; Poh, C.L. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines 2023, 11, 1264. [Google Scholar] [CrossRef]
- Li, Y.; Farhan, M.H.R.; Yang, X.; Guo, Y.; Sui, Y.; Chu, J.; Huang, L.; Cheng, G. A review on the development of bacterial multi-epitope recombinant protein vaccines via reverse vaccinology. Int. J. Biol. Macromol. 2024, 282, 136827. [Google Scholar] [CrossRef]
- Alzarea, S.I. Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: Molecular modeling study. Sci. Rep. 2022, 12, 14402. [Google Scholar] [CrossRef]
- Dorosti, H.; Eslami, M.; Negahdaripour, M.; Ghoshoon, M.B.; Gholami, A.; Heidari, R.; Dehshahri, A.; Erfani, N.; Nezafat, N.; Ghasemi, Y. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J. Biomol. Struct. Dyn. 2019, 37, 3524–3535. [Google Scholar] [CrossRef]
- Hasan, M.; Ghosh, P.P.; Azim, K.F.; Mukta, S.; Abir, R.A.; Nahar, J.; Hasan Khan, M.M. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb. Pathog. 2019, 130, 19–37. [Google Scholar] [CrossRef]
- Meza, B.; Ascencio, F.; Sierra-Beltran, A.P.; Torres, J.; Angulo, C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infect. Genet. Evol. 2017, 49, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Ullah, A.; Sarosh, N.; Abbasi, S.W.; Ismail, S.; Bibi, S.; Hasan, M.M.; Albadrani, G.M.; Talaat Nouh, N.A.; Abdulhakim, J.A.; et al. Design of Multi-Epitope Vaccine for Staphylococcus saprophyticus: Pan-Genome and Reverse Vaccinology Approach. Vaccines 2022, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Ayyagari, V.S.; Venkateswarulu, T.C.; Abraham Peele, K.; Srirama, K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: An immunoinformatics approach. J. Biomol. Struct. Dyn. 2022, 40, 2963–2977. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Noorani, M.Y.; Altaf, K.U.; Alatawi, E.A.; Aba Alkhayl, F.F.; Allemailem, K.S.; Almatroudi, A.; Ali Khan, M.; Hamayun, M.; Khan, T.; et al. Core-Proteomics-Based Annotation of Antigenic Targets and Reverse-Vaccinology-Assisted Design of Ensemble Immunogen against the Emerging Nosocomial Infection-Causing Bacterium Elizabethkingia meningoseptica. Int. J. Environ. Res. Public Health 2021, 19, 194. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Guo, J.; Zhao, G.; Sun, S.; Yu, H.; Guo, Y.; Li, J.; Jin, X.; Du, L.; et al. In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Hum. Vaccines Immunother. 2015, 11, 795–805. [Google Scholar] [CrossRef]
- Zhuang, L.; Ali, A.; Yang, L.; Ye, Z.; Li, L.; Ni, R.; An, Y.; Ali, S.L.; Gong, W. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. Infect. Med. 2024, 3, 100148. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, S.A.; Tahir, H.; Muhammad, S.; Shahid, M.; Naqqash, T.; Faisal, M.; Albekairi, T.H.; Alshammari, A.; Albekairi, N.A.; Manzoor, I. Designing of a multi-epitopes based vaccine against Haemophilius parainfluenzae and its validation through integrated computational approaches. Front. Immunol. 2024, 15, 1380732. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Sonnhammer, E.L.; von Heijne, G.; Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology (ISMB-98), Montréal, QC, Canada, 28 June–1 July 1998; Volume 6, pp. 175–182. [Google Scholar]
- Nielsen, H. Predicting Secretory Proteins with SignalP. Methods Mol. Biol. 2017, 1611, 59–73. [Google Scholar] [CrossRef]
- Juncker, A.S.; Willenbrock, H.; Von Heijne, G.; Brunak, S.; Nielsen, H.; Krogh, A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003, 12, 1652–1662. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P. Prediction methods for B-cell epitopes. Methods Mol. Biol. 2007, 409, 387–394. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-Chemical Properties. In Artificial Immune Systems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Gupta, S.; Ansari, H.R.; Gautam, A.; Raghava, G.P.S.; Open Source Drug Discovery Consortium. Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol. Direct 2013, 8, 27. [Google Scholar] [CrossRef]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery, C.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemoller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics 2016, 32, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Calis, J.J.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Kesmir, C.; Peters, B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [Google Scholar] [CrossRef]
- Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007, 8, 424. [Google Scholar] [CrossRef]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 2013, 8, 30. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013, 2013, 263952. [Google Scholar] [CrossRef]
- Nagpal, G.; Usmani, S.S.; Dhanda, S.K.; Kaur, H.; Singh, S.; Sharma, M.; Raghava, G.P. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 2017, 7, 42851. [Google Scholar] [CrossRef]
- Shawan, M.; Sharma, A.R.; Halder, S.K.; Arian, T.A.; Shuvo, M.N.; Sarker, S.R.; Hasan, M.A. Advances in Computational and Bioinformatics Tools and Databases for Designing and Developing a Multi-Epitope-Based Peptide Vaccine. Int. J. Pept. Res. Ther. 2023, 29, 60. [Google Scholar] [CrossRef]
- Hasan, M.; Islam, S.; Chakraborty, S.; Mustafa, A.H.; Azim, K.F.; Joy, Z.F.; Hossain, M.N.; Foysal, S.H.; Hasan, M.N. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. J. Biomol. Struct. Dyn. 2020, 38, 2898–2915. [Google Scholar] [CrossRef]
- Chen, H.; Wu, B.; Zhang, T.; Jia, J.; Lu, J.; Chen, Z.; Ni, Z.; Tan, T. Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores. Appl. Biochem. Biotechnol. 2017, 182, 168–180. [Google Scholar] [CrossRef]
- Olejnik, J.; Hume, A.J.; Mühlberger, E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog. 2018, 14, e1007390. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.e.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar] [CrossRef]
- Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25, 2200–2207. [Google Scholar] [CrossRef] [PubMed]
- Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 2017, 33, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.W.; Minneci, F.; Nugent, T.C.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013, 41, W349–W357. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef]
- Yuan, S.; Chan, H.C.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012, 40, W294–W297. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Bowie, J.U.; Luthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991, 253, 164–170. [Google Scholar] [CrossRef]
- Craig, D.B.; Dombkowski, A.A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform. 2013, 14, 346. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.S.; Bhat, A.H.; Raghava, G.P.S.; Rao, A. GlycoPP: A Webserver for Prediction of N- and O-Glycosites in Prokaryotic Protein Sequences. PLoS ONE 2012, 7, e40155. [Google Scholar] [CrossRef]
- Desta, I.T.; Porter, K.A.; Xia, B.; Kozakov, D.; Vajda, S. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure 2020, 28, 1071–1081.e3. [Google Scholar] [CrossRef]
- Vajda, S.; Yueh, C.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Kozakov, D. New additions to the ClusPro server motivated by CAPRI. Proteins 2017, 85, 435–444. [Google Scholar] [CrossRef]
- Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System. PLoS ONE 2010, 5, e9862. [Google Scholar] [CrossRef]
- Yano, A.; Onozuka, A.; Asahi-Ozaki, Y.; Imai, S.; Hanada, N.; Miwa, Y.; Nisizawa, T. An ingenious design for peptide vaccines. Vaccine 2005, 23, 2322–2326. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Kong, M.; Su, X.; Yang, D.; Zou, M.; Liu, Y.; Lu, L. Design and Evaluation of a Multi-Epitope Peptide of Human Metapneumovirus. Intervirology 2015, 58, 403–412. [Google Scholar] [CrossRef]
- Velders, M.P.; Weijzen, S.; Eiben, G.L.; Elmishad, A.G.; Kloetzel, P.M.; Higgins, T.; Ciccarelli, R.B.; Evans, M.; Man, S.; Smith, L.; et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol. 2001, 166, 5366–5373. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.M.; Sun, S.H.; Hu, Z.L.; Zhou, F.J.; Yin, M.; Xiao, C.J.; Zhang, J.C. Epitope DNA vaccines against tuberculosis: Spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine. Scand. J. Immunol. 2004, 60, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Livingston, B.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.; Sette, A. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol. 2002, 168, 5499–5506. [Google Scholar] [CrossRef]
- Shey, R.A.; Ghogomu, S.M.; Esoh, K.K.; Nebangwa, N.D.; Shintouo, C.M.; Nongley, N.F.; Asa, B.F.; Ngale, F.N.; Vanhamme, L.; Souopgui, J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep. 2019, 9, 4409. [Google Scholar] [CrossRef] [PubMed]
- Bhatnager, R.; Bhasin, M.; Arora, J.; Dang, A.S. Epitope based peptide vaccine against SARS-COV2: An immune-informatics approach. J. Biomol. Struct. Dyn. 2021, 39, 5690–5705. [Google Scholar] [CrossRef]
- Moradkasani, S.; Esmaeili, S.; Asadi Karam, M.R.; Mostafavi, E.; Shahbazi, B.; Salek Farrokhi, A.; Chiani, M.; Badmasti, F. Development of a multi-epitope vaccine from outer membrane proteins and identification of novel drug targets against Francisella tularensis: An In Silico approach. Front. Immunol. 2025, 16, 1479862. [Google Scholar] [CrossRef]
- Rastogi, A.; Gautam, S.; Kumar, M. Bioinformatic elucidation of conserved epitopes to design a potential vaccine candidate against existing and emerging SARS-CoV-2 variants of concern. Heliyon 2024, 10, e35129. [Google Scholar] [CrossRef]
- Sami, S.A.; Marma, K.K.S.; Mahmud, S.; Khan, M.A.N.; Albogami, S.; El-Shehawi, A.M.; Rakib, A.; Chakraborty, A.; Mohiuddin, M.; Dhama, K.; et al. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS Omega 2021, 6, 32043–32071. [Google Scholar] [CrossRef]
- Dey, J.; Mahapatra, S.R.; Singh, P.K.; Prabhuswamimath, S.C.; Misra, N.; Suar, M. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol. Res. 2023, 71, 639–662. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Kaushik, V.; Kumar, M.; Mannan, M.A. In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb. Pathog. 2021, 155, 104879. [Google Scholar] [CrossRef]
- Pandey, R.K.; Bhatt, T.K.; Prajapati, V.K. Novel Immunoinformatics Approaches to Design Multi-epitope Subunit Vaccine for Malaria by Investigating Anopheles Salivary Protein. Sci. Rep. 2018, 8, 1125. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.J.; Amani, J.; Shahsavandi, S.; Salmanian, A.H. In Silico Design of Multimeric HN-F Antigen as a Highly Immunogenic Peptide Vaccine Against Newcastle Disease Virus. Int. J. Pept. Res. Ther. 2014, 20, 179–194. [Google Scholar] [CrossRef]
- Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 1992, 12, 345–364. [Google Scholar] [CrossRef]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef]
- Al-Khayyat, M.Z.; Al-Dabbagh, A.G. In silico Prediction and Docking of Tertiary Structure of LuxI, an Inducer Synthase of Vibrio fischeri. Rep. Biochem. Mol. Biol. 2016, 4, 66–75. [Google Scholar]
- Taherzadeh, G.; Campbell, M.; Zhou, Y. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins. Methods Mol. Biol. 2022, 2499, 177–186. [Google Scholar] [CrossRef]
- Tottey, S.; Waldron, K.J.; Firbank, S.J.; Reale, B.; Bessant, C.; Sato, K.; Cheek, T.R.; Gray, J.; Banfield, M.J.; Dennison, C.; et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 2008, 455, 1138–1142. [Google Scholar] [CrossRef]
- Franke, S.; Grass, G.; Rensing, C.; Nies, D.H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 2003, 185, 3804–3812. [Google Scholar] [CrossRef]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488–2492. [Google Scholar] [CrossRef]
- Hyre, A.; Casanova-Hampton, K.; Subashchandrabose, S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021, 9, eESP00142020. [Google Scholar] [CrossRef]
- Virieux-Petit, M.; Hammer-Dedet, F.; Aujoulat, F.; Jumas-Bilak, E.; Romano-Bertrand, S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes 2022, 13, 301. [Google Scholar] [CrossRef]
- Torres, A.G.; Blanco, M.; Valenzuela, P.; Slater, T.M.; Patel, S.D.; Dahbi, G.; López, C.; Barriga, X.F.; Blanco, J.E.; Gomes, T.A.; et al. Genes related to long polar fimbriae of pathogenic Escherichia coli strains as reliable markers to identify virulent isolates. J. Clin. Microbiol. 2009, 47, 2442–2451. [Google Scholar] [CrossRef]
- Aas, C.G.; Drabløs, F.; Haugum, K.; Afset, J.E. Comparative Transcriptome Profiling Reveals a Potential Role of Type VI Secretion System and Fimbriae in Virulence of Non-O157 Shiga Toxin-Producing Escherichia coli. Front. Microbiol. 2018, 9, 01416. [Google Scholar] [CrossRef]
- Tarr, P.I.; Gordon, C.A.; Chandler, W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005, 365, 1073–1086. [Google Scholar] [CrossRef]
- Torres, A.G.; Payne, S.M. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 1997, 23, 825–833. [Google Scholar] [CrossRef]
- Aleksandrowicz, A.; Kjærup, R.B.; Grzymajło, K.; Martinez, F.G.; Muñoz, J.; Borowska, D.; Sives, S.; Vervelde, L.; Dalgaard, T.S.; Kingsley, R.A.; et al. FdeC expression regulates motility and adhesion of the avian pathogenic Escherichia coli strain IMT5155. Vet. Res. 2024, 55, 70. [Google Scholar] [CrossRef]
- Wickham, M.E.; Brown, N.F.; Boyle, E.C.; Coombes, B.K.; Finlay, B.B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 2007, 17, 783–788. [Google Scholar] [CrossRef]
- Pen, G.; Yang, N.; Teng, D.; Hao, Y.; Mao, R.; Wang, J. The Outer Membrane Proteins and Their Synergy Triggered the Protective Effects against Pathogenic Escherichia coli. Microorganisms 2022, 10, 982. [Google Scholar] [CrossRef]
- Bidossi, A.; Mulas, L.; Decorosi, F.; Colomba, L.; Ricci, S.; Pozzi, G.; Deutscher, J.; Viti, C.; Oggioni, M.R. A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae. PLoS ONE 2012, 7, e33320. [Google Scholar] [CrossRef]
- Garcia-Angulo, V.A.; Kalita, A.; Kalita, M.; Lozano, L.; Torres, A.G. Comparative genomics and immunoinformatics approach for the identification of vaccine candidates for enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 2014, 82, 2016–2026. [Google Scholar] [CrossRef][Green Version]
- Arshadi, N.; Mousavi Gargari, S.L.; Amani, J.; Nazarian, S. Immunogenicity of inactivated Escherichia coli O157:H7 with Stx2B microparticle in mice. Iran. J. Basic Med. Sci. 2022, 25, 1069–1076. [Google Scholar] [CrossRef]
- Soltan, M.A.; Behairy, M.Y.; Abdelkader, M.S.; Albogami, S.; Fayad, E.; Eid, R.A.; Darwish, K.M.; Elhady, S.S.; Lotfy, A.M.; Alaa Eldeen, M. In silico Designing of an Epitope-Based Vaccine Against Common E. coli Pathotypes. Front. Med. 2022, 9, 829467. [Google Scholar] [CrossRef] [PubMed]
- Van Donkersgoed, J.; Hancock, D.; Rogan, D.; Potter, A.A. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. Can. Vet. J. 2005, 46, 724–728. [Google Scholar] [PubMed]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef]
- Spellberg, B.; Edwards, J.E., Jr. Type 1/Type 2 Immunity in Infectious Diseases. Clin. Infect. Dis. 2001, 32, 76–102. [Google Scholar] [CrossRef]
- Benson, L.N.; Liu, Y.; Deck, K.; Mora, C.; Mu, S. IFN-γ Contributes to the Immune Mechanisms of Hypertension. Kidney360 2022, 3, 2164–2173. [Google Scholar] [CrossRef]
Seq ID | Name of Protein | No. of Amino Acids | Membrane Localization | Transmembrane Prediction | Signal Peptide Prediction | Antigenicity | Conservation Among Pathogenic Strains | Similarity to Commensal Strains | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Localization | Score (Psort) | The Topology Predicted by N-Best | SignalP | LipoP | VaxiJen Score | No. of O157:H7 | No. of O104:H4 | K-12 MG1655 | HS | W3110 | |||
407479814 | long polar fimbrial protein (LpfD) [Escherichia coli O104:H4 str. 2011C-3493] | 351 | Extracellular | 10 | Topology = o | SP(Sec/SPI) | SPI | 0.42 | 1 | 7 | No similarity | ||
407479898 | copper resistance protein B (copB) [Escherichia coli O104:H4 str. 2011C-3493] | 299 | Outer Membrane | 9.93 | Topology = o | SP(Sec/SPI) | SPI | 0.653 | 1 | 48 | No similarity | ||
407480277 | hypothetical protein O3K_03480 [Escherichia coli O104:H4 str. 2011C-3493] | 900 | Outer Membrane | 10 | Topology = o | SP(Sec/SPI) | SPI | 0.6301 | 15 | 13 | No similarity | 100% | No similarity |
407480278 | hypothetical protein O3K_03485 [Escherichia coli O104:H4 str. 2011C-3493] | 362 | Extracellular | 9.72 | Topology = o | SP(Sec/SPI) | SPI | 0.6471 | 7 | 8 | No similarity | 78% | No similarity |
407480477 | serine protease pic precursor (ShMu) [Escherichia coli O104:H4 str. 2011C-3493] | 1372 | Extracellular | 9.96 | Topology = i34–53o | SP(Sec/SPI) | CYT | 0.6182 | 1 | 9 | <20% | ||
407480816 | putative alpha-amylase, partial [Escherichia coli O104:H4 str. 2011C-3493] | 431 | Extracellular | 9.45 | Topology = o | OTHER | CYT | 0.4347 | >50 | 39 | <50% | 97% | <50% |
407481100 | APSE-2 prophage, transfer protein gp20 [Escherichia coli O104:H4 str. 2011C-3493] | 488 | Extracellular | 9.64 | Topology = o | OTHER | CYT | 0.5866 | None | 9 | No similarity | <50% | No similarity |
407481484 | yersiniabactin/pesticin outer membrane receptor (IRPC) [Escherichia coli O104:H4 str. 2011C-3493] | 673 | Outer Membrane | 10 | Topology = o | SP(Sec/SPI) | SPI | 0.6608 | 11 | 8 | <20% | <20% | <20% |
407482061 | outer membrane precursor Lom [Escherichia coli O104:H4 str. 2011C-3493] | 241 | Outer Membrane | 9.93 | Topology = o | SP(Sec/SPI) | SPI | 0.7296 | 2 | 8 | <20% | <20% | <20% |
407482127 | lipoprotein [Escherichia coli O104:H4 str. 2011C-3493] | 1325 | Outer Membrane | 9.99 | Topology = o | LIPO(Sec/SPII) | CYT | 0.6884 | 33 | 46 | 99% | 97% | 97% |
407482355 | host specificity protein J [Escherichia coli O104:H4 str. 2011C-3493] | 1159 | Extracellular | 9.64 | Topology = o | OTHER | CYT | 0.6137 | >50 | >50 | 83% | 75% | 83% |
407482363 | tail protein [Escherichia coli O104:H4 str. 2011C-3493] | 220 | Extracellular | 9.64 | Topology = o | OTHER | CYT | 0.6988 | None | 1 | 78% | No similarity | 78% |
407482726 | putative outer membrane protein Lom [Escherichia coli O104:H4 str. 2011C-3493] | 244 | Outer Membrane | 8.86 | Topology = o | SP(Sec/SPI) | SPI | 0.8011 | 11 | 9 | <20% | <20% | <20% |
407483030 | host specificity protein J of prophage [Escherichia coli O104:H4 str. 2011C-3493] | 1165 | Extracellular | 9.64 | Topology = o | OTHER | CYT | 0.6174 | >50 | >50 | 82% | 60% | 82% |
407483596 | hypothetical protein O3K_20405 [Escherichia coli O104:H4 str. 2011C-3493] | 172 | Extracellular | 9.71 | Topology = o | OTHER | CYT | 0.6139 | 10 | 7 | <20% | 100 | <20% |
407484105 | serine protease pet precursor (Plasmid-encoded toxin pet) [Escherichia coli O104:H4 str. 2011C-3493] | 1285 | Outer Membrane | 10 | Topology = i35–57o | OTHER | CYT | 0.6563 | 2 | 5 | <20% | <20% | <20% |
407484114 | ferric aerobactin receptor [Escherichia coli O104:H4 str. 2011C-3493] | 731 | Outer Membrane | 10 | Topology = o | SP(Sec/SPI) | SPI | 0.6267 | 3 | 36 | <20% | <20% | <20% |
Name of Protein | Predicted Epitope Sequence | Start | End | Length | Software | VaxiJen Score | Antigenicity | Signal Peptide | Allergenicity | Toxicity | Virulence | Ig Subtype/Score | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABCpred | BeriPred | BCEPRED | ||||||||||||
Copper resistance protein B (copB) | KAALRLGGEYDVLLTN | 202 | 217 | 16 | √ | - | - | 0.7658 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | IgG/0.805 |
WNQLYGKTSDMAKREGEKDH | 268 | 287 | 20 | √ | √ | √ | 1.272 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - | |
KSEGERS | 131 | 137 | 7 | Partial | Partial | √ | 2.4633 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - | |
Long polar fimbrial protein (LpfD) | PDPIPDN | 77 | 83 | 7 | √ | √ | √ | 0.624 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - |
GEYQAHDFKGRAGQPPQNVQKVQKELSFD | 222 | 250 | 29 | Partial | Partial | √ | 0.6475 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | IgG/0.854 | |
Putative outer membrane protein Lom (LomP) | GDWRTSGVTAGIGLKF | 229 | 244 | 16 | √ | Partial | - | 1.4605 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | IgA/0.803 |
VSGYEGKDKNPQGINI | 78 | 93 | 16 | √ | √ | √ | 1.4541 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | IgA/0.76 | |
ESNSTKKTS | 194 | 202 | 9 | √ | √ | √ | 2.3195 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - | |
Hypothetical protein O3K_20405 (Hcp_VI) | KIEWEHVKSGTSGADDWRA | 150 | 168 | 19 | Partial | √ | Partial | 1.0865 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - |
RTSVEGKQEHYFTTRLTDST | 100 | 119 | 20 | √ | Partial | √ | 1.0263 | Antigenic | Not | Non-Allergen | Non-Toxin | Virulent | - |
Protein Name | Position | HLA | Peptide | Core | 1-log50k (aff) | Affinity (nM) | %Rank | TAP IC50 | TAP | Immunogenicity | VaxiJen Score | Virulence | Allergenicity | Toxicity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper resistance protein B (copB) | 251 | HLA-B2705 HLA-C0602 HLA-C0701 HLA-C0702 HLA-C1203 | LRYEIRREF | LRYEIRREF | 0.56 | 196.48 | 0.34 | 1.00 | B27, B39 | 0.38 | 0.74 | Virulent | Non-Allergen | Non-Toxin |
Long polar fimbrial protein (LpfD) | 120 | HLA-A2402 HLA-B3901 HLA-B4001 HLA-B1501 HLA-C0401 HLA-C0702 | TQLDIPVPF | TQLDIPVPF | 0.301 | 1991.80 | 0.90 | 1.00 | A24, B27, B62 | 0.17 | 1.11 | Virulent | Non-Allergen | Non-Toxin |
Putative outer membrane protein Lom (LomP) | 94 | HLA-B2705 HLA-B3901 HLA-C0303 HLA-C0501 HLA-C0602 HLA-C0701 HLA-C0702 HLA-C1203 HLA-C1402 | YRYEITDDF | YRYEITDDF | 0.507333333 | 1073.47 | 0.67 | 1.55 | B27, B39 | 0.30 | 0.9072 | Virulent | Non-Allergen | Non-Toxin |
hypothetical protein O3K_20405 (Hcp_VI) | 65 | HLA-B0702 HLA-B0801 HLA-B3901 HLA-C0401 HLA-C1203 HLA-C1402 | KPFIFTVAL | KPFIFTVAL | 0.418666667 | 1560.28 | 0.88 | 1.23 | B7, B8, B39 | 0.38 | 0.74 | Virulent | Non-Allergen | Non-Toxin |
Protein Name | Position | MHC | Peptide | Core | %Rank_EL | Affinity (nM) | %Rank_BA | VaxiJen Score | Antigenicity | Virulence | Allergenicity | Toxicity | INF-γ | IL4 | IL10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper resistance protein B (copB) | 216 | DRB1_0101 DRB1_0102 DRB1_0103 DRB1_1201 DRB1_1302 DRB1_1501 DRB1_1503 DRB1_1601 DRB5_0202 | TNRLILQPSYEVNFY | LILQPSYEV | 1.03 | 75.20 | 0.59 | 0.85 | Antigenic | Virulent | Non- Allergen | Non-Toxin | Positive | Non IL4 inducer | IL10 inducer |
Long polar fimbrial protein (LpfD) | 154 | DRB1_0402 DRB1_0803 DRB1_1201 DRB1_1301 DRB1_1302 DRB1_1501 DRB1_1503 DRB1_1601 DRB5_0202 | KGSISIYISHPFVGQ | ISIYISHPF | 0.59 | 119.90 | 0.85 | 0.64 | Antigenic | Virulent | Non- Allergen | Non-Toxin | Positive | IL4 inducer | Non IL10 inducer |
Putative outer membrane protein Lom (LomP) | 118 | DRB1_0401 DRB1_0408 DRB1_1001 | SQTFIDVQSADHTRK | FIDVQSADH | 1.58 | 153.37 | 6.24 | 0.69 | Antigenic | Virulent | Non- Allergen | Non-Toxin | Positive | IL4 inducer | IL10 inducer |
Software used | Parameter | Vaccine Constructs | |||
---|---|---|---|---|---|
EcoEpvc1 | EcoEpvc2 | EcoEpvc3 | EcoEpvc4 | ||
EXPASY ProtParam | Number of amino acids | 399 | 393 | 534 | 532 |
Molecular weight | 44123.57 | 43452.74 | 58448.51 | 58177.17 | |
Theortical PI | 9.92 | 9.89 | 9.67 | 9.63 | |
Total number of negatively charged residues | 37 | 37 | 54 | 54 | |
Total number of positively charged residues | 77 | 75 | 77 | 75 | |
Formula | C1987H3131N563O562S7 | C1949H3077N555O557S8 | C2567H4101N749O806S3 | C2551H4076N744O805S4 | |
Total number of atoms | 6250 | 6146 | 8226 | 8180 | |
Extinction coefficients | 71195 | 65695 | 58330 | 58330 | |
Estimated half-life | 30 h (mammalian reticulocytes, in vitro) > 20 h (yeast, in vivo). > 10 h (Escherichia coli, in vivo) | ||||
Instability index | 24.66 | 25.8 | 30.61 | 30.04 | |
Aliphatic index | 61.28 | 60.7 | 70.81 | 71.26 | |
Grand average of hydropathicity (GRAVY) | −0.712 | −0.734 | −0.72 | −0.694 | |
Novoprolab | Net Charge at pH 7 | 40.3 | 38.3 | 23.7 | 21.6 |
Protein-Sol | Solubility | 0.563 | 0.541 | 0.578 | 0.56 |
SOLpro | Solubility | 0.97404 | 0.953268 | 0.562518 | 0.760289 |
AntigenPro | Antigenicity | 0.910422 | 0.891404 | 0.938256 | 0.93976 |
Vaxijen | Antigenicity | 0.9853 | 0.9796 | 0.8414 | 0.8254 |
Allertop2 | Allergenicity | Non-Allergen | Non-Allergen | Non-Allergen | Non-Allergen |
TMHMM | Transmembrane domains | No | No | No | No |
SignalP | Signal peptide | No | No | No | No |
BlastP | Similarity to humans | 11% +100% (b-defensin) | 11% +100% (b-defensin) | No | hNo |
Predication of N-Linked | |||
---|---|---|---|
Position | Residue | Score | Prediction |
6 | NTN | −0.06 | Non-glycosylated |
8 | NSL | −0.01 | Non-glycosylated |
16 | NNL | −0.05 | Non-glycosylated |
17 | NLN | −0.23 | Non-glycosylated |
19 | NKS | 0.40 | Potential Glycosylated |
39 | NSA | 0.04 | Potential Glycosylated |
52 | NRF | −0.11 | Non-glycosylated |
57 | NIK | 0.14 | Potential Glycosylated |
67 | NAN | −0.02 | Non-glycosylated |
69 | NDG | −0.23 | Non-glycosylated |
83 | NEI | −0.47 | Non-glycosylated |
86 | NNN | −0.45 | Non-glycosylated |
87 | NNL | −0.70 | Non-glycosylated |
88 | NLQ | −0.51 | Non-glycosylated |
101 | NGT | 0.25 | Potential Glycosylated |
104 | NSD | −0.30 | Non-glycosylated |
128 | NQT | −0.15 | Non-glycosylated |
133 | NGV | 0.08 | Potential Glycosylated |
142 | NQE | −0.29 | Non-glycosylated |
173 | NKK | 0.13 | Potential Glycosylated |
177 | NQL | −0.39 | Non-glycosylated |
213 | NKK | −0.26 | Non-glycosylated |
233 | NVQ | −0.47 | Non-glycosylated |
267 | NST | 0.31 | Potential Glycosylated |
285 | NPQ | −0.22 | Non-glycosylated |
290 | NIK | −0.48 | Non-glycosylated |
420 | NRL | −0.94 | Non-glycosylated |
431 | NFY | −0.01 | Non-glycosylated |
481 | NTV | −0.49 | Non-glycosylated |
485 | NLN | −0.27 | Non-glycosylated |
487 | NSA | 0.04 | Potential Glycosylated |
504 | NMS | 0.77 | Potential Glycosylated |
523 | NQV | −0.25 | Non-glycosylated |
528 | NVL | −0.55 | Non-glycosylated |
Predication of O-Linked | Predication of O-Linked | ||||||
---|---|---|---|---|---|---|---|
Position | Residue | Score | Prediction | Position | Residue | Score | Prediction |
7 | T | −0.47 | Non-glycosylated | 268 | S | 0.52 | Potential Glycosylated |
9 | S | −0.50 | Non-glycosylated | 269 | T | −0.41 | Non-glycosylated |
11 | S | −0.35 | Non-glycosylated | 272 | T | −0.46 | Non-glycosylated |
14 | T | −0.38 | Non-glycosylated | 273 | S | −0.20 | Non-glycosylated |
21 | S | 0.68 | Potential Glycosylated | 277 | S | 0.87 | Potential Glycosylated |
23 | S | 0.06 | Potential Glycosylated | 295 | T | −0.59 | Non-glycosylated |
24 | S | 0.37 | Potential Glycosylated | 296 | S | −0.57 | Non-glycosylated |
26 | S | 0.93 | Potential Glycosylated | 306 | T | −1.10 | Non-glycosylated |
27 | S | 0.15 | Potential Glycosylated | 307 | T | −0.73 | Non-glycosylated |
33 | S | −0.02 | Non-glycosylated | 310 | T | −1.01 | Non-glycosylated |
34 | S | −0.58 | Non-glycosylated | 312 | S | 0.44 | Potential Glycosylated |
40 | S | 0.73 | Potential Glycosylated | 313 | T | −0.77 | Non-glycosylated |
55 | T | −0.68 | Non-glycosylated | 324 | S | 0.13 | Potential Glycosylated |
56 | S | −0.03 | Non-glycosylated | 326 | T | −0.01 | Non-glycosylated |
62 | T | −0.41 | Non-glycosylated | 327 | S | −0.24 | Non-glycosylated |
65 | S | −0.28 | Non-glycosylated | 344 | T | −0.95 | Non-glycosylated |
73 | S | −0.20 | Non-glycosylated | 365 | T | 0.15 | Potential Glycosylated |
77 | T | −0.20 | Non-glycosylated | 382 | T | −0.06 | Non-glycosylated |
78 | T | −0.46 | Non-glycosylated | 394 | T | −0.58 | Non-glycosylated |
96 | S | 0.33 | Potential Glycosylated | 408 | T | 0.08 | Potential Glycosylated |
100 | T | −0.60 | Non-glycosylated | 419 | T | −0.23 | Non-glycosylated |
103 | T | −0.70 | Non-glycosylated | 427 | S | −0.19 | Non-glycosylated |
105 | S | 0.01 | Potential Glycosylated | 441 | S | 0.71 | Potential Glycosylated |
107 | S | −0.32 | Non-glycosylated | 443 | S | 0.90 | Potential Glycosylated |
111 | S | −0.48 | Non-glycosylated | 447 | S | 0.10 | Potential Glycosylated |
127 | S | −0.68 | Non-glycosylated | 459 | S | 0.76 | Potential Glycosylated |
130 | T | 0.36 | Potential Glycosylated | 461 | T | −0.56 | Non-glycosylated |
139 | S | 0.46 | Potential Glycosylated | 467 | S | 0.47 | Potential Glycosylated |
155 | S | −0.01 | Non-glycosylated | 471 | T | −0.53 | Non-glycosylated |
172 | T | −1.48 | Non-glycosylated | 482 | T | −1.37 | Non-glycosylated |
183 | T | −0.30 | Non-glycosylated | 484 | T | −0.50 | Non-glycosylated |
184 | S | −0.13 | Non-glycosylated | 488 | S | −0.05 | Non-glycosylated |
199 | S | −0.37 | Non-glycosylated | 491 | S | −0.55 | Non-glycosylated |
204 | S | −0.41 | Non-glycosylated | 500 | T | −0.82 | Non-glycosylated |
242 | S | −0.54 | Non-glycosylated | 503 | S | −0.32 | Non-glycosylated |
251 | T | −0.86 | Non-glycosylated | 506 | S | −0.71 | Non-glycosylated |
252 | S | 1.06 | Potential Glycosylated | 516 | T | 0.54 | Potential Glycosylated |
255 | T | −0.05 | Non-glycosylated | 517 | S | 0.16 | Potential Glycosylated |
266 | S | −0.32 | Non-glycosylated | 531 | S | 0.22 | Potential Glycosylated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, E.G.; Elnesr, K.; Hanora, A. In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach. Diseases 2025, 13, 259. https://doi.org/10.3390/diseases13080259
Youssef EG, Elnesr K, Hanora A. In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach. Diseases. 2025; 13(8):259. https://doi.org/10.3390/diseases13080259
Chicago/Turabian StyleYoussef, Eman G., Khaled Elnesr, and Amro Hanora. 2025. "In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach" Diseases 13, no. 8: 259. https://doi.org/10.3390/diseases13080259
APA StyleYoussef, E. G., Elnesr, K., & Hanora, A. (2025). In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach. Diseases, 13(8), 259. https://doi.org/10.3390/diseases13080259