Differences in Metabolic Control Between Different Insulin Use Patterns in Pediatric Patients with Type 1 Diabetes Through Intermittent Glucose Monitoring
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Statistic Analysis
3. Results
- Sex.
- 2.
- Age.
- 3.
- Time in range.
- 4.
- Number of scans
- 5.
- Coefficient of variation
- 6.
- Time under range
- 7.
- Categorization according to the level of HbA1c after one year of sensor use
- 8.
- Number of capillary blood glucose measurements before and after the use of isCGM
- 9.
- Qol.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S148–S164. [Google Scholar] [CrossRef]
- Nathan, D.M.; DCCT/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Swift, P.G.; Skinner, T.C.; de Beaufort, C.E.; Cameron, F.J.; Aman, J.; Aanstoot, H.J.; Castaño, L.; Chiarelli, F.; Daneman, D.; Danne, T.; et al. Target setting in intensive insulin management is associated with metabolic control: The Hvidoere childhood diabetes study group centre differences study 2005. Pediatr. Diabetes 2010, 11, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Jeitler, K.; Horvath, K.; Berghold, A.; Gratzer, T.W.; Neeser, K.; Pieber, T.R.; Siebenhofer, A. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: Systematic review and meta-analysis. Diabetologia 2008, 51, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Fatourechi, M.M.; Kudva, Y.C.; Murad, M.H.; Elamin, M.B.; Tabini, C.C.; Montori, V.M. Clinical review: Hypoglycemia with intensive insulin therapy: A systematic review and meta-analyses of randomized trials of continuous subcutaneous insulin infusion versus multiple daily injections. J. Clin. Endocrinol. Metab. 2009, 94, 729–740. [Google Scholar] [CrossRef]
- Pickup, J.; Mattock, M.; Kerry, S. Glycaemic control with continuous subcutaneous insulin infusion compared with intensive insulin injections in patients with type 1 diabetes: Meta-analysis of randomised controlled trials. BMJ 2002, 324, 705. [Google Scholar] [CrossRef]
- Jakisch, B.I.; Wagner, V.M.; Heidtmann, B.; Lepler, R.; Holterhus, P.M.; Kapellen, T.M.; Vogel, C.; Rosenbauer, J.; Holl, R.W.; German/Austrian DPV Initiative and Working Group for Paediatric Pump Therapy. Comparison of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) in paediatric Type 1 diabetes: A multicentre matched-pair cohort analysis over 3 years. Diabet. Med. 2008, 25, 80–85. [Google Scholar] [CrossRef]
- DiMeglio, L.; Acerini, C.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatric. Diabetes 2018, 19 (Suppl. 27), 105–114. [Google Scholar] [CrossRef]
- Barttelino, T.; Danne, T.; Bergenstal, R. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Evans, M.; Welsh, Z.; Ells, S.; Seibold, A. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther. 2020, 11, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.W.; Hirsch, I.B. The Hybrid Closed-Loop System: Evolution and Practical Applications. Diabetes Technol. Ther. 2018, 20, S216–S223. [Google Scholar] [CrossRef]
- Hásková, A.; Radovnická, L.; Petruželková, L.; Parkin, C.G.; Grunberger, G.; Horová, E.; Navrátilová, V.; Kádě, O.; Matoulek, M.; Prázný, M.; et al. Real-time CGM Is Superior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes: The CORRIDA Randomized Controlled Trial. Diabetes Care 2020, 43, 2744–2750. [Google Scholar] [CrossRef] [PubMed]
- Massa, G.G.; Gys, I.; Bevilacqua, E. Comparison of flash glucose monitoring with real time continuous glucose monitoring in children and adolescents with type 1 diabetes treated with continuous subcutaneous insulin infusion. Diabetes Res. Clin. Pract. 2019, 152, 111–118. [Google Scholar] [CrossRef]
- Babiker, A.; Alammari, N.; Aljuraisi, A.; Alharbi, R.; Alqarni, H.; Masuadi, E.; Alfaraidi, H. The Effectiveness of Insulin Pump Therapy Versus Multiple Daily Injections in Children With Type 1 Diabetes Mellitus in a Specialized Center in Riyadh. Clin. Med. Insights Endocrinol. Diabetes 2022, 15, 11795514221128495. [Google Scholar] [CrossRef]
- Serné, E.H.; Roze, S.; Buompensiere, M.I.; Valentine, W.J.; De Portu, S.; de Valk, H.W. Cost-Effectiveness of Hybrid Closed Loop Insulin Pumps Versus Multiple Daily Injections Plus Intermittently Scanned Glucose Monitoring in People With Type 1 Diabetes in The Netherlands. Adv Ther. 2022, 39, 1844–1856. [Google Scholar] [CrossRef]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef]
- Al Hayek, A.; Al Mashali, M.; Al Dawish, M.A. Evaluation of glycemia risk index and continuous glucose monitoring-derived metrics in type 1 diabetes: A real-world observational study. J. Diabetes Metab. Disord. 2025, 24, 59. [Google Scholar] [CrossRef]
- Al Hayek, A.A.; Robert, A.A.; Al Dawish, M.A. Effectiveness of the freestyle libre 2 flash glucose monitoring system on diabetes-self-management practices and glycemic parameters among patients with type 1 diabetes using insulin pump. Diabetes Metab. Syndr. 2021, 15, 102265. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, V.; Bonfanti, R.; Casertano, A.; De Nitto, E.; Iannilli, A.; Lombardo, F.; Maltoni, G.; Marigliano, M.; Bassi, M.; Minuto, N.; et al. Time In Range in Children with Type 1 Diabetes Using Treatment Strategies Based on Nonautomated Insulin Delivery Systems in the Real World. Diabetes Technol. Ther. 2020, 22, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, H.; Adeleke, K.; Wilmot, E.G.; Folwell, A.; Barnes, D.; Walker, N.; Saunders, S.; Ssemmondo, E.; Walton, C.; Patmore, J.; et al. Clinical features of type 1 diabetes in older adults and the impact of intermittently scanned continuous glucose monitoring: An Association of British Clinical Diabetologists (ABCD) study. Diabetes Obes. Metab. 2024, 26, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Beato-Víbora, P.I.; Gallego-Gamero, F.; Ambrojo-López, A. Real-world outcomes with different technology modalities in type 1 diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
NICE | ISPAD | ADA | |
---|---|---|---|
Preprandial blood glucose (mg/dl) | 70–126 | 70–130 | 90–130 |
Postprandial blood glucose (mg/dl) | 90–162 | 90–180 | |
Glycemia before-bedtime (mg/dl) | 70–126 | 80–140 | 90–150 |
HbA1C (%) | ≤6.5 | <7 | <7.5 |
Variable | Aims |
---|---|
1. Number of days of isCGM | 14 days |
2. Percentage of active isCGM time | >70% |
3. Glucose Mean/Standard Deviation | <154 mg/dl/<29% |
4. Glucose Management Indicator (GMI)/estimated HbA1C | <7% |
5. Glucose variability (CV variation coefficient) (%) | <36% |
6. Time in range or in range rate from 70 to 180 mg/dl (% of time) | >70%/>16 h 48 min |
7. Time over range >180 mg/dl (% of time). Level 1 hyperglycemia | <25%/<6 h |
8. Time over range >250 mg/dl (% of time). Level 2 hyperglycemia | <5%/<1 h 12 min |
9. Time below range <70 mg/dl (% of time). Level 1 hypoglycemia | <4%/<1 h |
10. Time below range <54 mg/dl (% of time). Level 2 hypoglycemia | <1%/<15 min |
MDI (n 155) | CSII (n 36) | p Value | |
---|---|---|---|
Sex | 0.740 | ||
Male | 50.9% | 47.2% | |
Female | 49.9% | 52.8% | |
Age | 11.218 (3.276) | 10.782 (3.392) | 0.323 |
Mean (SD) |
3 Months | 1 Year | |||||
---|---|---|---|---|---|---|
CSII (n = 155) | MDI (n = 36) | p Value | CSII (n = 155) | MDI (n = 36) | p Value | |
TIR 70–180 mg/dl | 54.78% (12.74) | 47.09% (15.46) | 0.017 | 52.76% (11.49) | 46.68% (15.39) | 0.064 |
TIR 70–140 mg/dl | 35.63% (9.68) | 29.27% (11.85) | 0.010 | 34.12% (11.30) | 28.12% (11.40) | 0.018 |
CV (%) | 62.31% (78.37) | 40.58% (7.84) | 0.002 | 43.08% (4.42) | 40.36% (6.41) | 0.020 |
Number of scans | 10.35 (4.73) | 9.64 (5.99) | 0.31 | 10.68 (4.63) | 9.47 (4.94) | 0.26 |
TBR (<70 mg/dl) | 7.38% (3.44) | 5.17% (4.56) | 0.016 | 7.32% (4.38) | 4.6% (4.00) | 0.03 |
Basal | 1 Year | |||||
---|---|---|---|---|---|---|
CSII (n 36) | MDI (n 155) | p Value | CSII (n 36) | MDI (n 155) | p Value | |
HbA1c ≤ 6.5% | 36% | 29% | 0.543 | 35% | 11.5% | 0.013 |
HbA1c 6.5–7% | 27.7% | 25.8% | 40% | 23.1% | ||
HbA1c 7–7.5% | 22.2% | 19.3% | 20% | 35.9% | ||
HbA1c 7.5–8% | 11.1% | 15.4% | 0% | 16.7% | ||
HbA1c > 8% | 3% | 10.5% | 5% | 12.8% |
MDI (n 155) | CSII (n 36) | p Value | |
---|---|---|---|
Number of blood glucose levels before sensor use. Mean (SD) | 6.774 (1.169) | 8.324 (1.435) | <0.001 |
Number of blood glucose levels one year after using the sensor. Mean (SD) | 1.070 (1.736) | 1.044 (1.692) | 0.249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcel-Chacón, R.; Tapia-Ceballos, L.; Ariza-Jimenez, A.-B.; Gómez-Perea, A.; Jiménez-Hinojosa, J.M.; López-Siguero, J.-P.; Leiva-Gea, I. Differences in Metabolic Control Between Different Insulin Use Patterns in Pediatric Patients with Type 1 Diabetes Through Intermittent Glucose Monitoring. Diseases 2025, 13, 254. https://doi.org/10.3390/diseases13080254
Porcel-Chacón R, Tapia-Ceballos L, Ariza-Jimenez A-B, Gómez-Perea A, Jiménez-Hinojosa JM, López-Siguero J-P, Leiva-Gea I. Differences in Metabolic Control Between Different Insulin Use Patterns in Pediatric Patients with Type 1 Diabetes Through Intermittent Glucose Monitoring. Diseases. 2025; 13(8):254. https://doi.org/10.3390/diseases13080254
Chicago/Turabian StylePorcel-Chacón, Rocio, Leopoldo Tapia-Ceballos, Ana-Belen Ariza-Jimenez, Ana Gómez-Perea, José Manuel Jiménez-Hinojosa, Juan-Pedro López-Siguero, and Isabel Leiva-Gea. 2025. "Differences in Metabolic Control Between Different Insulin Use Patterns in Pediatric Patients with Type 1 Diabetes Through Intermittent Glucose Monitoring" Diseases 13, no. 8: 254. https://doi.org/10.3390/diseases13080254
APA StylePorcel-Chacón, R., Tapia-Ceballos, L., Ariza-Jimenez, A.-B., Gómez-Perea, A., Jiménez-Hinojosa, J. M., López-Siguero, J.-P., & Leiva-Gea, I. (2025). Differences in Metabolic Control Between Different Insulin Use Patterns in Pediatric Patients with Type 1 Diabetes Through Intermittent Glucose Monitoring. Diseases, 13(8), 254. https://doi.org/10.3390/diseases13080254