Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Study Limitations
- Although power analysis confirms the adequacy of the sample size for primary endpoint assessment, the interpretation of the results for the subgroups (stratified by monocyte concentration relative to the median) should be performed with caution due to the limited sample size within these strata.
- Carotid artery ultrasound imaging was performed in accordance with the Mannheim consensus guidelines. However, this method is operator-dependent. Currently, there are no universally accepted criteria for defining carotid atherosclerosis progression. Based on a comprehensive literature review, we defined progression as either (1) the development of new atherosclerotic plaque in a previously unaffected arterial segment or (2) an increase in stenosis severity by ≥10%. These criteria were selected to minimize inter-operator variability.
- The currently available therapeutic options for lipoprotein(a) correction remain limited, and the lymphocyte–monocyte ratio lacks widespread clinical application in routine practice. While our findings demonstrate both scientific and potential practical significance, they require further validation before implementation in clinical practice.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dettori, P.; Paliogiannis, P.; Pascale, R.M.; Zinellu, A.; Mangoni, A.A.; Pintus, G. Blood Cell Count Indexes of Systemic Inflammation in Carotid Artery Disease: Current Evidence and Future Perspectives. Curr. Pharm. Des. 2021, 27, 2170–2179. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Dzobo, K.E.; Cupido, A.J.; Mol, B.M.; Stiekema, L.C.A.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.M.; Havik, S.R.; Vaz, F.M.; et al. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef]
- Schnitzler, J.G.; Hoogeveen, R.M.; Ali, L.; Prange, K.H.M.; Waissi, F.; van Weeghel, M.; Bachmann, J.C.; Versloot, M.; Borrelli, M.J.; Yeang, C.; et al. Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circ. Res. 2020, 126, 1346–1359. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, C.; Dewan, A.; Orsoni, A.; Merki, E.; Miller, E.R.; Shin, M.J.; Binder, C.J.; Hörkkö, S.; Krauss, R.M.; Chapman, M.J.; et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 2008, 49, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Pirro, M.; Bianconi, V.; Paciullo, F.; Mannarino, M.R.; Bagaglia, F.; Sahebkar, A. Lipoprotein(a) and inflammation: A dangerous duet leading to endothelial loss of integrity. Pharmacol. Res. 2017, 119, 178–187. [Google Scholar] [CrossRef]
- Kose, N.; Akin, F.; Yildirim, T.; Ergun, G.; Altun, I. The association between the lymphocyte-to-monocyte ratio and coronary artery disease severity in patients with stable coronary artery disease. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2570–2575. [Google Scholar] [PubMed]
- Selvaggio, S.; Abate, A.; Brugaletta, G.; Musso, C.; Di Guardo, M.; Di Guardo, C.; Vicari, E.S.D.; Romano, M.; Luca, S.; Signorelli, S.S. Platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio and monocyte-to-HDL cholesterol ratio as markers of peripheral artery disease in elderly patients. Int. J. Mol. Med. 2020, 46, 1210–1216. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar]
- Brunelli, N.; Altamura, C.; Costa, C.M.; Altavilla, R.; Palazzo, P.; Maggio, P.; Marcosano, M.; Vernieri, F. Carotid Artery Plaque Progression: Proposal of a New Predictive Score and Role of Carotid Intima-Media Thickness. Int. J. Environ. Res. Public Health 2022, 19, 758. [Google Scholar] [CrossRef] [PubMed]
- Afanasieva, O.I.; Ezhov, M.V.; Razova, O.A.; Afanasieva, M.I.; Utkina, E.A.; Pokrovsky, S.N. Apolipoprotein(a) phenotype determines the correlations of lipoprotein(a) and proprotein convertase subtilisin/kexin type 9 levels in patients with potential familial hypercholesterolemia. Atherosclerosis 2018, 277, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Dahlén, G.H.J.L. Incidence of Lp(a) lipoprotein among populations. In Lipoprotein(a); Scanu, A.M., Ed.; Academic Press: New York, NY, USA, 1990; pp. 151–173. [Google Scholar]
- Afanasieva, O.I.; Tyurina, A.V.; Klesareva, E.A.; Arefieva, T.I.; Ezhov, M.V.; Pokrovsky, S.N. Lipoprotein(a), Immune Cells and Cardiovascular Outcomes in Patients with Premature Coronary Heart Disease. J. Pers. Med. 2022, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Zeitouni, M.; Clare, R.M.; Chiswell, K.; Abdulrahim, J.; Shah, N.; Pagidipati, N.P.; Shah, S.H.; Roe, M.T.; Patel, M.R.; Jones, W.S. Risk Factor Burden and Long-Term Prognosis of Patients With Premature Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e017712. [Google Scholar] [CrossRef]
- Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The role of lipids and lipoproteins in atherosclerosis. In Endotext; Feingold, K.R., Ahmed, F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et., al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2019. [Google Scholar]
- Lehti, S.; Nguyen, S.D.; Belevich, I.; Vihinen, H.; Heikkilä, H.M.; Soliymani, R.; Käkelä, R.; Saksi, J.; Jauhiainen, M.; Grabowski, G.A.; et al. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am. J. Pathol. 2018, 188, 525–538. [Google Scholar] [CrossRef]
- van der Laan, A.M.; Hirsch, A.; Robbers, L.F.; Nijveldt, R.; Lommerse, I.; Delewi, R.; van der Vleuten, P.A.; Biemond, B.J.; Zwaginga, J.J.; van der Giessen, W.J.; et al. A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: Monocytes and myocardial infarction. Am. Heart J. 2012, 163, 57–65.e2. [Google Scholar] [CrossRef]
- Sadeghi, F.; Sarkady, F.; Zsóri, K.S.; Szegedi, I.; Orbán-Kálmándi, R.; Székely, E.G.; Vasas, N.; Berényi, E.; Csiba, L.; Bagoly, Z.; et al. High Neutrophil-Lymphocyte Ratio and Low Lymphocyte-Monocyte Ratio Combination after Thrombolysis Is a Potential Predictor of Poor Functional Outcome of Acute Ischemic Stroke. J. Pers. Med. 2022, 12, 1221. [Google Scholar] [CrossRef]
- Afanasieva, O.I.; Tyurina, A.V.; Ezhov, M.V.; Razova, O.A.; Klesareva, E.A.; Pokrovsky, S.N.J.D. Lipoprotein(a) and Low-Molecular-Weight Apo (a) Phenotype as Determinants of New Cardiovascular Events in Patients with Premature Coronary Heart Disease. Diseases 2023, 11, 145. [Google Scholar] [CrossRef]
- Libby, P.; Lichtman, A.H.; Hansson, G.K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans. Immunity 2013, 38, 1092–1104. [Google Scholar] [CrossRef]
- Sabbah, N.; Jaisson, S.; Garnotel, R.; Anglés-Cano, E.; Gillery, P. Small size apolipoprotein (a) isoforms enhance inflammatory and proteolytic potential of collagen-primed monocytes. Lipids Health Dis. 2019, 18, 166. [Google Scholar] [CrossRef]
- Scipione, C.A.; Sayegh, S.E.; Romagnuolo, R.; Tsimikas, S.; Marcovina, S.M.; Boffa, M.B.; Koschinsky, M.L. Mechanistic insights into Lp (a)-induced IL-8 expression: A role for oxidized phospholipid modification of apo (a). J. Lipid Res. 2015, 56, 2273–2285. [Google Scholar] [CrossRef]
- Sotiriou, S.N.; Orlova, V.V.; Al-Fakhri, N.; Ihanus, E.; Economopoulou, M.; Isermann, B.; Bdeir, K.; Nawroth, P.P.; Preissner, K.T.; Gahmberg, C.G.; et al. Lipoprotein (a) in atherosclerotic plaques recruits inflammatory cells through interaction with Mac-1 integrin. FASEB J. 2006, 20, 559–561. [Google Scholar] [CrossRef]
- Schnitzler, J.G.; Poels, K.; Stiekema, L.C.A.; Yeang, C.; Tsimikas, S.; Kroon, J.; Stroes, E.S.G.; Lutgens, E.; Seijkens, T.T.P. Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes. Int. J. Cardiol. 2020, 315, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Arnold, N.; Koenig, W. Inflammation in atherosclerotic cardiovascular disease: From diagnosis to treatment. Eur. J. Clin. Investig. 2025, 55, e70020. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, V.; Tuttolomondo, A.; Pecoraro, R.; Di Raimondo, D.; Vassallo, V.; Pinto, A. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine. Curr. Pharm. Des. 2016, 22, 4658–4668. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Liu, J.; Shan, W.; Zhang, Y.; Han, C.; Wang, R.; Sun, L. Association of lymphocyte-to-monocyte ratio with total coronary plaque burden in patients with coronary artery disease. Coron. Artery Dis. 2020, 31, 650–655. [Google Scholar] [CrossRef]
- Gong, S.; Gao, X.; Xu, F.; Shang, Z.; Li, S.; Chen, W.; Yang, J.; Li, J. Association of lymphocyte to monocyte ratio with severity of coronary artery disease. Medicine 2018, 97, e12813. [Google Scholar] [CrossRef]
Progression of Atherosclerosis | p-Value | ||
---|---|---|---|
Yes n = 70 | No n = 32 | ||
Men | 54 (77) | 24 (75) | 0.8 |
Age, years | 63 ± 9.7 | 59 ± 10.1 | 0.06 |
Age at CHD debut, years | 50.3 ± 10.3 | 53.3 ± 10.8 | 0.2 |
Follow-up, years | 5.5 ± 2.7 | 4.1 ± 2.1 | 0.1 |
Obesity | 34 (49) | 20 (63) | 0.2 |
Hypertension | 56 (80) | 29 (91) | 0.3 |
Blood pressure normalization | 13 (19) | 12 (33) | 0.08 |
Current smoking | 12 (17) | 4 (13) | 0.8 |
Former smoking | 32 (46) | 15 (47) | 1.0 |
Type 2 diabetes mellitus | 21 (30) | 11 (34) | 0.7 |
Statin therapy | 62 (89) | 23 (72) | 0.02 |
LDL-C < 1.4 mmol/L | 9 (13) | 4 (13) | 1.0 |
LDL-Ccorr < 1.4 mmol/L | 28 (40) | 9 (28) | 0.3 |
Parameter | Progression of Carotid Atherosclerosis | p | |
---|---|---|---|
Yes n = 70 | No n = 32 | ||
Leukocytes, 109/L | 7.7 [6.5; 8.8] | 7.8 [5.9; 8.9] | 0.5 |
Lymphocytes, 109/L % | 2.1 [1.6; 2.7] | 2.0 [1.7; 2.6] | 0.8 |
28.2 [24.3; 34.0] | 27.6 [25.2; 33.8] | 1.0 | |
Neutrophils, 109/L % | 4.4 [3.8; 5.5] | 4.8 [3.6; 5.4] | 1 |
61.0 [55.9; 65.1] | 60.2 [56.8; 65.6] | 0.8 | |
Monocytes, 109/L % | 0.55 [0.44; 0.68] | 0.50 [0.38; 0.61] | 0.1 |
7.1 [5.9; 8.7] | 6.5 [5.8; 7.6] | 0.3 | |
Basophils, 109/L % | 0.07 [0.05; 0.100] | 0.06 [0.06; 0.09] | 0.9 |
0.9 [0.6; 1.1] | 0.9 [0.7; 1.1] | 0.2 | |
Eosinophils, 109/L % | 0.14 [0.09; 0.22] | 0.13 [0.10; 0.23] | 1.0 |
1.8 [1.1; 3.4] | 2.0 [1.3; 3.0] | 1.0 | |
Lymphocyte–monocyte ratio | 4.1 [3.0; 4.8] | 4.3 [3.4; 5.6] | 0.4 |
Parameter | At the Debut of CHD | At the Time of Inclusion of Patients | ||
---|---|---|---|---|
Progression | Progression | |||
Yes n = 70 | No n = 32 | Yes n = 70 | No n = 32 | |
TC, mmol/L | 6.3 ± 1.8 | 6.1 ± 1.7 | 4.5 ± 1.3 | 4.5 ± 1.1 |
Triglycerides, mmol/L | 1.5 [1.2–2.2] | 1.5 [1.0–1.8] | 1.6 [1.1–2.2] | 1.6 [1.1–1.8] |
HDL-C, mmol/L | 1.2 ± 0.3 | 1.2 ± 0.3 | 1.1 [1.0–1.36] | 1.1 [1.0–1.4] |
LDL-C, mmol/L | 4.1 ± 1.4 | 3.9 ± 1.4 | 2.4 ± 1.0 | 2.4 ± 0.9 |
LDL-Ccorr, mmol/L | 3.4 ± 1.3 | 3.6 ± 1.3 | 1.8 ± 1.1 | 2.2 ± 0.9 |
Non-HDL-C, mmol/L | 5.15 ± 1.8 | 4.8 ± 1.7 | 3.2 ± 1.2 | 3.2 ± 1.1 |
Lp(a), mg/dL | 70 [19; 118] * | 17 [10; 57] | 69 [18; 116] * | 16 [9; 53] |
Lp(a) ≥ 30 mg/dL | 43 (61) * | 11 (34) | 43 (61) * | 11 (34) |
OR (95% CI) | ||
---|---|---|
LDL-C < 1.4 mmol/L | LDL-C ≥ 1.4 mmol/L | |
Monocytes < 0.54 × 109/L | 1 | 1.1 (0.2–7.5) |
Monocytes ≥ 0.54 × 109/L | 2.0 (0.2–22.0) | 1.9 (0.3–12.7) |
LDL-Ccorr < 1.4 mmol/L | LDL-Ccorr ≥ 1.4 mmol/L | |
Monocytes < 0.54 × 109/L | 1 | 0.6 (0.2–2.2) |
Monocytes ≥ 0.54 × 109/L | 1.9 (0.4–8.8) | 1.3 (0.3–4.7) |
Non-HDL-C < 2.2 mmol/L | Non-HDL-C ≥ 2.2 mmol/L | |
Monocytes < 0.54 × 109/L | 1 | 2.1 (0.6–7.0) |
Monocytes ≥ 0.54 × 109/L | 1.9 (0.5–7.1) | 4.3 (1.1–16.3) * |
TC < 4.0 mmol/L | TC ≥ 4.0 mmol/L | |
Monocytes < 0.54 × 109/L | 1 | 4.4 (1.2–16.0) * |
Monocytes ≥ 0.54 × 109/L | 2.8 (0.8–10.3) | 3.5 (1.0–11.6) * |
Lp(a) < 30 mg/dL | Lp(a) ≥ 30 mg/dL | |
Monocytes < 0.54 × 109/L | 1 | 7.6 (1.9–30.5) * |
Monocytes ≥ 0.54 × 109/L | 4.3 (1.1–16.0) * | 16.8 (3.4–83.0) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyurina, A.V.; Afanasieva, O.I.; Ezhov, M.V.; Klesareva, E.A.; Balakhonova, T.V.; Pokrovsky, S.N. Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease. Diseases 2025, 13, 196. https://doi.org/10.3390/diseases13070196
Tyurina AV, Afanasieva OI, Ezhov MV, Klesareva EA, Balakhonova TV, Pokrovsky SN. Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease. Diseases. 2025; 13(7):196. https://doi.org/10.3390/diseases13070196
Chicago/Turabian StyleTyurina, Alexandra V., Olga I. Afanasieva, Marat V. Ezhov, Elena A. Klesareva, Tatiana V. Balakhonova, and Sergei N. Pokrovsky. 2025. "Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease" Diseases 13, no. 7: 196. https://doi.org/10.3390/diseases13070196
APA StyleTyurina, A. V., Afanasieva, O. I., Ezhov, M. V., Klesareva, E. A., Balakhonova, T. V., & Pokrovsky, S. N. (2025). Lipoprotein(a) and Blood Monocytes as Factors for Progression of Carotid Atherosclerosis in Patients with Premature Coronary Heart Disease. Diseases, 13(7), 196. https://doi.org/10.3390/diseases13070196