Atherogenic Risk in Shift Versus Non-Shift Workers: Associations with Sociodemographic and Lifestyle Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- Age range: 18–69 years.
- Active employment under a contractual agreement with one of the participating companies.
- Informed consent to participate in the study.
- Approval of the use of their medical data for epidemiological research.
2.2. Variable Assessment
- Data on height, weight, waist circumference, and blood pressure (systolic and diastolic) were collected.
- The analytical measurements are as follows:
- Blood glucose and lipid profile assessments were performed.
- To minimize bias, standardized protocols for the measurement and assessment of all variables were rigorously applied.
2.2.1. Anthropometric Measurements
2.2.2. Clinical Measurements
2.2.3. Analytical Measurements
2.2.4. Atherogenic Risk Assessment
- Total cholesterol/HDL cholesterol (Castelli index).
- LDL cholesterol/HDL cholesterol (Kannel index).
- Triglycerides/HDL cholesterol.
- Castelli index: Low (<5% for men); moderate (4.5–7% for women, 5–9% for men); high (>7% for women, >9% for men).
- Kannel index: High risk > 3%.
- Triglyceride/HDL ratio: High risk > 3%.
- Additional sociodemographic variables are as follows:
- Sex: Classified as male or female.
- Age: Calculated as the difference between the date of medical examination and date of birth.
- Education level: Categorized into primary, secondary, and university-level studies.
- Socioeconomic status: Determined using the Spanish Society of Epidemiology guidelines based on the following occupational classifications in the 2011 National Classification of Occupations (CNO-11) [35]:
- ○
- Class I: University-educated professionals, managers, athletes, and artists.
- ○
- Class II: Intermediate professionals, skilled self-employed workers.
- ○
- Class III: Workers with limited qualifications.
- Smoking status: Defined as smoking any tobacco product within the past 30 days or abstaining from smoking for less than one year.
- Adherence to the Mediterranean diet: Evaluated via a 14-item questionnaire, with scores ≥9 indicating high adherence [36].
- Physical activity: Assessed using the International Physical Activity Questionnaire (IPAQ), which measures activity levels over the previous week [37].
- Alcohol consumption: Quantified in standard drinking units (SDUs), with one SDU equaling 10 g of pure alcohol (equivalent to 100 mL wine, 100 mL champagne, 200 mL beer, or 25 mL spirits). Excessive consumption was defined as >35 SDUs/week for men and >20 SDUs/week for women [38].
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Degenfellner, J.; Schernhammer, E. Shift work tolerance. Occup. Med. 2021, 71, 404–413. [Google Scholar] [CrossRef] [PubMed]
- D’Ettorre, G.; Pellicani, V.; Greco, M.; Mazzotta, M.; Vullo, A. Assessing and managing the shift work disorder in healthcare workers. Med. Lav. 2018, 109, 144–150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McNamara, K.A.; Robbins, W.A. Shift Work and Sleep Disturbance in the Oil Industry. Workplace Health Saf. 2023, 71, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, E.; Cirrincione, L.; Mazzucco, W.; Scorciapino, A.; Catalano, C.; Ramaci, T.; Ledda, C.; Plescia, F. Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. Int. J. Environ. Res. Public Health 2020, 17, 562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iskra-Golec, I.; Smith, L.; Wilczek-Rużyczka, E.; Siemiginowska, P.; Wątroba, J. Shift schedule, work-family relationships, marital communication, job satisfaction and health among transport service shift workers. Int. J. Occup. Med. Environ. Health 2017, 30, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Reinganum, M.I.; Thomas, J. Shift Work Hazards. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Shift Work. Available online: https://www.ilo.org/publications/shift-work (accessed on 27 March 2025).
- Gupta, A.; Roth, T.; Roehrs, T.; Drake, C.L. Shift Work: A Perspective on Shift Work Disorder-Is Prevention the Answer? J. Clin. Sleep. Med. 2019, 15, 1863–1865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meléndez-Fernández, O.H.; Liu, J.A.; Nelson, R.J. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int. J. Mol. Sci. 2023, 24, 3392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaput, J.-P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choshen-Hillel, S.; Ishqer, A.; Mahameed, F.; Reiter, J.; Gozal, D.; Gileles-Hillel, A.; Berger, I. Acute and chronic sleep deprivation in residents: Cognition and stress biomarkers. Med. Educ. 2021, 55, 174–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Burton, N.W.; Kolbe-Alexander, T.L. Shift Work and Poor Mental Health: A Meta-Analysis of Longitudinal Studies. Am. J. Public Health 2019, 109, e13–e20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, K.L.; Danyluk, A.B.; Munir, S.S.; Covassin, N. Shift Work and Obesity Risk-Are There Sex Differences? Curr. Diab. Rep. 2022, 22, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Lunde, L.-K.; Skare, Ø.; Mamen, A.; Sirnes, P.A.; Aass, H.C.D.; Øvstebø, R.; Goffeng, E.; Matre, D.; Nielsen, P.; Heglum, H.S.A.; et al. Cardiovascular Health Effects of Shift Work with Long Working Hours and Night Shifts: Study Protocol for a Three-Year Prospective Follow-Up Study on Industrial Workers. Int. J. Environ. Res. Public Health 2020, 17, 589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanki, M.; Nath, A.P.; Xiang, R.; Yiallourou, S.; Fuller, P.J.; Cole, T.J.; Cánovas, R.; Young, M.J. Poor sleep and shift work associate with increased blood pressure and inflammation in UK Biobank participants. Nat. Commun. 2023, 14, 7096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, N.; Sun, Y.; Zhang, H.; Wang, B.; Chen, C.; Wang, Y.; Chen, J.; Tan, X.; Zhang, J.; Xia, F.; et al. Long-term night shift work is associated with the risk of atrial fibrillation and coronary heart disease. Eur. Heart J. 2021, 42, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Weng, Z.; Liang, J.; Liu, Q.; Zhang, X.; Xu, J.; Li, Q.; Zhou, Y.; Gu, A. Shift Work, Genetic Factors, and the Risk of Heart Failure: A Prospective Study of the UK Biobank. Mayo Clin. Proc. 2022, 97, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand. J. Work Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Sarapultsev, A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int. J. Mol. Sci. 2023, 24, 7910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García Agudo, S.; González Casquero, R.; Vallejos, D.; Eugercios Escribano, H.; Roberto Martín, J.A.; Gil Llinas, M. Relevancia de los índices aterogénicos como predictores precoces de riesgo cardiovascular en el contexto laboral de los profesionales sanitarios. Acad. J. Health Sci. 2024, 39, 15–22. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Determination of cardiometabolic risk scales in 7.962 hotel receptionists. Acad. J. Health Sci. 2024, 39, 113–122. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Estimation of cardiometabolic risk in 25.030 Spanish kitchen workers. Acad. J. Health Sci. 2023, 38, 101–110. [Google Scholar] [CrossRef]
- Abu Farha, R.; Alefishat, E. Shift Work and the Risk of Cardiovascular Diseases and Metabolic Syndrome Among Jordanian Employees. Oman Med. J. 2018, 33, 235–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chalfant, J.M.; Howatt, D.A.; Johnson, V.B.; Tannock, L.R.; Daugherty, A.; Pendergast, J.S. Chronic environmental circadian disruption increases atherosclerosis and dyslipidemia in female, but not male, ApolipoproteinE-deficient mice. Front. Physiol. 2023, 14, 1167858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elbadawi, N.S.; Sobih, M.H.; Soliman, M.Z.; Mostafa, M.A.; Kazibwe, R.; Soliman, E.Z. Association between Atherogenic Dyslipidemia and Subclinical Myocardial Injury in the General Population. J. Clin. Med. 2024, 13, 4946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoshino, T.; Ishizuka, K.; Toi, S.; Mizuno, T.; Nishimura, A.; Takahashi, S.; Wako, S.; Kitagawa, K. Atherogenic Dyslipidemia and Residual Vascular Risk After Stroke or Transient Ischemic Attack. Stroke 2022, 53, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.A.; Chen, I.L.; Chen, C.Y.; Torng, P.L.; Su, T.C. Association between Wakeup Frequency at Night and Atherogenic Dyslipidemia: Evidence for Sex Differences. J. Atheroscler. Thromb. 2023, 30, 87–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosolová, H.; Nussbaumerová, B.; Mayer, O., Jr.; Cífková, R.; Bruthans, J. Success and failure of cardiovascular disease prevention in Czech Republic over the past 30 years. Czech part of the EUROASPIRE I-IV surveys. Physiol. Res. 2017, 66 (Suppl. S1), S77–S84. [Google Scholar] [CrossRef] [PubMed]
- Petri, C.; Campa, F.; Holway, F.; Pengue, L.; Arrones, L.S. ISAK-Based Anthropometric Standards for Elite Male and Female Soccer Players. Sports 2024, 12, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different overweight and obesity scales in 418,343 spanish people. Acad. J. Health Sci. 2023, 38, 111–117. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Cardiometabolic risk assessment in 28300 spanish waiters. Acad. J. Health Sci. 2023, 39, 16–24. [Google Scholar] [CrossRef]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Relationship between atherogenic dyslipidemia and lipid triad with scales that assess non alcoholic liver disease in 418,343 spanish workers. AJHSences 2023, 38, 66–73. [Google Scholar] [CrossRef]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; del Grupo de Determinantes Sociales de la Sociedad Española de Epidemiología. Propuestas de clase social neoweberiana y neomarxista a partir de la Clasificación Nacional de Ocupaciones. Gac. Sanit. 2013, 27, 263–272. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; Mascaró, C.M.; Ugarriza, L.; Casares, M.; Llompart, I.; Abete, I.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A.; Bouzas, C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients. 2022, 14, 3186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Aldao, D.; Diz, J.C.; Varela, S.; Ayán, C. Análisis de la validez convergente de la Versión reducida en español del cuestionario de actividad física en el tiempo libre de Minnesota (VREM) y de la versión española del Cuestionario internacional de actividad física en personas mayores (IPAQ-E). An. Sist. Sanit. Navar. 2019, 42, 147–157. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Paublini Oliveira, H.; Tárraga López, P.J.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Tyrrell, D.J.; Wragg, K.M.; Chen, J.; Wang, H.; Song, J.; Blin, M.G.; Bolding, C.; Vardaman, D.; Giles, K.; Tidwell, H.; et al. Clonally expanded memory CD8+ T cells accumulate in atherosclerotic plaques and are pro-atherogenic in aged mice. Nat. Aging. 2023, 3, 1576–1590, Erratum in Nat. Aging. 2024, 4, 1166. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019, 18, e13048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grandys, M.; Majerczak, J.; Zapart-Bukowska, J.; Duda, K.; Kulpa, J.K.; Zoladz, J.A. Lowered Serum Testosterone Concentration Is Associated With Enhanced Inflammation and Worsened Lipid Profile in Men. Front. Endocrinol. 2021, 12, 735638. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ndzie Noah, M.L.; Adzika, G.K.; Mprah, R.; Adekunle, A.O.; Adu-Amankwaah, J.; Sun, H. Sex-Gender Disparities in Cardiovascular Diseases: The Effects of Estrogen on eNOS, Lipid Profile, and NFATs During Catecholamine Stress. Front. Cardiovasc. Med. 2021, 8, 639946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marlatt, K.L.; Pitynski-Miller, D.R.; Gavin, K.M.; Moreau, K.L.; Melanson, E.L.; Santoro, N.; Kohrt, W.M. Body composition and cardiometabolic health across the menopause transition. Obesity 2022, 30, 14–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krakowiak, J.; Raczkiewicz, D.; Wdowiak, A.; Cichońska, D.; Bojar, I. Atherogenic lipid profile and health behaviours in women post-menopause working in agriculture. Ann. Agric. Environ. Med. 2019, 26, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Farias, M.; Fos-Domenech, J.; Serra, D.; Herrero, L.; Sánchez-Infantes, D. White adipose tissue dysfunction in obesity and aging. Biochem. Pharmacol. 2021, 192, 114723. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Patel, H.; Kyung, S.; Fugar, S.; Goldberg, A.; Madan, N.; Williams, K.A. Hypertension in older adults: Assessment, management, and challenges. Clin. Cardiol. 2020, 43, 99–107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santo, L.R.E.; Faria, T.O.; Silva, C.S.O.; Xavier, L.A.; Reis, V.C.; Mota, G.A.; Silveira, M.F.; Mill, J.G.; Baldo, M.P. Socioeconomic status and education level are associated with dyslipidemia in adults not taking lipid-lowering medication: A population-based study. Int. Health 2022, 14, 346–353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front. Public Health 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paudel, S.; Ahmadi, M.; Phongsavan, P.; Hamer, M.; Stamatakis, E. Do associations of physical activity and sedentary behaviour with cardiovascular disease and mortality differ across socioeconomic groups? A prospective analysis of device-measured and self-reported UK Biobank data. Br. J. Sports Med. 2023, 57, 921–929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cano-Ibañez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet quality and nutrient density in subjects with metabolic syndrome: Influence of socioeconomic status and lifestyle factors. A cross-sectional assessment in the PREDIMED-Plus study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ouyang, F.; He, J.; Qiu, D.; Luo, D.; Xiao, S. Associations of Socioeconomic Status and Healthy Lifestyle With Incidence of Dyslipidemia: A Prospective Chinese Governmental Employee Cohort Study. Front. Public Health 2022, 10, 878126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Influence of sociodemographic variables and tobacco consumption on the prevalence of atherogenic dyslipidemia and lipid triad in 418.343 spanish workers. Acad. J. Health Sci. 2023, 38, 84–89. [Google Scholar] [CrossRef]
- Nunes, S.O.V.; de Melo, L.G.P.; de Castro, M.R.P.; Barbosa, D.S.; Vargas, H.O.; Berk, M.; Maes, M. Atherogenic index of plasma and atherogenic coefficient are increased in major depression and bipolar disorder, especially when comorbid with tobacco use disorder. J Affect Disord. 2015, 172, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Kuntic, M.; Keaney, J.F.; Deanfield, J.E.; Daiber, A. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur. Heart J. 2020, 41, 4057–4070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-González, Á.A.; Albaladejo Blanco, M.; Vidal Ribas, C.; Tomás-Gil, P.; Riutord Sbert, P.; Ramírez-Manent, J.I. Determination of the Level of Cardiovascular Risk in 172,282 Spanish Working Women. Diagnostics 2023, 13, 2734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bortolasci, C.C.; Vargas, H.O.; Nunes, S.O.V.; de Melo, L.G.P.; de Castro, M.R.P.; Moreira, E.G.; Dodd, S.; Barbosa, D.S.; Berk, M.; Maes, M. Factors influencing insulin resistance in relation to atherogenicity in mood disorders, the metabolic syndrome and tobacco use disorder. J. Affect. Disord. 2015, 179, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Rosoff, D.B.; Charlet, K.; Jung, J.; Lee, J.; Muench, C.; Luo, A.; Longley, M.; Lohoff, F.W. Lipid profile dysregulation predicts alcohol withdrawal symptom severity in individuals with alcohol use disorder. Alcohol 2020, 86, 93–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Hur, J.; Cao, Y.; Song, M.; Smith-Warner, S.A.; Liang, L.; Mukamal, K.J.; Rimm, E.B.; Giovannucci, E.L. Moderate alcohol consumption, types of beverages and drinking pattern with cardiometabolic biomarkers in three cohorts of US men and women. Eur. J. Epidemiol. 2023, 38, 1185–1196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgescu, O.S.; Martin, L.; Târtea, G.C.; Rotaru-Zavaleanu, A.-D.; Dinescu, S.N.; Vasile, R.C.; Gresita, A.; Gheorman, V.; Aldea, M.; Dinescu, V.C. Alcohol Consumption and Cardiovascular Disease: A Narrative Review of Evolving Perspectives and Long-Term Implications. Life 2024, 14, 1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am. J. Med. 2022, 135, 1213–1230.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef] [PubMed]
- Oppert, J.M.; Ciangura, C.; Bellicha, A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev. Endocr. Metab. Disord. 2023, 24, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Saco-Ledo, G.; Valenzuela, P.L.; Ruiz-Hurtado, G.; Ruilope, L.M.; Lucia, A. Exercise Reduces Ambulatory Blood Pressure in Patients With Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e018487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arazi, H.; Eghbali, E.; Suzuki, K. Creatine Supplementation, Physical Exercise and Oxidative Stress Markers: A Review of the Mechanisms and Effectiveness. Nutrients 2021, 13, 869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ekblom-Bak, E.; Börjesson, M.; Ekblom, Ö.; Angerås, O.; Bergman, F.; Berntsson, C.; Carlhäll, C.-J.; Engström, G.; Engvall, J.; Fagman, E.; et al. Accelerometer derived physical activity and subclinical coronary and carotid atherosclerosis: Cross-sectional analyses in 22703 middle-aged men and women in the SCAPIS study. BMJ Open 2023, 13, e073380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Busquets-Cortés, C.; López, C.; Paublini, H.; Arroyo Bote, S.; López-González, Á.A.; Ramírez-Manent, J.I. Relationship between Atherogenic Dyslipidaemia and Lipid Triad with Different Scales of Overweight and Obesity in 418,343 Spanish Workers. J. Nutr. Metab. 2022, 2022, 9946255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Bo’, C.; Perna, S.; Allehdan, S.; Rafique, A.; Saad, S.; AlGhareeb, F.; Rondanelli, M.; Tayyem, R.F.; Marino, M.; Martini, D.; et al. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023, 15, 2250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez-Garcia, E.; Ruiz-Nava, J.; Santamaria-Fernandez, S.; Fernandez-Garcia, J.C.; Vargas-Candela, A.; Yahyaoui, R.; Tinahones, F.J.; Bernal-Lopez, M.R.; Gomez-Huelgas, R. Implications of the Mediterranean diet and physical exercise on the lipid profile of metabolically healthy obese women as measured by nuclear magnetic resonance spectroscopy (1H NMR). Chem. Phys. Lipids. 2018, 213, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Cinelli, G.; Dri, M.; Gualtieri, P.; Attinà, A.; Leggeri, C.; Cenname, G.; Esposito, E.; Pujia, A.; Chiricolo, G.; et al. Mediterranean Personalized Diet Combined with Physical Activity Therapy for the Prevention of Cardiovascular Diseases in Italian Women. Nutrients 2020, 12, 3456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.-H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tosoratto, J.; Tárraga López, P.J.; López-González, Á.A.; Vallejos, D.; Martínez-Almoyna Rifá, E.; Ramirez-Manent, J.I. Association of Shift Work, Sociodemographic Variables and Healthy Habits with Obesity Scales. Life 2024, 14, 1503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salah, R.A.; Malak, M.Z.; Bani Salameh, A.K. Relationship between shift-work and life-style behaviors among emergency department nurses in Jordan. Arch. Environ. Occup. Health 2022, 77, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Li, Y.; Zong, G.; Guo, Y.; Li, J.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Schernhammer, E.S.; Bhupathiraju, S.N. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: Results from two large US cohorts of female nurses. BMJ 2018, 363, k4641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, A.; Turkistani, A.; Luenam, K.; Yaqub, S.; Ananias, P.; Jose, A.M.; Melo, J.P.; Mohammed, L. Is Shift Work Sleep Disorder a Risk Factor for Metabolic Syndrome and Its Components? A Systematic Review of Cross-Sectional Studies. Metab. Syndr. Relat. Disord. 2022, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tucker, P.; Härmä, M.; Ojajärvi, A.; Kivimäki, M.; Leineweber, C.; Oksanen, T.; Salo, P.; Vahtera, J. Associations between shift work and use of prescribed medications for the treatment of hypertension, diabetes, and dyslipidemia: A prospective cohort study. Scand. J. Work Environ. Health 2019, 45, 465–474. [Google Scholar] [CrossRef] [PubMed]
Non-Shift Work | Shift Work | Non-Shift Work | Shift Work | |||
---|---|---|---|---|---|---|
Men n = 14,226 | Men n = 17,527 | Women n = 10,019 | Women n = 11,281 | |||
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 41.2 (10.9) | 41.3 (10.5) | 0.039 | 40.0 (10.5) | 40.2 (10.3) | 0.038 |
Height (cm) | 173.8 (7.1) | 173.7 (7.1) | 0.219 | 161.0 (6.6) | 161.2 (6.6) | 0.075 |
Weight (kg) | 81.5 (14.6) | 84.5 (14.4) | <0.001 | 63.6 (12.8) | 68.6 (12.8) | <0.001 |
Waist (cm) | 89.5 (10.5) | 90.8 (10.2) | <0.001 | 74.7 (9.7) | 77.6 (10.9) | <0.001 |
Systolic BP (mmHg) | 125.3 (15.7) | 126.9 (16.0) | <0.001 | 114.8 (15.5) | 116.1 (15.6) | <0.001 |
Diastolic BP (mmHg) | 75.9 (10.7) | 77.2 (11.0) | <0.001 | 70.3 (10.6) | 71.6 (10.8) | <0.001 |
Total cholesterol (mg(dL) | 197.3 (38.4) | 201.2 (38.6) | <0.001 | 192.3 (36.6) | 196.9 (37.3) | <0.001 |
HDL cholesterol (mg/dL) | 50.4 (7.8) | 49.7 (7.7) | <0.001 | 55.0 (9.1) | 54.5 (9.2) | <0.001 |
LDL cholesterol (mg/dL) | 120.9 (37.3) | 123.8 (37.6) | <0.001 | 119.6 (36.9) | 123.5 (37.5) | <0.001 |
Triglycerides (mg/dL) | 129.3 (93.7) | 136.8 (95.5) | <0.001 | 87.5 (46.8) | 93.6 (51.7) | <0.001 |
Glucose (mg/dL) | 91.9 (26.4) | 93.3 (26.4) | <0.001 | 86.6 (19.0) | 87.8 (17.6) | <0.001 |
% | % | p-Value | % | % | p-Value | |
18–29 years | 16.4 | 13.8 | <0.001 | 18.6 | 17.5 | 0.041 |
30–39 years | 29.3 | 29.8 | 31.0 | 31.3 | ||
40–49 years | 29.0 | 31.3 | 29.6 | 30.6 | ||
50–59 years | 20.9 | 20.9 | 17.9 | 17.5 | ||
60–69 years | 4.4 | 4.2 | 2.9 | 3.1 | ||
Social class I | 6.8 | 8.2 | <0.001 | 11.6 | 14.6 | <0.001 |
Social class II | 20.7 | 26.6 | 27.6 | 37.0 | ||
Social class III | 72.5 | 65.2 | 60.8 | 48.4 | ||
Elementary school | 69.5 | 63.8 | <0.001 | 53.7 | 43.2 | <0.001 |
High school | 24.4 | 28.9 | 36.2 | 44.2 | ||
University | 6.1 | 7.3 | 10.1 | 12.6 | ||
Non-smokers | 67.9 | 66.0 | <0.001 | 66.3 | 69.1 | <0.001 |
Smokers | 32.1 | 34.0 | 33.7 | 30.9 | ||
No physical activity | 55.2 | 67.9 | <0.001 | 40.8 | 60.7 | <0.001 |
Physical activity | 44.8 | 32.1 | 59.2 | 39.3 | ||
No Mediterranean diet | 58.2 | 71.5 | 42.0 | 63.1 | ||
Mediterranean diet | 41.8 | 28.5 | 58.0 | 36.9 | ||
No alcohol consumption | 70.4 | 63.2 | <0.001 | 85.3 | 83.5 | <0.001 |
Alcohol consumption | 29.6 | 36.8 | 14.7 | 16.5 |
Non-Shift Work | Shift Work | |||||||
---|---|---|---|---|---|---|---|---|
TC/HDL-c | LDL-c/HDL-c | log TG/HDL-c | TC/HDL-c | LDL-c/HDL-c | log TG/HDL-c | |||
Men | n | Mean (SD) | Mean (SD) | Mean (SD) | n | Mean (SD) | Mean (SD) | Mean (SD) |
18–29 years | 2329 | 3.2 (0.8) | 1.8 (0.7) | 0.17 (0.22) | 2425 | 3.3 (1.0) | 1.9 (0.8) | 0.22 (0.24) |
30–39 years | 4174 | 3.7 (1.0) | 2.3 (0.9) | 0.27 (0.25) | 5228 | 3.9 (1.1) | 2.4 (0.9) | 0.33 (0.26) |
40–49 years | 4130 | 4.2 (1.2) | 2.6 (1.0) | 0.38 (0.28) | 5477 | 4.4 (1.2) | 2.8 (1.0) | 0.41 (0.27) |
50–59 years | 2972 | 4.5 (1.2) | 2.9 (1.1) | 0.45 (0.26) | 3666 | 4.6 (1.2) | 3.0 (1.0) | 0.46 (0.26) |
60–69 years | 621 | 4.6 (1.2) | 3.0 (1.1) | 0.49 (0.20) | 731 | 4.8 (1.3) | 3.1 (1.1) | 0.50 (0.21) |
Social class I | 972 | 4.0 (1.1) | 2.5 (0.9) | 0.32 (0.26) | 1438 | 4.1 (1.2) | 2.5 (0.9) | 0.35 (0.25) |
Social class II | 2942 | 4.1 (1.1) | 2.6 (0.9) | 0.34 (0.26) | 4669 | 4.2 (1.1) | 2.7 (1.0) | 0.37 (0.26) |
Social class III | 10,312 | 4.2 (1.2) | 2.6 (1.0) | 0.35 (0.28) | 11,420 | 4.3 (1.3) | 2.7 (1.0) | 0.38 (0.28) |
Elementary school | 9874 | 4.2 (1.1) | 2.6 (0.9) | 0.35 (0.25) | 11,169 | 4.4 (1.2) | 2.7 (1.0) | 0.38 (0.27) |
High school | 3478 | 4.1 (1.2) | 2.5 (1.0) | 0.34 (0.25) | 5070 | 4.2 (1.2) | 2.6 (1.0) | 0.36 (0.25) |
University | 874 | 4.0 (1.2) | 2.4 (1.0) | 0.32 (0.26) | 1288 | 4.1 (1.2) | 2.5 (1.0) | 0.34 (0.24) |
Non-smokers | 9656 | 4.0 (1.1) | 2.4 (1.1) | 0.33 (0.27) | 11,567 | 4.1 (1.1) | 2.5 (1.0) | 0.35 (0.26) |
Smokers | 4570 | 4.1 (1.3) | 2.5 (1.0) | 0.35 (0.29) | 5960 | 4.3 (1.4) | 2.6 (1.0) | 0.41 (0.29) |
No physical activity | 7851 | 4.5 (1.3) | 2.8 (1.1) | 0.40 (0.26) | 11,899 | 4.9 (1.3) | 3.0 (1.1) | 0.47 (0.26) |
Physical activity | 6375 | 3.4 (0.7) | 2.0 (0.7) | 0.17 (0.17) | 5628 | 3.5 (0.7) | 2.1 (0.7) | 0.18 (0.17) |
No Mediterranean diet | 8275 | 4.4 (1.3) | 2.6 (1.1) | 0.40 (0.27) | 12,536 | 4.7 (1.3) | 2.8 (1.1) | 0.45 (0.27) |
Mediterranean diet | 5951 | 3.4 (0.7) | 2.1 (0.7) | 0.17 (0.18) | 4991 | 3.4 (0.7) | 2.1 (0.7) | 0.18 (0.17) |
No alcohol consumption | 8996 | 3.7 (1.1) | 2.3 (0.9) | 0.25 (0.24) | 12,332 | 3.8 (1.2) | 2.4 (1.0) | 0.29 (0.25) |
Alcohol consumption | 5230 | 4.5 (1.3) | 2.7 (1.1) | 0.43 (0.27) | 5195 | 4.8 (1.3) | 2.9 (1.1) | 0.50 (0.27) |
Women | n | Mean (SD) | Mean (SD) | Mean (SD) | n | Mean (SD) | Mean (SD) | Mean (SD) |
18–29 years | 1869 | 3.1 (0.8) | 1.8 (0.7) | 0.09 (0.19) | 1975 | 3.2 (0.9) | 1.9 (0.8) | 0.13 (0.20) |
30–39 years | 3103 | 3.4 (0.9) | 2.1 (0.9) | 0.12 (0.19) | 3530 | 3.5 (1.0) | 2.2 (0.9) | 0.16 (0.21) |
40–49 years | 2965 | 3.7 (1.0) | 2.4 (0.9) | 0.18 (0.21) | 3450 | 3.9 (1.0) | 2.5 (0.9) | 0.20 (0.22) |
50–59 years | 1791 | 4.3 (1.1) | 2.8 (1.0) | 0.26 (0.22) | 1974 | 4.3 (1.1) | 2.9 (1.0) | 0.28 (0.23) |
60–69 years | 291 | 4.4 (1.1) | 2.9 (1.1) | 0.32 (0.20) | 352 | 4.5 (1.1) | 3.0 (1.1) | 0.33 (0.22) |
Social class I | 1164 | 3.2 (1.0) | 2.0 (0.9) | 0.11 (0.19) | 1644 | 3.4 (1.0) | 2.1 (0.9) | 0.14 (0.20) |
Social class II | 2763 | 3.5 (1.0) | 2.2 (0.9) | 0.14 (0.21) | 4175 | 3.7 (1.0) | 2.4 (0.9) | 0.18 (0.22) |
Social class III | 6092 | 3.7 (1.1) | 2.4 (1.0) | 0.18 (0.22) | 5462 | 3.9 (1.1) | 2.5 (1.0) | 0.22 (0.22) |
Elementary school | 5377 | 3.7 (1.1) | 2.4 (1.0) | 0.18 (0.22) | 4871 | 3.9 (1.1) | 2.5 (1.0) | 0.22 (0.22) |
High school | 3628 | 3.5 (1.0) | 2.2 (0.9) | 0.15 (0.21) | 4984 | 3.7 (1.1) | 2.3 (1.0) | 0.18 (0.22) |
University | 1014 | 3.2 (0.9) | 1.9 (0.9) | 0.11 (0.19) | 1426 | 3.3 (1.0) | 2.0 (0.9) | 0.14 (0.20) |
Non-smokers | 6638 | 3.5 (1.1) | 2.2 (1.0) | 0.16 (0.22) | 7794 | 3.6 (1.1) | 2.3 (1.0) | 0.18 (0.22) |
Smokers | 3381 | 3.6 (1.0) | 2.3 (0.9) | 0.18 (0.21) | 3487 | 3.8 (1.1) | 2.4 (1.0) | 0.21 (0.22) |
No physical activity | 4090 | 4.1 (1.1) | 2.6 (1.1) | 0.27 (0.22) | 6842 | 4.4 (1.1) | 2.9 (1.0) | 0.29 (0.22) |
Physical activity | 5929 | 3.2 (0.7) | 1.9 (0.7) | 0.07 (0.15) | 4439 | 3.2 (0.7) | 1.9 (0.7) | 0.07 (0.15) |
No Mediterranean diet | 4206 | 4.0 (1.1) | 2.6 (1.0) | 0.25 (0.22) | 7115 | 4.2 (1.2) | 2.8 (1.1) | 0.27 (0.23) |
Mediterranean diet | 5813 | 3.2 (0.7) | 1.9 (0.7) | 0.08 (0.16) | 4166 | 3.2 (0.7) | 1.9 (0.7) | 0.09 (0.16) |
No alcohol consumption | 8361 | 3.5 (1.0) | 2.2 (0.9) | 0.13 (0.19) | 9619 | 3.6 (1.1) | 2.3 (1.0) | 0.15 (0.21) |
Alcohol consumption | 1658 | 4.2 (1.2) | 2.7 (1.0) | 0.33 (0.2) | 1662 | 4.4 (1.1) | 3.0 (1.0) | 0.38 (0.24) |
Non-Shift Work | Shift Work | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AD | TC/HDL-c High | LDL-c/HDL-c High | TG/HDL-c High | AD | TC/HDL-c High | LDL-c/HDL-c High | TG/HDL-c High | |||
Men | n | % | % | % | % | n | % | % | % | % |
18–29 years | 2329 | 1.1 | 2.8 | 2.7 | 8.5 | 2425 | 2.5 | 5.1 | 4.5 | 12.9 |
30–39 years | 4174 | 2.9 | 9.1 | 8.2 | 17.9 | 5228 | 5.3 | 12.7 | 10.7 | 24.8 |
40–49 years | 4130 | 7.0 | 20.8 | 16.8 | 33.7 | 5477 | 7.7 | 22.6 | 18.1 | 35.6 |
50–59 years | 2972 | 11.0 | 30.1 | 24.6 | 40.7 | 3666 | 11.4 | 32.3 | 26.5 | 41.2 |
60–69 years | 621 | 11.3 | 31.1 | 26.7 | 42.5 | 731 | 12.0 | 33.5 | 27.8 | 43.5 |
Social class I | 972 | 5.1 | 16.2 | 13.9 | 22.0 | 1438 | 6.4 | 19.0 | 15.6 | 36.8 |
Social class II | 2942 | 5.8 | 17.4 | 14.0 | 27.0 | 4669 | 6.7 | 20.2 | 16.5 | 30.6 |
Social class III | 10,312 | 5.9 | 17.7 | 14.9 | 27.3 | 11,420 | 7.5 | 20.7 | 17.8 | 31.2 |
Elementary school | 9874 | 6.7 | 18.4 | 16.2 | 29.3 | 11,169 | 7.3. | 21.6 | 19.2 | 31.9 |
High school | 3478 | 5.7 | 17.5 | 14.7 | 26.0 | 5070 | 7.1 | 20.7 | 16.7 | 30.8 |
University | 874 | 5.5 | 16.2 | 13.6 | 23.6 | 1288 | 6.7 | 18.7 | 15.3 | 26.9 |
Non-smokers | 9656 | 4.3 | 16.5 | 13.9 | 26.4 | 11,567 | 4.4 | 18.4 | 15.0 | 28.6 |
Smokers | 4570 | 9.1 | 16.9 | 14.1 | 26.7 | 5960 | 12.6 | 21.7 | 18.0 | 34.8 |
No physical activity | 7851 | 10.6 | 29.6 | 22.9 | 44.4 | 11,899 | 11.2 | 28.1 | 24.1 | 47.0 |
Physical activity | 6375 | 0.8 | 1.9 | 1.3 | 1.6 | 5628 | 1.3 | 2.2 | 1.5 | 1.8 |
No Mediterranean diet | 8275 | 10.0 | 27.5 | 22.6 | 41.7 | 12,536 | 11.1 | 28.9 | 23.1 | 43.9 |
Mediterranean diet | 5951 | 1.2 | 2.2 | 2.1 | 2.7 | 4991 | 1.4 | 2.0 | 2.2 | 3.0 |
No alcohol consumption | 8996 | 2.6 | 5.4 | 9.3 | 14.6 | 12,332 | 3.1 | 6.2 | 14.1 | 15.1 |
Alcohol consumption | 5230 | 11.3 | 20.3 | 18.4 | 27.4 | 5195 | 12.7 | 25.5 | 20.7 | 29.9 |
Global men | 14,226 | 5.8 | 16.8 | 14.0 | 26.7 | 17,527 | 7.1 | 19.5 | 16.0 | 30.7 |
Women | n | % | % | % | % | n | % | % | % | % |
18–29 years | 1869 | 1.1 | 5.5 | 7.5 | 3.0 | 1975 | 2.0 | 7.6 | 10.1 | 5.8 |
30–39 years | 3103 | 1.8 | 11.3 | 15.3 | 4.0 | 3530 | 3.2 | 14.3 | 17.7 | 7.0 |
40–49 years | 2965 | 4.0 | 19.5 | 23.9 | 7.9 | 3450 | 4.9 | 23.6 | 27.9 | 9.7 |
50–59 years | 1791 | 8.4 | 36.7 | 42.5 | 15.9 | 1974 | 10.0 | 39.5 | 44.6 | 18.1 |
60–69 years | 291 | 10.7 | 38.8 | 43.0 | 23.4 | 352 | 13.4 | 40.6 | 47.4 | 25.6 |
Social class I | 1164 | 1.7 | 11.1 | 14.4 | 3.4 | 1644 | 2.8 | 13.9 | 17.3 | 6.3 |
Social class II | 2763 | 2.9 | 15.2 | 19.8 | 6.1 | 4175 | 4.7 | 19.5 | 23.4 | 9.6 |
Social class III | 6092 | 4.5 | 20.6 | 24.6 | 9.1 | 5462 | 5.9 | 24.7 | 28.8 | 11.8 |
Elementary school | 5377 | 4.6 | 21.5 | 25.8 | 9.1 | 4871 | 6.1 | 25.2 | 29.6 | 11.6 |
High school | 3628 | 3.0 | 14.9 | 18.8 | 6.8 | 4984 | 4.6 | 19.5 | 23.0 | 10.0 |
University | 1014 | 1.7 | 10.3 | 13.9 | 3.1 | 1426 | 2.7 | 13.5 | 17.3 | 5.8 |
Non-smokers | 6638 | 3.2 | 16.2 | 19.6 | 7.5 | 7794 | 5.0 | 20.1 | 23.5 | 9.9 |
Smokers | 3381 | 4.0 | 18.9 | 23.3 | 7.7 | 3487 | 5.1 | 21.7 | 25.9 | 40.7 |
No physical activity | 4090 | 8.3 | 33.1 | 37.0 | 15.0 | 6842 | 9.2 | 38.6 | 42.8 | 16.7 |
Physical activity | 5929 | 0.5 | 2.9 | 6.8 | 0.9 | 4439 | 1.0 | 3.8 | 7.7 | 1.3 |
No Mediterranean diet | 4206 | 8.0 | 31.3 | 35.2 | 14.5 | 7115 | 8.9 | 35.7 | 40.1 | 15.9 |
Mediterranean diet | 5813 | 0.7 | 4.0 | 7.8 | 1.6 | 4166 | 1.2 | 5.2 | 9.0 | 2.3 |
No alcohol consumption | 8361 | 1.8 | 14.7 | 19.2 | 4.1 | 9619 | 3.5 | 19.1 | 23.4 | 7.5 |
Alcohol consumption | 1658 | 13.4 | 34.1 | 36.2 | 25.4 | 1662 | 14.2 | 37.1 | 39.2 | 26.2 |
Global women | 10,019 | 3.7 | 17.9 | 22.1 | 7.6 | 11,281 | 5.0 | 21.2 | 25.1 | 10.1 |
AD | TC/HDL-c High | LDL-c/HDL-c High | TG/HDL-c High | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Women | 1 | 1 | 1 | 1 |
Men | 1.12 (1.09–1.15) | 0.69 (0.65–0.72) | 0.43 (0.41–0.45) | 3.75 (3.53–3.96) |
18–29 years | 1 | 1 | 1 | 1 |
30–39 years | 1.12 (1.08–1.16) | 1.13 (1.09–1.17) | 1.16 (1.12–1.20) | 1.07 (1.05–1.10) |
40–49 years | 1.62 (1.48–1.76) | 1.48 (1.33–1.63) | 1.63 (1.50–1.76) | 1.20 (1.16–1.24) |
50–59 years | 1.97 (1.77–2.18) | 2.39 (2.13–2.65) | 2.50 (2.27–2.74) | 1.55 (1.39–1.71) |
60–69 years | 2.82 (2.33–3.32) | 4.66 (4.04–5.28) | 4.82 (4.19–5.45) | 2.11 (1.84–2.38) |
Social class I | 1 | 1 | 1 | 1 |
Social class II | 1.11 (1.09–1.14) | 1.13 (1.10–1.16) | 1.11 (1.08–1.14) | 1.16 (1.10–1.22) |
Social class III | 1.38 (1.26–1.50) | 1.35 (1.28–1.43) | 1.27 (1.20–1.35) | 1.39 (1.28–1.50) |
University | 1 | 1 | 1 | 1 |
High school | 1.10 (1.08–1.13) | 1.19 (1.14–1.24) | 1.12 (1.09–1.15) | 1.18 (1.10–1.27) |
Elementary school | 1.34 (1.21–1.47) | 1.39 (1.31–1.47) | 1.31 (1.25.1.37) | 1.42 (1.31–1.53) |
Non-smokers | 1 | 1 | 1 | 1 |
Smokers | 1.18 (1.13–1.24) | 1.16 (1.13–1.19) | 1.13 (1.10–1.17) | 1.17 (1.13–1.22) |
Yes physical activity | 1 | 1 | 1 | 1 |
No physical activity | 14.10 (9.05–14.16) | 13.27 (11.58–14.98) | 7.70 (6.86–8.55) | 12.07 (10.90–13.25) |
Yes Mediterranean diet | 1 | 1 | 1 | 1 |
No Mediterranean diet | 5.89 (4.92–6.86) | 5.33 (4.70–5.97) | 1.98 (1.60–2.37) | 2.69 (2.01–3.38) |
No alcohol consumption | 1 | 1 | 1 | 1 |
Yes alcohol consumption | 1.76 (1.61–1.90) | 1.89 (1.50–2.39) | 1.66 (1.46–1.87) | 1.60 (1.51–1.70) |
Non-shift work | 1 | 1 | 1 | 1 |
Yes shift work | 1.32 (1.23–1.42) | 1.41 (1.30–1.52) | 1.49 (1.39–1.60) | 1.52 (1.39–1.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosoratto, J.; Tárraga López, P.J.; López-González, Á.A.; Paublini Oliveira, H.; Busquets-Cortés, C.; Ramirez-Manent, J.I. Atherogenic Risk in Shift Versus Non-Shift Workers: Associations with Sociodemographic and Lifestyle Factors. Diseases 2025, 13, 188. https://doi.org/10.3390/diseases13060188
Tosoratto J, Tárraga López PJ, López-González ÁA, Paublini Oliveira H, Busquets-Cortés C, Ramirez-Manent JI. Atherogenic Risk in Shift Versus Non-Shift Workers: Associations with Sociodemographic and Lifestyle Factors. Diseases. 2025; 13(6):188. https://doi.org/10.3390/diseases13060188
Chicago/Turabian StyleTosoratto, Javier, Pedro Juan Tárraga López, Ángel Arturo López-González, Hernán Paublini Oliveira, Carla Busquets-Cortés, and José Ignacio Ramirez-Manent. 2025. "Atherogenic Risk in Shift Versus Non-Shift Workers: Associations with Sociodemographic and Lifestyle Factors" Diseases 13, no. 6: 188. https://doi.org/10.3390/diseases13060188
APA StyleTosoratto, J., Tárraga López, P. J., López-González, Á. A., Paublini Oliveira, H., Busquets-Cortés, C., & Ramirez-Manent, J. I. (2025). Atherogenic Risk in Shift Versus Non-Shift Workers: Associations with Sociodemographic and Lifestyle Factors. Diseases, 13(6), 188. https://doi.org/10.3390/diseases13060188