The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis
Abstract
1. Introduction
2. Factors Involved in the Development of Puerperal Mastitis
- Pathogen-Related Factors: These factors include virulence factors, superantigens, biofilm formation, and the expression of antimicrobial resistance genes. Staphylococcus aureus, particularly its methicillin-resistant variant (MRSA), is one of the main pathogens responsible for skin and soft tissue infections, including mastitis [38,39]. Among the most relevant pathogens, Staphylococcus aureus [40] and coagulase-negative Staphylococcus together account for approximately 78% of mastitis cases [41]. These include streptococci and other Gram-positive and Gram-negative bacteria, as well as mycoplasmas [42]. Staphylococcus epidermidis is also one of the main causative microorganisms of lactational mastitis [8].
- Perinatal Factors: Several research groups have analyzed the use of breastfeeding products as a potential risk factor for mastitis. While a positive association has been found between the use of various nipple creams and the development of mastitis during breastfeeding, it is not always clear whether the use of these products preceded or followed the onset of mastitis, or whether their use was triggered by other potential risk factors, such as cracked nipples [16]. Evidence linking breastfeeding frequency, positioning, milk production, and mastitis is also inconsistent and not well defined [16]. Moreover, women who have previously experienced mastitis during breastfeeding may be more prone to recurrent episodes in the future [41]. Improper attachment, which can lead to nipple trauma, may also contribute to the development of mastitis [36].The administration of antibiotics during the third trimester of pregnancy, childbirth, and/or breastfeeding could promote the development of infectious mastitis [43]. Antibiotic therapy, whether administered during cesarean delivery or as intrapartum prophylaxis for PROM (premature rupture of membranes), P-PROM (preterm premature rupture of membranes), or for Streptococcus agalactiae colonization, represents a significant risk factor. Antibiotic treatment can favor the selection of antibiotic-resistant staphylococci within the mammary gland, while simultaneously eliminating commensal strains that normally serve as natural competitors [42,44,45]. While many antibiotics, such as beta-lactams, macrolides, clindamycin, and Fosfomycin, are considered safe during pregnancy [46], they are known to have adverse effects on the microbiota present in human milk [8]. This, along with the growing resistance of Staphylococcus aureus strains to penicillin, methicillin (MRSA), and oxacillin (ORSA), could contribute to the failure of antibiotic therapy in the treatment of mastitis and its recurrence in mothers [8]. Moreover, the resistance to various antibiotics and the increased ability of S. epidermidis to form biofilms may explain the chronic and recurrent nature of this infectious condition [47].
- Host-Related Factors and Lifestyle: Ethnicity, genetic background, breast structure and immunology, age (Women under the age of 21 and over the age of 35 seem to have a lower incidence) [8], number of lactations, and the phase of lactation are important. The anatomical structure and shape of the breast also appear to contribute, with the outer quadrants of the breast being more frequently affected [12]. Moreover, women with breast implants may have an increased risk of developing lactational mastitis within the first six months postpartum [48]. Cesarean delivery, compared to natural childbirth, appears to be associated with a higher likelihood of developing mastitis [49,50]. Cigarette smoking could contribute to the development of mastitis due to its harmful effects on the body, including reduced milk production, inhibition of the milk ejection reflex, inflammation, and impaired immune system function [51]. However, this association should be further investigated in more depth.
- Nutritional Status: A reduced intake of several minerals (potassium, magnesium, phosphorus, calcium, manganese, and selenium) is associated with subclinical mastitis. Magnesium plays an important role in the immune system. Studies in mice have shown that short-term magnesium-deficient diets lead to an increase in pro-inflammatory cytokines and a reduction in bifidobacteria in the gut [52]. Selenium and vitamin E supplementation have been shown to reduce the risk of disease such as mastitis in periparturient dairy cows, due to their antioxidant role [53]. Selenium also helps reduce oxidative stress and enhance the immune system’s ability in cattle to respond to pathogens [54]. Vitamins C and E, β-carotene, and various B vitamins contribute to containing oxidative stress and the inflammatory response and promoting the functional homeostasis of the immune system. However, the use of these vitamins for the prevention or treatment of subclinical mastitis (SCM) is currently unclear. In women infected with HIV, the intake of vitamin A and β-carotene led to a higher risk of severe SCM [55], while studies conducted on vitamin E supplementation have shown more positive results suggesting a protective role for SCM [56]. Recent in vitro work has demonstrated the role of vitamin C as a direct growth inhibitor of Staphylococcus aureus often involved in the infectious progression of mastitis [57]. Afeiche MC et al. [58], for the first time, studied the association between the dietary inflammatory index (DII) and SCM in women. SCM was significantly associated with both DII and dietary micronutrient intake. They conclude the role of anti-inflammatory nutrients in reducing the risk of SCM should be evaluated in future studies with a larger sample size. Proper nutrition, which reduces maternal morbidity, can also help prevent mastitis, as nutritional deficiencies impair immune response and increase the risk of local inflammations [59]. Similarly, in dairy cows, metabolic disorders during the transition period can impair immune function and increase the risk of mastitis, once again emphasizing the importance of proper nutritional management [60].The nutritional status and the composition of the host’s gastrointestinal microbiome can impact the onset and development of mastitis. Rumen microbiota dysbiosis increases intestinal permeability, promotes the translocation of LPS into the blood, and contributes to the development of mastitis in cows [61].
- Socioeconomic Factors: In the few epidemiological studies conducted on mastitis in North America, Australia, and New Zealand, higher household income, full-time employment, and higher education levels were associated with increased reporting of puerperal mastitis. This likely reflects not a higher incidence of the condition in these women, but rather greater awareness and the ability to report the issue to healthcare providers. However Yin et al. [62], in a comprehensive evaluation of the risk of lactational mastitis in Chinese women, did not find an education-related significant difference in terms of past medical history. The study by Hao et al. [63] highlights how socioeconomic factors, education, and healthcare support influence breastfeeding, indirectly reducing the risk of mastitis through correct and sustained practices. A recent review highlighted how informal employment negatively impacts the health of women and children, with conflicting results on breastfeeding, influenced by socio-economic and contextual factors such as maternity leave, work flexibility, and access to healthcare services [64]. Grzeskowiak LE et al. [65] studied the incidence of mastitis and antibiotic treatment in the first 6 months postpartum in 79,985 mother–infant dyads in the Norwegian Mother, Father and Child Cohort Study (MoBa). The study found that mastitis is associated with worse postpartum mental health. Lin CH et al. [66] conducted a population-based retrospective study in Taiwan during 2008–2017. Multivariable logistic regression revealed that multiparous women with a history of lactational mastitis within 6 months of giving birth were significantly more likely than nuliparous women to experience mastitis again after subsequent deliveries. Zarshenas M et al. [67] studied the incidence and risk factors of acute mastitis in the first 26 weeks postpartum in a cohort of Iranian women between June 2014 and March 2015. The incidence and risk factors were found to be similar to that reported for women in Western countries [12,42,68,69,70,71]. It is possible that women who are busy with work and family obligations, and therefore stressed, may be more likely to skip, delay, or reduce a meal, or supplement with formula milk, which can lead to blocked ducts. It is also likely that women in low-income settings have different risk factors compared to women in high-income settings, including access to breastfeeding products (e.g., nipple shields and breast pumps). Socioeconomic factors, such as maternal education and access to private or public healthcare, seem to influence the duration of breastfeeding and the incidence of mastitis. Women receiving private care appear to have a higher risk of developing the condition, possibly due to behaviors related to breastfeeding management, such as extending the intervals between feedings [72].
3. Pathophysiology of Mastitis
4. Milk, Microbiota, and Mastitis
5. Gut–Breast Axis, Mouth–Breast Axis, and Retrograde Flow
6. Future Prospects and Possible New Probiotics to Be Tested in the Prevention of Puerperal Mastitis
Probiotics and Mastitis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Binns, C.; Lee, M.; Low, W.Y. The Long-Term Public Health Benefits of Breastfeeding. Asia Pac. J. Public Health 2016, 28, 7–14. [Google Scholar] [CrossRef]
- Meek, J.Y.; Noble, L.; Section on Breastfeeding. Policy Statement: Breastfeeding and the Use of Human Milk. Pediatrics 2022, 150, e2022057988. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Yi, D.; Kim, S. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef]
- Bhandari, N. Infant and Young Child Feeding. Proc. Indian Natl. Sci. Acad. 2016, 82, 1507–1517. [Google Scholar] [CrossRef]
- Gianni, M.L.; Bettinelli, M.E.; Manfra, P.; Sorrentino, G.; Bezze, E.; Plevani, L.; Cavallaro, G.; Raffaeli, G.; Crippa, B.L.; Colombo, L.; et al. Breastfeeding Difficulties and Risk for Early Breastfeeding Cessation. Nutrients 2019, 11, 2266. [Google Scholar] [CrossRef]
- Angelopoulou, A.; Field, D.; Ryan, C.A.; Stanton, C.; Hill, C.; Ross, R.P. The microbiology and treatment of human mastitis. Med. Microbiol. Immunol. 2018, 207, 83–94. [Google Scholar] [CrossRef]
- Huang, Q.; Zheng, X.-M.; Zhang, M.-L.; Ning, P.; Wu, M.-J. Lactation mastitis: Promising alternative indicators for early diagnosis. World J. Clin. Cases 2022, 10, 11252–11259. [Google Scholar] [CrossRef] [PubMed]
- Koziol, K.J.; Smiley, A.; Latifi, R.; Castaldi, M.T. Predictive Risk Factors for Childbirth-Associated Breast Infections in the United States: A 10-Year Perspective. Int. J. Environ. Res. Public Health 2023, 20, 6333. [Google Scholar] [CrossRef] [PubMed]
- Krogerus, C.; Wernheden, E.; Hansen, L.B. Mastitis. Ugeskr Laeger 2019, 181, V07190396. [Google Scholar]
- Foxman, B.; D’Arcy, H.; Gillespie, B.; Bobo, J.K.; Schwartz, K. Lactation mastitis: Occurrence and medical management among 946 breastfeeding women in the United States. Am. J. Epidemiol. 2002, 155, 103–114. [Google Scholar] [CrossRef]
- Pustotina, O. Management of mastitis and breast engorgement in breastfeeding women. J. Matern. Fetal Neonatal Med. 2016, 29, 3121–3125. [Google Scholar] [CrossRef]
- Mastitis Causes and Management. Available online: https://iris.who.int/bitstream/handle/10665/66230/WHO_FCH_CAH_00.13_eng.pdf?sequence=1 (accessed on 11 August 2024).
- Wink, A.; Mitchell, J.A.; Lam, S.K.; Szugye, H. Does every patient with lactational mastitis require antibiotic treatment? Clevel. Clin. J. Med. 2024, 91, 283–285. [Google Scholar] [CrossRef]
- Wilson, E.; Woodd, S.L.; Benova, L. Incidence of and Risk Factors for Lactational Mastitis: A Systematic Review. J. Hum. Lact. 2020, 36, 673–686. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Yuan, Y.; Zhou, J.; Xiao, Q.; Yang, T.; Li, Y.; Jiang, L.; Gao, H. Risk factors and prognosis of acute lactation mastitis developing into a breast abscess: A retrospective longitudinal study in China. PLoS ONE 2022, 17, e0273967. [Google Scholar] [CrossRef]
- Amir, L.H.; Forster, D.; McLachlan, H.; Lumley, J. Incidence of breast abscess in lactating women: Report from an Australian cohort. BJOG Int. J. Obstet. Gynaecol. 2004, 111, 1378–1381. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Lemas, D.J.; Yee, S.; Cacho, N.; Miller, D.; Cardel, M.; Gurka, M.; Janicke, D.; Shenkman, E. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin. Fetal Neonatal Med. 2016, 21, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Lordan, C.; Roche, A.K.; Delsing, D.; Nauta, A.; Groeneveld, A.; MacSharry, J.; Cotter, P.D.; Van Sinderen, D. Linking human milk oligosaccharide metabolism and early life gut microbiota: Bifidobacteria and beyond. Microbiol. Mol. Biol. Rev. 2024, 88, e00094-23. [Google Scholar] [CrossRef] [PubMed]
- Van Wattum, J.J.; Leferink, T.M.; Wilffert, B.; Ter Horst, P.G.J. Antibiotics and lactation: An overview of relative infant doses and a systematic assessment of clinical studies. Basic Clin. Pharmacol. Toxicol. 2019, 124, 5–17. [Google Scholar] [CrossRef]
- World Health Organization. Breastfeeding and Replacement Feeding Practices in the Context of Mother-to-Child Transmission of HIV: An Assessment Tool for Research; WHO: Geneva, Switzerland, 2000; pp. 1–79. [Google Scholar]
- Crepinsek, M.A.; Taylor, E.A.; Michener, K.; Stewart, F. Interventions for Preventing Mastitis After Childbirth; Cochrane Pregnancy and Childbirth Group, Ed.; Cochrane Database Syst Rev; Cochrane Library: London, UK, 2020; Volume 2020, Available online: http://doi.wiley.com/10.1002/14651858.CD007239.pub4 (accessed on 27 May 2025).
- Bond, D.M.; Morris, J.M.; Nassar, N. Study protocol: Evaluation of the probiotic Lactobacillus Fermentum CECT5716 for the prevention of mastitis in breastfeeding women: A randomised controlled trial. BMC Pregnancy Childbirth 2017, 17, 148. [Google Scholar] [CrossRef]
- Fernández, L.; Cárdenas, N.; Arroyo, R.; Manzano, S.; Jiménez, E.; Martín, V.; Rodríguez, J.M. Prevention of Infectious Mastitis by Oral Administration of Lactobacillus salivarius PS2 During Late Pregnancy. Clin. Infect. Dis. 2016, 62, 568–573. [Google Scholar] [CrossRef]
- Hurtado, J.A.; Maldonado-Lobón, J.A.; Díaz-Ropero, M.P.; Flores-Rojas, K.; Uberos, J.; Leante, J.L.; Affumicato, L.; Couce, M.L.; Garrido, J.M.; Olivares, M.; et al. Oral Administration to Nursing Women of Lactobacillus fermentum CECT5716 Prevents Lactational Mastitis Development: A Randomized Controlled Trial. Breastfeed. Med. 2017, 12, 202–209. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, C.; Wang, M.; Zhu, J.; Yu, L.; Yang, Z.; Liu, S.; Gao, X. The preventive and therapeutic effects of probiotics on mastitis: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0274467. [Google Scholar] [CrossRef]
- Jiménez, E.; Fernández, L.; Maldonado, A.; Martín, R.; Olivares, M.; Xaus, J.; Rodríguez, J.M. Oral Administration of Lactobacillus Strains Isolated from Breast Milk as an Alternative for the Treatment of Infectious Mastitis during Lactation. Appl. Environ. Microbiol. 2008, 74, 4650–4655. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, R.; Martín, V.; Maldonado, A.; Jiménez, E.; Fernández, L.; Rodríguez, J.M. Treatment of infectious mastitis during lactation: Antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin. Infect. Dis. 2010, 50, 1551–1558. [Google Scholar] [CrossRef]
- Maldonado-Lobón, J.A.; Díaz-López, M.A.; Carputo, R.; Duarte, P.; Díaz-Ropero, M.P.; Valero, A.D.; Sañudo, A.; Sempere, L.; Ruiz-López, M.D.; Bañuelos, Ó.; et al. Lactobacillus fermentum CECT 5716 Reduces Staphylococcus Load in the Breastmilk of Lactating Mothers Suffering Breast Pain: A Randomized Controlled Trial. Breastfeed. Med. 2015, 10, 425–432. [Google Scholar] [CrossRef]
- Jiménez, E.; Manzano, S.; Schlembach, D.; Arciszewski, K.; Martin, R.; Ben Amor, K.; Roelofs, M.; Knol, J.; Rodríguez, J.M.; Abou-Dakn, M.; et al. Ligilactobacillus salivarius PS2 Supplementation During Pregnancy and Lactation Prevents Mastitis: A Randomised Controlled Trial. Microorganisms 2021, 9, 1933. [Google Scholar] [CrossRef] [PubMed]
- Omranipour, R.; Vasigh, M. Mastitis, Breast Abscess, and Granulomatous Mastitis. In Diseases of the Breast during Pregnancy and Lactation; Alipour, S., Omranipour, R., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1252, pp. 53–61. Available online: http://link.springer.com/10.1007/978-3-030-41596-9_7 (accessed on 12 January 2025).
- Cullinane, M.; Amir, L.H.; Donath, S.M.; Garland, S.M.; Tabrizi, S.N.; Payne, M.S.; Bennett, C.M. Determinants of mastitis in women in the CASTLE study: A cohort study. BMC Fam. Pract. 2015, 16, 181. [Google Scholar] [CrossRef] [PubMed]
- Saifi, F.; Jeoboam, B.; Demory Beckler, M.; Costin, J.M. The Association Between Lactational Infective Mastitis and the Microbiome: Development, Onset, and Treatments. Cureus 2024, 16, e62717. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lee, Y.-L.; Chen, Y.-H.; Tsao, S.-M.; Wang, W.-Y. Puerperal mastitis caused by limited community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) clones. Front. Med. 2024, 11, 1378207. [Google Scholar] [CrossRef]
- Holmes, M.A.; Zadoks, R.N. Methicillin Resistant S. aureus in Human and Bovine Mastitis. J. Mammary Gland. Biol. Neoplasia 2011, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Guo, J.; Zhao, C.; Jiang, P.; Maimai, T.; Yanyi, L.; Cao, Y.; Fu, Y.; Zhang, N. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. ISME J. 2020, 14, 1897–1910. [Google Scholar] [CrossRef]
- Lukassek, J.; Ignatov, A.; Faerber, J.; Costa, S.D.; Eggemann, H. Puerperal mastitis in the past decade: Results of a single institution analysis. Arch. Gynecol. Obstet. 2019, 300, 1637–1644. [Google Scholar] [CrossRef]
- Contreras, G.A.; Rodríguez, J.M. Mastitis: Comparative etiology and epidemiology. J. Mammary Gland. Biol. Neoplasia 2011, 16, 339–356. [Google Scholar] [CrossRef]
- Beltrán Vaquero, D.A. Mastitis infecciosa: Nueva solución para un viejo problema. Nutr. Hosp. 2015, 31, 89–95. [Google Scholar]
- Rodríguez, J.M.; Fernández, L. Infectious Mastitis During Lactation. In Prebiotics and Probiotics in Human Milk; Elsevier: Amsterdam, The Netherlands, 2017; pp. 401–428. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128027257000154 (accessed on 12 January 2025).
- Jiménez, E.; Delgado, S.; Arroyo, R.; Fernández, L.; Rodríguez, J.M. Infectious mastitis during lactation: An underrated condition (II). Acta Pediatr. Esp. 2009, 67, 125–132. [Google Scholar]
- Bookstaver, P.B.; Bland, C.M.; Griffin, B.; Stover, K.R.; Eiland, L.S.; McLaughlin, M. A Review of Antibiotic Use in Pregnancy. Pharmacotherapy J. Hum. Pharmacol. Drug Ther. 2015, 35, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.; Arroyo, R.; Jiménez, E.; Marín, M.L.; Del Campo, R.; Fernández, L.; Rodríguez, J.M. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: Potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009, 9, 82. [Google Scholar] [CrossRef] [PubMed]
- Shalev Ram, H.; Ram, S.; Wiser, I.; Tchernin, N.; Chodick, G.; Cohen, Y.; Rofe, G. Associations between breast implants and postpartum lactational mastitis in breastfeeding women: Retrospective study. BJOG Int. J. Obstet. Gynaecol. 2022, 129, 267–272. [Google Scholar] [CrossRef]
- Khanal, V.; Scott, J.A.; Lee, A.H.; Binns, C.W. Incidence of Mastitis in the Neonatal Period in a Traditional Breastfeeding Society: Results of a Cohort Study. Breastfeed. Med. 2015, 10, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, Y.; Ning, P.; Ma, S.-G.; He, P.-Y.; Wang, Y. Maternal Risk Factors for Lactation Mastitis: A Meta-analysis. West. J. Nurs. Res. 2021, 43, 698–708. [Google Scholar] [CrossRef]
- Vlachou, M.; Kyrkou, G.A.; Vivilaki, V.; Georgakopoulou, V.E.; Katsaounou, P.; Κapetanaki, A.; Diamanti, A. Tobacco Smoke Exposure and Lactation. Cureus 2024, 16, e73651. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Neyrinck, A.M.; Deldicque, L.; De Backer, F.C.; Catry, E.; Dewulf, E.M.; Sohet, F.M.; Bindels, L.B.; Everard, A.; Francaux, M.; et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J. Nutr. 2010, 140, 509–514. [Google Scholar] [CrossRef]
- Xiao, J.; Khan, M.Z.; Ma, Y.; Alugongo, G.M.; Ma, J.; Chen, T.; Khan, A.; Cao, Z. The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants 2021, 10, 1555. [Google Scholar] [CrossRef]
- Salman, S.; Khol-Parisini, A.; Schafft, H.; Lahrssen-Wiederholt, M.; Hulan, H.W.; Dinse, D.; Zentek, J. The role of dietary selenium in bovine mammary gland health and immune function. Anim. Health Res. Rev. 2009, 10, 21–34. [Google Scholar] [CrossRef]
- Arsenault, J.E.; Aboud, S.; Manji, K.P.; Fawzi, W.W.; Villamor, E. Vitamin supplementation increases risk of subclinical mastitis in HIV-infected women. J. Nutr. 2010, 140, 1788–1792. [Google Scholar] [CrossRef]
- Filteau, S.M.; Lietz, G.; Mulokozi, G.; Bilotta, S.; Henry, C.J.; Tomkins, A.M. Milk cytokines and subclinical breast inflammation in Tanzanian women: Effects of dietary red palm oil or sunflower oil supplementation. Immunology 1999, 97, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, S.; Mumtaz, S.; Ali, S.; Tahir, H.M.; Kazmi, S.a.R.; Mughal, T.A.; Younas, M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz. J. Biol. 2021, 83, e247165. [Google Scholar] [CrossRef]
- Afeiche, M.C.; Iroz, A.; Thielecke, F.; De Castro, A.C.; Lefebvre, G.; Draper, C.F.; Martínez-Costa, C.; Haaland, K.; Marchini, G.; Agosti, M.; et al. The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women. Nutrients 2022, 14, 4719. [Google Scholar] [CrossRef]
- Tomkins, A. Nutrition and maternal morbidity and mortality. Br. J. Nutr. 2001, 85 (Suppl. S2), S93–S99. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Lippolis, J.D.; McCluskey, B.J.; Goff, J.P.; Horst, R.L. Prevalence of subclinical hypocalcemia in dairy herds. Vet. J. 2011, 188, 122–124. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Tang, X.; Nan, X.; Jiang, L.; Wang, H.; Liu, J.; Yang, L.; Yao, J.; Xiong, B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. Anim. Nutr. 2024, 17, 220–231. [Google Scholar] [CrossRef]
- Yin, Y.; Yu, Z.; Zhao, M.; Wang, Y.; Guan, X. Comprehensive evaluation of the risk of lactational mastitis in Chinese women: Combined logistic regression analysis with receiver operating characteristic curve. Biosci. Rep. 2020, 40, BSR20190919. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, L.; Wang, C.; Peng, A.; Gao, W.; Marc, I.; Semenic, S.; Fraser, W.D.; Narayan, A.; Wu, Y.; et al. Breastfeeding Practices and Associated Factors in Shanghai: A Cross-Sectional Study. Nutrients 2022, 14, 4429. [Google Scholar] [CrossRef]
- Aronsson, A.E.; Vidaurre-Teixidó, P.; Jensen, M.R.; Solhaug, S.; McNamara, C. Correction: The health consequences of informal employment among female workers and their children: A systematic review. Glob. Health 2023, 19, 65. [Google Scholar] [CrossRef]
- Grzeskowiak, L.E.; Saha, M.R.; Ingman, W.V.; Nordeng, H.; Ystrom, E.; Amir, L.H. Incidence, antibiotic treatment and outcomes of lactational mastitis: Findings from The Norwegian Mother, Father and Child Cohort Study (MoBa). Paediatr. Perinat. Epidemiol. 2022, 36, 254–263. [Google Scholar] [CrossRef]
- Lin, C.-H.; Yang, P.-R.; Lee, C.-P.; Huang, W.-Y.; Shih, W.-T.; Yang, Y.-H. Descriptive Study of Mastitis in Postpartum Women in Taiwan: Incidence and Related Factors. J. Womens Health 2023, 32, 616–622. [Google Scholar] [CrossRef]
- Zarshenas, M.; Zhao, Y.; Poorarian, S.; Binns, C.W.; Scott, J.A. Incidence and Risk Factors of Mastitis in Shiraz, Iran: Results of a Cohort Study. Breastfeed. Med. 2017, 12, 290–296. [Google Scholar] [CrossRef]
- Vogel, A.; Hutchison, B.L.; Mitchell, E.A. Mastitis in the first year postpartum. Birth 1999, 26, 218–225. [Google Scholar] [CrossRef]
- Kinlay, J.R.; O’Connell, D.L.; Kinlay, S. Risk factors for mastitis in breastfeeding women: Results of a prospective cohort study. Aust. N. Z. J. Public Health 2001, 25, 115–120. [Google Scholar] [CrossRef]
- Foxman, B.; Schwartz, K.; Looman, S.J. Breastfeeding practices and lactation mastitis. Soc. Sci. Med. 1994, 38, 755–761. [Google Scholar] [CrossRef]
- Kaufmann, R.; Foxman, B. Mastitis among lactating women: Occurrence and risk factors. Soc. Sci. Med. 1991, 33, 701–705. [Google Scholar] [CrossRef]
- Amir, L.H.; Forster, D.A.; Lumley, J.; McLachlan, H. A descriptive study of mastitis in Australian breastfeeding women: Incidence and determinants. BMC Public Health 2007, 7, 62. [Google Scholar] [CrossRef]
- Baeza, C. Acute, Subclinical, and Subacute Mastitis: Definitions, Etiology, and Clinical Management. Clin. Lact. 2016, 7, 7–10. [Google Scholar] [CrossRef]
- Boix-Amorós, A.; Hernández-Aguilar, M.T.; Artacho, A.; Collado, M.C.; Mira, A. Human milk microbiota in sub-acute lactational mastitis induces inflammation and undergoes changes in composition, diversity and load. Sci. Rep. 2020, 10, 18521. [Google Scholar] [CrossRef]
- Fernández, L.; Arroyo, R.; Espinosa, I.; Marín, M.; Jiménez, E.; Rodríguez, J.M. Probiotics for human lactational mastitis. Benef. Microbes 2014, 5, 169–183. [Google Scholar] [CrossRef]
- Fetherston, C. Mastitis in lactating women: Physiology or pathology? Breastfeed. Rev. 2001, 9, 5–12. [Google Scholar] [PubMed]
- Douglas, P. Re-thinking benign inflammation of the lactating breast: A mechanobiological model. Womens Health 2022, 18, 17455065221075907. [Google Scholar] [CrossRef] [PubMed]
- Inch, S.; Fisher, C. Mastitis: Infection or inflammation? Practice 1995, 239, 472–476. [Google Scholar]
- Kvist, L.J.; Larsson, B.W.; Hall-Lord, M.L.; Steen, A.; Schalén, C. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int. Breastfeed. J. 2008, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Ingman, W.V.; Glynn, D.J.; Hutchinson, M.R. Mouse models of mastitis—How physiological are they? Int. Breastfeed. J. 2015, 10, 12. [Google Scholar] [CrossRef]
- Marín, M.; Arroyo, R.; Espinosa-Martos, I.; Fernández, L.; Rodríguez, J.M. Identification of Emerging Human Mastitis Pathogens by MALDI-TOF and Assessment of Their Antibiotic Resistance Patterns. Front. Microbiol. 2017, 8, 1258. [Google Scholar] [CrossRef]
- Glynn, D.J.; Hutchinson, M.R.; Ingman, W.V. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis. Biol. Reprod. 2014, 90, 91. [Google Scholar] [CrossRef]
- Espínola-Docio, B.; Costa-Romero, M.; Díaz-Gómez, N.M.; Paricio-Talayero, J.M. Mastitis: Puesta al día. Arch. Argent. Pediatría 2016, 114, 576–584. [Google Scholar]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef]
- Pérez, V.K.C.; da Costa, G.M.; Guimarães, A.S.; Heinemann, M.B.; Lage, A.P.; Dorneles, E.M.S. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J. Glob. Antimicrob. Resist. 2020, 22, 792–802. [Google Scholar] [CrossRef]
- Rahbarnia, L.; Khosravi Rad, R.; Dehnad, A.R.; Naghili, B. The examination of some virulence factors in S. aureus isolates obtained from the healthy human population, sheep mastitis, and cheese. Iran. J. Vet. Res. 2023, 24, 110–115. [Google Scholar]
- Paudyal, S.; Melendez, P.; Manriquez, D.; Velasquez-Munoz, A.; Pena, G.; Roman-Muniz, I.N.; Pinedo, P.J. Use of milk electrical conductivity for the differentiation of mastitis causing pathogens in Holstein cows. Animal 2020, 14, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Moossavi, S.; Azad, M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes 2020, 12, 1667722. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, D.T.; Kent, J.C.; Owens, R.A.; Hartmann, P.E. Ultrasound Imaging of Milk Ejection in the Breast of Lactating Women. Pediatrics 2004, 113, 361–367. [Google Scholar] [CrossRef]
- Williams, J.E.; Carrothers, J.M.; Lackey, K.A.; Beatty, N.F.; Brooker, S.L.; Peterson, H.K.; Steinkamp, K.M.; York, M.A.; Shafii, B.; Price, W.J.; et al. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J. Nutr. 2019, 149, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Geddes, D.T. The use of ultrasound to identify milk ejection in women—Tips and pitfalls. Int. Breastfeed. J. 2009, 4, 5. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Di Pierro, F.; Bertuccioli, A.; Pane, M.; Ivaldi, L. Effects of rifaximin-resistant Bifidobacterium longum W11 in subjects with symptomatic uncomplicated diverticular disease treated with rifaximin. Minerva Gastroenterol. Dietol. 2020, 65, 259–264. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Cardinali, M.; Biagi, M.; Moricoli, S.; Morganti, I.; Zonzini, G.B.; Rigillo, G. Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action? Microorganisms 2021, 9, 2427. [Google Scholar] [CrossRef]
- Paviour, S.; Musaad, S.; Roberts, S.; Taylor, G.; Taylor, S.; Shore, K.; Lang, S.; Holland, D. Corynebacterium species isolated from patients with mastitis. Clin. Infect. Dis. 2002, 35, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.Y.; Poon, R.W.S.; Chen, J.H.K.; Tse, H.; Lo, J.Y.C.; Ng, T.-K.; Au, J.C.K.; Tse, C.W.S.; Cheung, I.Y.Y.; Yuk, M.-T.; et al. Corynebacterium kroppenstedtii Is an Emerging Cause of Mastitis Especially in Patients With Psychiatric Illness on Antipsychotic Medication. Open Forum Infect. Dis. 2017, 4, ofx096. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Shu, M.; Wang, Y.; Yu, J.; Kuo, S.; Coda, A.; Jiang, Y.; Gallo, R.L.; Huang, C.-M. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 2013, 8, e55380. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Zeng, B.; Huang, S.; Zhao, J.; Zhang, Y.; Su, X.; Xu, J.; Wei, H.; Zhang, H. Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis. Microbiome 2018, 6, 200. [Google Scholar] [CrossRef]
- Fernández, L.; Langa, S.; Martín, V.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The microbiota of human milk in healthy women. Cell. Mol. Biol. 2013, 59, 31–42. [Google Scholar]
- Rodríguez, J.M.; Fernández, L.; Verhasselt, V. The Gut–Breast Axis: Programming Health for Life. Nutrients 2021, 13, 606. [Google Scholar] [CrossRef]
- Barker, M.; Adelson, P.; Peters, M.D.J.; Steen, M. Probiotics and human lactational mastitis: A scoping review. Women Birth 2020, 33, e483–e491. [Google Scholar] [CrossRef]
- Cazzaniga, M.; Zonzini, G.B.; Di Pierro, F.; Moricoli, S.; Bertuccioli, A. Gut Microbiota, Metabolic Disorders and Breast Cancer: Could Berberine Turn Out to Be a Transversal Nutraceutical Tool? A Narrative Analysis. Int. J. Mol. Sci. 2022, 23, 12538. [Google Scholar] [CrossRef]
- Hagihara, M.; Yamashita, R.; Matsumoto, A.; Mori, T.; Kuroki, Y.; Kudo, H.; Oka, K.; Takahashi, M.; Nonogaki, T.; Yamagishi, Y.; et al. The impact of Clostridium butyricum MIYAIRI 588 on the murine gut microbiome and colonic tissue. Anaerobe 2018, 54, 8–18. [Google Scholar] [CrossRef]
- Ariyoshi, T.; Hagihara, M.; Tomono, S.; Eguchi, S.; Minemura, A.; Miura, D.; Oka, K.; Takahashi, M.; Yamagishi, Y.; Mikamo, H. Clostridium butyricum MIYAIRI 588 Modifies Bacterial Composition Under Antibiotic-Induced Dysbiosis for the Activation of Interactions via Lipid Metabolism Between the Gut Microbiome and the Host. Biomedicines 2021, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, T.; Hagihara, M.; Eguchi, S.; Fukuda, A.; Iwasaki, K.; Oka, K.; Takahashi, M.; Yamagishi, Y.; Mikamo, H. Clostridium butyricum MIYAIRI 588-Induced Protectin D1 Has an Anti-inflammatory Effect on Antibiotic-Induced Intestinal Disorder. Front. Microbiol. 2020, 11, 587725. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2021, 13, 1907272. [Google Scholar] [CrossRef]
- Perraudeau, F.; McMurdie, P.; Bullard, J.; Cheng, A.; Cutcliffe, C.; Deo, A.; Eid, J.; Gines, J.; Iyer, M.; Justice, N.; et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: A multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 2020, 8, e001319. [Google Scholar] [CrossRef]
- Hasani, A.; Ebrahimzadeh, S.; Hemmati, F.; Khabbaz, A.; Hasani, A.; Gholizadeh, P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J. Med. Microbiol. 2021, 70, 001435. [Google Scholar] [CrossRef] [PubMed]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef]
- Frickmann, H.; Klenk, C.; Warnke, P.; Redanz, S.; Podbielski, A. Influence of Probiotic Culture Supernatants on In Vitro Biofilm Formation of Staphylococci. Eur. J. Microbiol. Immunol. 2018, 8, 119–127. [Google Scholar] [CrossRef]
- Burton, J.P.; Chilcott, C.N.; Moore, C.J.; Speiser, G.; Tagg, J.R. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol. 2006, 100, 754–764. [Google Scholar] [CrossRef]
- Jansen, P.M.; Abdelbary, M.M.H.; Conrads, G. A concerted probiotic activity to inhibit periodontitis-associated bacteria. PLoS ONE 2021, 16, e0248308. [Google Scholar] [CrossRef]
- Burton, J.P.; Cowley, S.; Simon, R.R.; McKinney, J.; Wescombe, P.A.; Tagg, J.R. Evaluation of safety and human tolerance of the oral probiotic Streptococcus salivarius K12: A randomized, placebo-controlled, double-blind study. Food Chem. Toxicol. 2011, 49, 2356–2364. [Google Scholar] [CrossRef]
- Hyink, O.; Wescombe, P.A.; Upton, M.; Ragland, N.; Burton, J.P.; Tagg, J.R. Salivaricin A2 and the Novel Lantibiotic Salivaricin B Are Encoded at Adjacent Loci on a 190-Kilobase Transmissible Megaplasmid in the Oral Probiotic Strain Streptococcus salivarius K12. Appl. Environ. Microbiol. 2007, 73, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Wescombe, P.A.; Burton, J.P.; Cadieux, P.A.; Klesse, N.A.; Hyink, O.; Heng, N.C.K.; Chilcott, C.N.; Reid, G.; Tagg, J.R. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Leeuwenhoek 2006, 90, 269–280. [Google Scholar] [CrossRef]
- Di Pierro, F.; Colombo, M.; Zanvit, A.; Rottoli, A.S. Positive clinical outcomes derived from using Streptococcus salivarius K12 to prevent streptococcal pharyngotonsillitis in children: A pilot investigation. Drug Healthc. Patient Saf. 2016, 8, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Di Pasquale, D.; Di Cicco, M. Oral use of Streptococcus salivarius K12 in children with secretory otitis media: Preliminary results of a pilot, uncontrolled study. Int. J. Gen. Med. 2015, 8, 303–308. [Google Scholar] [CrossRef]
- Di Pierro, F.; Colombo, M.; Giuliani, M.G.; Danza, M.L.; Basile, I.; Bollani, T.; Conti, A.M.; Zanvit, A.; Rottoli, A.S. Effect of administration of Streptococcus salivarius K12 on the occurrence of streptococcal pharyngo-tonsillitis, scarlet fever and acute otitis media in 3 years old children. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4601–4606. [Google Scholar]
- Santagati, M.; Scillato, M.; Patanè, F.; Aiello, C.; Stefani, S. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med. Microbiol. 2012, 65, 23–31. [Google Scholar] [CrossRef]
- Patras, K.A.; Wescombe, P.A.; Rösler, B.; Hale, J.D.; Tagg, J.R.; Doran, K.S. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization. Infect. Immun. 2015, 83, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Stašková, A.; Sondorová, M.; Nemcová, R.; Kačírová, J.; Maďar, M. Antimicrobial and Antibiofilm Activity of the Probiotic Strain Streptococcus salivarius K12 against Oral Potential Pathogens. Antibiotics 2021, 10, 793. [Google Scholar] [CrossRef]
- Di Pierro, F.; Colombo, M.; Zanvit, A.; Risso, P.; Rottoli, A.S. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children. Drug Healthc. Patient Saf. 2014, 6, 15–20. [Google Scholar] [CrossRef]
- Manning, J.; Dunne, E.M.; Wescombe, P.A.; Hale, J.D.F.; Mulholland, E.K.; Tagg, J.R.; Robins-Browne, R.M.; Satzke, C. Investigation of Streptococcus salivarius-mediated inhibition of pneumococcal adherence to pharyngeal epithelial cells. BMC Microbiol. 2016, 16, 225. [Google Scholar] [CrossRef]
- Burton, J.; Chilcott, C.; Tagg, J. The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis. 2005, 11, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Jamali, Z.; Aminabadi, N.A.; Samiei, M.; Sighari Deljavan, A.; Shokravi, M.; Shirazi, S. Impact of Chlorhexidine Pretreatment Followed by Probiotic Streptococcus salivarius Strain K12 on Halitosis in Children: A Randomised Controlled Clinical Trial. Oral Health Prev. Dent. 2016, 14, 305–313. [Google Scholar] [PubMed]
- Ishijima, S.A.; Hayama, K.; Burton, J.P.; Reid, G.; Okada, M.; Matsushita, Y.; Abe, S. Effect of Streptococcus salivarius K12 on the in vitro growth of Candida albicans and its protective effect in an oral candidiasis model. Appl. Environ. Microbiol. 2012, 78, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Mao, Q.; Zhou, P.; Lv, X.; Hua, H.; Yan, Z. Effects of Streptococcus salivarius K12 with nystatin on oral candidiasis-RCT. Oral Dis. 2019, 25, 1573–1580. [Google Scholar] [CrossRef]
- MacDonald, K.W.; Chanyi, R.M.; Macklaim, J.M.; Cadieux, P.A.; Reid, G.; Burton, J.P. Streptococcus salivarius inhibits immune activation by periodontal disease pathogens. BMC Oral Health 2021, 21, 245. [Google Scholar] [CrossRef]
- Burton, J.P.; Chilcott, C.N.; Wescombe, P.A.; Tagg, J.R. Extended Safety Data for the Oral Cavity Probiotic Streptococcus salivarius K12. Probiotics Antimicrob. Proteins 2010, 2, 135–144. [Google Scholar] [CrossRef]
- Cosseau, C.; Devine, D.A.; Dullaghan, E.; Gardy, J.L.; Chikatamarla, A.; Gellatly, S.; Yu, L.L.; Pistolic, J.; Falsafi, R.; Tagg, J.; et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun. 2008, 76, 4163–4175. [Google Scholar] [CrossRef]
- Hale, J.D.F.; Jain, R.; Wescombe, P.A.; Burton, J.P.; Simon, R.R.; Tagg, J.R. Safety assessment of Streptococcus salivarius M18 a probiotic for oral health. Benef. Microbes 2022, 13, 47–60. [Google Scholar] [CrossRef]
- Manti, S.; Parisi, G.F.; Papale, M.; Licari, A.; Salpietro, C.; Miraglia Del Giudice, M.; Marseglia, G.L.; Leonardi, S. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for treatment of upper respiratory tract infections in children: A pilot study on short-term efficacy. Ital. J. Pediatr. 2020, 46, 42. [Google Scholar] [CrossRef]
- Marchisio, P.; Santagati, M.; Scillato, M.; Baggi, E.; Fattizzo, M.; Rosazza, C.; Stefani, S.; Esposito, S.; Principi, N. Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2377–2383. [Google Scholar] [CrossRef]
- Armas, F.; Camperio, C.; Marianelli, C. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 Against Ruminant Mastitis-Causing Pathogens. PLoS ONE 2017, 12, e0169543. [Google Scholar] [CrossRef]
- Zaatout, N.; Ayachi, A.; Kecha, M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J. Appl. Microbiol. 2020, 129, 1102–1119. [Google Scholar] [CrossRef]
- Espinosa-Martos, I.; Jiménez, E.; de Andrés, J.; Rodríguez-Alcalá, L.M.; Tavárez, S.; Manzano, S.; Fernández, L.; Alonso, E.; Fontecha, J.; Rodríguez, J.M. Milk and blood biomarkers associated to the clinical efficacy of a probiotic for the treatment of infectious mastitis. Benef. Microbes 2016, 7, 305–318. [Google Scholar] [CrossRef]
- Karlsson, S.; Brantsæter, A.-L.; Meltzer, H.M.; Jacobsson, B.; Barman, M.; Sengpiel, V. Maternal probiotic milk intake during pregnancy and breastfeeding complications in the Norwegian Mother and Child Cohort Study. Eur. J. Nutr. 2020, 59, 2219–2228. [Google Scholar] [CrossRef]
- Bousmaha-Marroki, L.; Boutillier, D.; Marroki, A.; Grangette, C. In Vitro Anti-staphylococcal and Anti-inflammatory Abilities of Lacticaseibacillus rhamnosus from Infant Gut Microbiota as Potential Probiotic Against Infectious Women Mastitis. Probiotics Antimicrob. Proteins 2021, 13, 970–981. [Google Scholar] [CrossRef]
First Author and Year | Participant Characteristics | Sample Size (N) EG/CG | Age (Years) EG/CG | Probiotic Strain | Dosage and Intervention Duration | Primary and Secondary Outcomes Investigated |
---|---|---|---|---|---|---|
[31] | Women with clinically diagnosed mastitis (bacterial count >4 log10 CFU/mL, leukocyte count >6 log10 cells/mL) | 10/10 | NR | Lactobacillus salivarius CECT5713 and Lactobacillus gasseri CECT5714 | 1 × 109 CFU/day, -4 weeks | Bacterial count in breast milk; detection of the lactobacillus strains in milk samples |
[32] | Women with mastitis, groups A, B, and C (specific clinical details not provided for all groups) | 124(A)/127(B)/101(C) | NR | Lactobacillus fermentum CECT5716/Lactobacillus salivarius CECT5713 | 1 × 109 CFU/day, 3 | Breast pain; bacterial count in breast milk; adverse reaction; and detection of the lactobacillus strains in milk samples |
[33] | Women with clinical mastitis (bacterial count >3 log10 CFU/mL); absence of abscesses or other mammary pathology | 23(EG I)/24(EG II)/24(EG III)/27(CG) | 33.3 ± 5.2 34.3 ± 4.3 36.0 ± 2.8 33.4 ± 4.5 | Lactobacillus fermentum CECT 5716 | 3 × 109 (EG)CFU/day, 6 × 109 (EGI)CFU/day 9 × 109 (EGII)CFU/day, 3 | Breast pain; bacterial count in breast milk; adverse reaction; and immune parameters in breast milk |
[28] | Healthy pregnant women (no probiotic supplementation or antibiotic treatment in the previous 30 days) | 55/53 | 31.18 (±0.48)/ 30.51 (±0.49) | Lactobacillus salivarius PS2 | 1 × 109 CFU/day, -8 | Incidence of mastitis; breast pain; bacterial count in breast milk; and detection of the lactobacillus strains in milk samples |
[29] | Healthy pregnant women who received prophylactic antibiotics (48 h before and after delivery) | 139/152 | 31.91 (±0.49)/ 32.19 (±0.48) | Lactobacillus fermentum | 3 × 109 CFU/day, 16 | Incidence of mastitis; breast pain; bacterial count in breast milk; and immune parameters in breast milk |
[34] | Pregnant women ≥18 years of age, with intention to breastfeed | 165/163 | 33.00 (±3.00)/ 33.00 (±3.00) | Lactobacillus salivarius PS2 | 1 × 109 CFU/day, from the 35th week of pregnancy until week 12 after delivery | Incidence of mastitis; breast pain; and adverse reaction |
Virulence Factors | Coagulase-Negative Staphylococci CoNS | Coagulase-Negative Staphylococci CoNS | Coagulase-Negative Staphylococci CoNS | Coagulase-Negative Staphylococci CoNS | References | |
---|---|---|---|---|---|---|
S. epidermidis | S. haemolyticus S. saprophyticus | S. capitis | S. lugdunensis | S. aureus | ||
TOXINS | Metalloproteases Delta/Beta-hemolysins | Metalloprotease Hemolysine | Metalloprotease Coagulase δ-like-hemolysin | Panton-Valentine leucocidin (LukSF-PV) Epidermolysins (ETA-B-D) Hemolysine Superantigens Leukotoxin biocomponent pore-forming complexes (LukMF) Enterotoxins (sea, seb, sec, sed, see) Enterotoxin-like protein (seg-sei, seij-seiq, and seiu) genes Toxic shock syndrome toxin 1 (TSST-1) | [84,85] | |
ADESION FACTORS | Fibrinogen-binding protein | Capsular antigen polysaccharide/adhesin (PS/A) | [84,85] | |||
CAPSULE FACTORS | X | [84] | ||||
BIOFILM-ASSOCIATED PROTEINS | Sequence IS256 and ica genes Phenol-soluble modulin (PSM) peptides Biofilm-associated proteins (bhp) | Phenol-soluble modulin (PSM) peptides | [84] | |||
CELL WALL-ANCHORED PROTEINS | Adhesive matrix molecules (MSCRAMMs) | Adhesive matrix molecules (MSCRAMMs | Adhesive matrix molecules (MSCRAMMs | Adhesive matrix molecules (MSCRAMMs | Adhesive matrix molecules (MSCRAMMs) Iron-regulated surface proteins | [84] |
Virulence genes located on mobile genetic (pathogenicity islands, plasmids, and phage) | [84] | |||||
PROTEASE | Serine protease Cystine protease Lipase Formate dehydrogenase (fdh) Metalloprotease | Lipase Autolysin Serine protease Cystine nuclease Urease | Lipase Cysteine protease Serine protease Nuclease | [84] | ||
ANTISEPTIN RESISTENCE GENES | qacA ccrA ccrB IS256-like transposase gene | blaZ mecA mecC tetL tetK tet M tet0 ermA ermB ermC ermT msrA mphC InuA aacA aphD aphA3 mepA grlA gyrA | [84,86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matera, M.; Palazzi, C.M.; Bertuccioli, A.; Di Pierro, F.; Zerbinati, N.; Cazzaniga, M.; Gregoretti, A.; Cavecchia, I. The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis. Diseases 2025, 13, 176. https://doi.org/10.3390/diseases13060176
Matera M, Palazzi CM, Bertuccioli A, Di Pierro F, Zerbinati N, Cazzaniga M, Gregoretti A, Cavecchia I. The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis. Diseases. 2025; 13(6):176. https://doi.org/10.3390/diseases13060176
Chicago/Turabian StyleMatera, Mariarosaria, Chiara Maria Palazzi, Alexander Bertuccioli, Francesco Di Pierro, Nicola Zerbinati, Massimiliano Cazzaniga, Aurora Gregoretti, and Ilaria Cavecchia. 2025. "The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis" Diseases 13, no. 6: 176. https://doi.org/10.3390/diseases13060176
APA StyleMatera, M., Palazzi, C. M., Bertuccioli, A., Di Pierro, F., Zerbinati, N., Cazzaniga, M., Gregoretti, A., & Cavecchia, I. (2025). The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis. Diseases, 13(6), 176. https://doi.org/10.3390/diseases13060176