The Overlapping Burdens of Fatigue and Daytime Sleepiness: Gender-Specific Impacts on Life Quality in Patients with Sleep Disorders
Abstract
1. Introduction
2. Materials and Methods
- Epworth Sleepiness Scale (ESS): it is a self-administered questionnaire with 8 questions. Respondents are asked to rate, on a 4-point scale (0–3), their usual chances of dozing off or falling asleep while engaged in eight different activities. A score above 11 is considered significant for EDS [29].
- Fatigue Severity Scale (FSS): a self-evaluating assessment establishing the impact of fatigue on daily life, including nine statements that rate the severity of related symptoms. A score above 36 is indicative of clinically significant fatigue [30].
- Pittsburgh Sleep Quality Index (PSQI): a 19 self-rated questionnaire analyzing sleep quality. It can be subdivided into 7 components measuring: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of hypnotic medications, and daytime dysfunction. The seven components yield one global score, ranging from 0 (no difficulties) to 21 (severe sleep impairment). A cut-off of 5 is considered significant for altered sleep quality [31].
- Difficulties in Emotion Regulation Scale-Short Form (DERS-SF): it is an instrument measuring emotion regulation problems, organized with 36 items self-report scale, indicative of how patients relate to their emotions, in order to produce scores on the following subscales: non-acceptance of emotional responses; difficulty engaging in goal-directed behavior, impulse control difficulties, lack of emotional awareness, limited access to emotion regulation strategies and lack of emotional clarity [32]. Higher values reflect major impairment in the explored subitem, with no specific cut-off.
- Hyperarousal Scale (H-Scale): The H-Scale consists of 26 items that assess the hyperarousal behavioral trait on a four-point Likert-type scale coded as 0 = not at all, 1 = a little, 2 = quite a bit, and 3 = extremely. The scale produces a Total Summation Score (HSUM): a score of “introspectiveness”, i.e., a possible tendency to ruminate; a score of “reactivity”; and the score of “extreme responses”, referring to the total number of items checked as “extremely” ranging from 0 to 26. The level of hyperactivation is directly related to the Total Summation Score [24].
- Depression and Anxiety Scale (DASS-21): it is a 21-item self-questionnaire measuring distress along the 3 axes of depression, anxiety, and stress. Each item is scored from 0 to 3, with higher points indicative of more severe disturbances. Final scores are divided into 3 scales, respectively analyzing depression, anxiety, and stress. Values above 21 are considered severe for depression, values above 15 are severe for anxiety, and values above 26 are severe for stress perception [33].
- Addiction-like Eating Behaviors Scale (AEBS): It represents a validated tool to quantify the behavioral features of a potential ‘eating addiction’. AEBS is based on 15 Likert questions. Values above 38 are related to compulsive eating behaviors [34].
- Work Productivity and Activity Impairment Questionnaire-General Health (WPAI-GH): It is a 6-item instrument to measure impairments over the past 7 days in both paid work and unpaid work due to one’s health. It consists of four metrics: (1) Absenteeism (the percentage of work time missed); (2) Presenteeism (the percentage of impairment experienced while at work); (3) Overall work productivity loss (an estimate of the combination of absenteeism and presenteeism), (4) Activity impairment (the percentage of impairment in daily activities) [35].
- MEDI-LITE: it measures the adherence to the Mediterranean diet, determining the consumption, in terms of daily and/or weekly quantities, of 9 food groups that are present in the scientific studies that have investigated the association between adherence to the Mediterranean diet and health status. The final score, obtained by summing these values, varies from 0 (low adherence) to 18 (high adherence) [36].
- EQ-5D-health questionnaire: it represents a quick-to-use instrument to describe individuals’ health state. The descriptive system comprises five dimensions: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Each dimension has 5 levels: no problems, slight problems, moderate problems, severe problems, and extreme problems. Patients’ responses are coded as a number (1, 2, or 3) that corresponds to the respective level of severity: 1 indicates no problems, 2 some problems, and 3 extreme problems. In this way, a person’s health state profile can be defined by a 5-digit number, ranging from 11,111 (having no problems in any of the dimensions) to 33,333 (having extreme problems in all the dimensions) [37].
Statistical Analysis
3. Results
3.1. Fatigue Severity Scale (FSS)
3.2. Epworth Sleepiness Scale (ESS)
3.3. Pittsburgh Sleep Quality Index (PSQI)
3.4. Difficulties in Emotion Regulation Scale—Short Form (DERS-SF)
3.5. Addiction-like Eating Behavior Scale (AEBS)
3.6. Hyperarousal Scale (H-Scale)
3.7. Work Productivity and Activity Impairment Questionnaire-General Health (WPAI-GH)
3.8. EQ-5D Health Questionnaire
3.9. Depression and Anxiety Scale (DASS-21)
3.10. MEDILITE
3.11. Impact of ESS and FSS on Questionnaire Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDS | Excessive Daytime Sleepiness |
EAN | European Academy of Neurology |
ESRS | European Sleep Research Society |
EU-NN | European Narcolepsy Network |
BMI | Body Mass Index |
ESS | Epworth Sleepiness Scale |
FSS | Fatigue Severity Scale |
PSQI | Pittsburgh Sleep Quality Index |
DERS-SF | Difficulties in Emotion Regulation Scale—Short Form |
DASS-21 | Depression and Anxiety Scale |
AEBS | Addiction-like Eating Behaviors Scale |
WPAI-GH | Work Productivity and Activity Impairment Questionnaire-General Health |
CRSWD | Circadian Rhythm Sleep-Wake Disorders |
OSA | Obstructive Sleep Apnea |
References
- Guilleminault, C.; Brooks, S.N. Excessive daytime sleepiness: A challenge for the practising neurologist. Brain 2001, 124, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Barbera, J.; Shapiro, C.M. Distinguishing sleepiness and fatigue: Focus on definition and measurement. Sleep Med. Rev. 2006, 10, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.; Shen, J.; Shapiro, C.M. Measurements of sleepiness and fatigue. J. Psychosom. Res. 2010, 69, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Pigeon, W.R.; Sateia, M.J.; Ferguson, R.J. Distinguishing between excessive daytime sleepiness and fatigue. J. Psychosom. Res. 2003, 54, 61–69. [Google Scholar] [CrossRef]
- Lammers, G.J.; Bassetti, C.L.; Dolenc-Groselj, L.; Jennum, P.J.; Kallweit, U.; Khatami, R.; Lecendreux, M.; Manconi, M.; Mayer, G.; Partinen, M.; et al. Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts. Sleep Med. Rev. 2020, 52, 101306. [Google Scholar] [CrossRef]
- Bock, J.; Covassin, N.; Somers, V. Excessive daytime sleepiness: An emerging marker of cardiovascular risk. Heart 2022, 108, 1761–1766. [Google Scholar] [CrossRef]
- Jennum, P.J.; Plazzi, G.; Silvani, A.; Surkin, L.A.; Dauvilliers, Y. Cardiovascular disorders in narcolepsy: Review of associations and determinants. Sleep Med. Rev. 2021, 58, 101440. [Google Scholar] [CrossRef]
- Hasler, G.; Buysse, D.J.; Gamma, A.; Ajdacic, V.; Eich, D.; Rössler, W.; Angst, J. Excessive Daytime Sleepiness in Young Adults. J. Clin. Psychiatry 2005, 66, 521–529. [Google Scholar] [CrossRef]
- Sameer, H.M.; Imran, N.; Tarar, T.N.; Khawaja, I.S. Association of Excessive Daytime Sleepiness With Psychological Distress in Medical Students. Prim Care Companion CNS Disord 2020, 22, 19m02531. [Google Scholar] [CrossRef]
- Bram, A.D.; Gottschalk, K.A.; Leeds, W.M. Emotional Regulation in Women with Chronic Fatigue Syndrome and Depression: Internal Representations and Adaptive Defenses. J. Am. Psychoanal. Assoc. 2018, 66, 701–741. [Google Scholar] [CrossRef]
- Manning, K.; Bakhshaie, J.; Shepherd, J.M.; Jones, J.; Timpano, K.R.; Viana, A.G.; Zvolensky, M.J. Fatigue severity and emotion dysregulation: Roles in mental health among trauma exposed college students. Fatigue Biomed. Heal. Behav. 2019, 7, 181–195. [Google Scholar] [CrossRef]
- Lewczuk, K.; Wizła, M.; Oleksy, T.; Wyczesany, M. Emotion Regulation, Effort and Fatigue: Complex Issues Worth Investigating. Front. Psychol. 2022, 13, 742557. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.; Suresh, R.; Lynch, S.; Clarkson, P.; Stanley, P. Illness perceptions and mood in chronic fatigue syndrome. J. Psychosom. Res. 2001, 50, 65–68. [Google Scholar] [CrossRef]
- Rakib, A.; White, P.D.; Pinching, A.J.; Hedge, B.; Newbery, N.; Fakhoury, W.K.; Priebe, S. Subjective quality of life in patients with chronic fatigue syndrome. Qual. Life Res. 2005, 14, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Haines, C.; Loades, M.; Davis, C. Illness perceptions in adolescents with chronic fatigue syndrome and other physical health conditions: Application of the common sense model. Clin. Child Psychol. Psychiatry 2018, 24, 546–563. [Google Scholar] [CrossRef]
- Roberts, D. Chronic fatigue syndrome and quality of life. Patient Relat. Outcome Meas. 2018, 9, 253–262. [Google Scholar] [CrossRef]
- de Boer, A.G.E.M.; de Wind, A.; Coenen, P.; van Ommen, F.; Greidanus, M.A.; Zegers, A.D.; Duijts, S.F.A.; Tamminga, S.J. Cancer survivors and adverse work outcomes: Associated factors and supportive interventions. Br. Med. Bull. 2023, 145, 60–71. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; D’angelo, S.; Ntani, G.; Walker-Bone, K. Impact of fatigue on work productivity and health-related job loss. Occup. Med. 2024, 74, 423–429. [Google Scholar] [CrossRef]
- Sosso, F.A.E.; Silva, F.T.; Rodrigues, R.Q.; Carvalho, M.M.; Zoukal, S.; Zarate, G.C. Prevalence of Sleep Disturbances in Latin American Populations and Its Association with Their Socioeconomic Status—A Systematic Review and a Meta-Analysis. J. Clin. Med. 2023, 12, 7508. [Google Scholar] [CrossRef]
- Valero, S.; Sáez-Francàs, N.; Calvo, N.; Alegre, J.; Casas, M. The role of neuroticism, perfectionism and depression in chronic fatigue syndrome. A structural equation modeling approach. Compr. Psychiatry 2013, 54, 1061–1067. [Google Scholar] [CrossRef]
- Wright, A.; Fisher, P.L.; Baker, N.; O’Rourke, L.; Cherry, M.G. Perfectionism, depression and anxiety in chronic fatigue syndrome: A systematic review. J. Psychosom. Res. 2021, 140, 110322. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.P.; Brito, I.d.S.; Mestre, T.D.; Pires, A.M.; Lopes, M.J. Meshing Anxiety, Depression, Quality of Life, and Functionality in Chronic Disease. Healthcare 2025, 13, 539. [Google Scholar] [CrossRef] [PubMed]
- Wyller, V.B.; Eriksen, H.R.; Malterud, K. Can sustained arousal explain the Chronic Fatigue Syndrome? Behav. Brain Funct. 2009, 5, 10. [Google Scholar] [CrossRef]
- Bruno, A.; Rizzo, A.; Muscatello, M.R.A.; Celebre, L.; Silvestri, M.C.; Zoccali, R.A.; Mento, C. Hyperarousal Scale: Italian Cultural Validation, Age and Gender Differences in a Nonclinical Population. Int. J. Environ. Res. Public Health 2020, 17, 1176. [Google Scholar] [CrossRef]
- Liu, C.; Rotaru, K.; Lee, R.S.C.; Tiego, J.; Suo, C.; Yücel, M.; Albertella, L. Distress-driven impulsivity interacts with cognitive inflexibility to determine addiction-like eating. J. Behav. Addict. 2021, 10, 534–539. [Google Scholar] [CrossRef]
- Su, Y.; Cochrane, B.B.; Reding, K.; Herting, J.R.; Tinker, L.F.; Zaslavsky, O. Mediterranean Diet and Fatigue among Community-Dwelling Postmenopausal Women. J. Nutr. Gerontol. Geriatr. 2022, 41, 22–45. [Google Scholar] [CrossRef]
- Arslan, S.; Bozkurt, C.; Arslan, M.; Bulut, H. Effects of adherence to the Mediterranean diet on fatigue and activities of daily living in geriatric individuals with COPD. Clin. Nutr. ESPEN 2023, 54, 436–442. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine (AASM). International Classification of Sleep Disorders, Third Edition, Text Revision (ICSD-3-TR). Available online: https://aasm.org/clinical-resources/international-classification-sleep-disorders/ (accessed on 19 February 2025).
- Vignatelli, L.; Plazzi, G.; Barbato, A.; Ferini-Strambi, L.; Manni, R.; Pompei, F.; D’Alessandro, R. Italian version of the Epworth sleepiness scale: External validity. Neurol. Sci. 2003, 23, 295–300. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Hallion, L.S.; Steinman, S.A.; Tolin, D.F.; Diefenbach, G.J. Psychometric Properties of the Difficulties in Emotion Regulation Scale (DERS) and Its Short Forms in Adults With Emotional Disorders. Front. Psychol. 2018, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.A.; Mannarini, S.; Castelnuovo, G.; Pietrabissa, G. Disordered Eating Behaviors Related to Food Addiction/Eating Addiction in Inpatients with Obesity and the General Population: The Italian Version of the Addiction-like Eating Behaviors Scale (AEBS-IT). Nutrients 2022, 15, 104. [Google Scholar] [CrossRef]
- Zhang, W.; Bansback, N.; Boonen, A.; Young, A.; Singh, A.; Anis, A.H. Validity of the work productivity and activity impairment questionnaire-general health version in patients with rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, R177. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Brooks, R.; Boye, K.S.; Slaap, B. EQ-5D: A plea for accurate nomenclature. J. Patient-Rep. Outcomes 2020, 4, 52. [Google Scholar] [CrossRef]
- The Jamovi Project, Jamovi. (Version 2.3) [Computer Software]. Available online: http://www.jamovi.org (accessed on 10 March 2025).
- Douglas, C.E.; Michael, F.A. On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Stat.-Theory Methods 1991, 20, 127–139. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Ramos, J.N.; Muraro, A.P.; Nogueira, P.S.; Ferreira, M.G.; Rodrigues, P.R.M. Poor sleep quality, excessive daytime sleepiness and association with mental health in college students. Ann. Hum. Biol. 2021, 48, 382–388. [Google Scholar] [CrossRef]
- Tsou, M.-T.; Chang, B.C.-C. Association of Depression and Excessive Daytime Sleepiness among Sleep-Deprived College Freshmen in Northern Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 3148. [Google Scholar] [CrossRef]
- Schneider, L.D.; Stevens, J.; Husain, A.M.; Ito, D.; Fuller, D.S.; Zee, P.C.; Macfadden, W. Symptom Severity and Treatment Satisfaction in Patients with Idiopathic Hypersomnia: The Real World Idiopathic Hypersomnia Outcomes Study (ARISE). Nat. Sci. Sleep 2023, 15, 89–101. [Google Scholar] [CrossRef]
- Léger, D.; Stepnowsky, C. The economic and societal burden of excessive daytime sleepiness in patients with obstructive sleep apnea. Sleep Med. Rev. 2020, 51, 101275. [Google Scholar] [CrossRef] [PubMed]
- Waldman, L.T.; Parthasarathy, S.; Villa, K.F.; Bron, M.; Bujanover, S.; Brod, M. Understanding the burden of illness of excessive daytime sleepiness associated with obstructive sleep apnea: A qualitative study. Health Qual. Life Outcomes 2020, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Kremer, A.E.; Swain, M.G.; Jones, D.; Bowlus, C.; Trauner, M.; Henry, L.; Gerber, L. Assessment of fatigue and its impact in chronic liver disease. J. Hepatol. 2024, 81, 726–742. [Google Scholar] [CrossRef]
- Torlinska, B.; Raza, K.; Filer, A.; Jutley, G.; Sahbudin, I.; Singh, R.; de Pablo, P.; Rankin, E.; Rhodes, B.; Amft, N.; et al. Predictors of quality of life, functional status, depression and fatigue in early arthritis: Comparison between clinically suspect arthralgia, unclassified arthritis and rheumatoid arthritis. BMC Musculoskelet. Disord. 2024, 25, 307. [Google Scholar] [CrossRef]
- Eppingbroek, A.A.M.; Lechner, L.; Bakker, E.C.; Nijkamp, M.D.; de Witte, M.A.; Bolman, C.A.W. The personal impact of living with a myeloproliferative neoplasm. Psycho-Oncology 2024, 33, e6338. [Google Scholar] [CrossRef]
- Ramirez, A.O.; Keenan, A.; Kalau, O.; Worthington, E.; Cohen, L.; Singh, S. Prevalence and burden of multiple sclerosis-related fatigue: A systematic literature review. BMC Neurol. 2021, 21, 468. [Google Scholar] [CrossRef]
- Patwardhan, A.; Kamble, N.; Bhattacharya, A.; Holla, V.; Yadav, R.; Pal, P.K. Impact of Non-Motor Symptoms on Quality of Life in Patients with Early-Onset Parkinson’s Disease. Can. J. Neurol. Sci./J. Can. des Sci. Neurol. 2024, 51, 650–659. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, W.; Li, N.; Zhang, B.; Dai, W.; Li, S.; Xu, H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med. 2024, 115, 210–217. [Google Scholar] [CrossRef]
- Kampaite, A.; Gustafsson, R.; York, E.N.; Foley, P.; MacDougall, N.J.J.; Bastin, M.E.; Chandran, S.; Waldman, A.D.; Meijboom, R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS ONE 2024, 19, e0299634. [Google Scholar] [CrossRef]
- Filippi, M.; Rocca, M.; Colombo, B.; Falini, A.; Codella, M.; Scotti, G.; Comi, G. Functional Magnetic Resonance Imaging Correlates of Fatigue in Multiple Sclerosis. NeuroImage 2002, 15, 559–567. [Google Scholar] [CrossRef]
- Wilting, J.; Rolfsnes, H.O.; Zimmermann, H.; Behrens, M.; Fleischer, V.; Zipp, F.; Gröger, A. Structural correlates for fatigue in early relapsing remitting multiple sclerosis. Eur. Radiol. 2015, 26, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Penner, I.; Raselli, C.; Stöcklin, M.; Opwis, K.; Kappos, L.; Calabrese, P. The Fatigue Scale for Motor and Cognitive Functions (FSMC): Validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. J. 2009, 15, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, V.; Bremner, J.D. Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci. Biobehav. Rev. 2017, 74, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, C. Longevity Science and Women’s Health and Wellbeing. J. Popul. Ageing 2023, 18, 1–20. [Google Scholar] [CrossRef]
- World Health Organization. World Health Observatory: Healthy Life Expectancy (HALE) at Birth (Years). 2025. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-hale-healthy-life-expectancy-at-birth (accessed on 19 April 2025).
- Nusselder, W.J.; Cambois, E.M.; Wapperom, D.; Meslé, F.; Looman, C.W.N.; Yokota, R.T.C.; Van Oyen, H.; Jagger, C.; Robine, J.M. Women’s excess unhealthy life years: Disentangling the unhealthy life years gap. Eur. J. Public Health 2019, 29, 914–919. [Google Scholar] [CrossRef]
- Castelletti, G.; Misirocchi, F.; Zilioli, A.; Salvatelli, M.L.; Rausa, F.; Pizzarotti, S.; Zinno, L.; Florindo, I.; Pedrazzi, G.; Parrino, L.; et al. How can sleep disorders affect our reaction towards external stressors: A lesson from the COVID-19 outbreak. Neurol. Sci. 2023, 45, 391–399. [Google Scholar] [CrossRef]
- Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The hyperarousal model of insomnia: A review of the concept and its evidence. Sleep Med. Rev. 2010, 14, 19–31. [Google Scholar] [CrossRef]
- Belloir, J.; Makarem, N.; Shechter, A. Sleep and Circadian Disturbance in Cardiovascular Risk. Curr. Cardiol. Rep. 2022, 24, 2097–2107. [Google Scholar] [CrossRef]
- Lim, V.K.; Chen, D.; Aw, S.S.; Tan, M. Unemployed and exhausted? Job-search fatigue and reemployment quality. J. Vocat. Behav. 2016, 92, 68–78. [Google Scholar] [CrossRef]
- Blanchflower, D.G.; Bryson, A. Unemployment and sleep: Evidence from the United States and Europe. Econ. Hum. Biol. 2021, 43, 101042. [Google Scholar] [CrossRef]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Burton, N.W.; Kolbe-Alexander, T.L. Shift Work and Poor Mental Health: A Meta-Analysis of Longitudinal Studies. Am. J. Public Health 2019, 109, e13–e20. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.; Basalely, A.; Singer, P.; Castellanos, L.; Sethna, C.B. The association between sleep duration and cardiometabolic risk among children and adolescents in the United States (US): A NHANES study. Child Care Health Dev. 2024, 50, e13273. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep duration and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45 (Suppl. 2), S218–S231. [Google Scholar] [CrossRef]
- Arab, A.; Karimi, E.; Garaulet, M.; Scheer, F.A. Dietary patterns and insomnia symptoms: A systematic review and meta-analysis. Sleep Med. Rev. 2024, 75, 101936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temporini, B.; Bottignole, D.; Balella, G.; Ughetti, G.; Pollara, I.; Soglia, M.; Rausa, F.; Ciuro, Y.; Franceschini, C.; Maggio, M.G.; et al. The Overlapping Burdens of Fatigue and Daytime Sleepiness: Gender-Specific Impacts on Life Quality in Patients with Sleep Disorders. Diseases 2025, 13, 172. https://doi.org/10.3390/diseases13060172
Temporini B, Bottignole D, Balella G, Ughetti G, Pollara I, Soglia M, Rausa F, Ciuro Y, Franceschini C, Maggio MG, et al. The Overlapping Burdens of Fatigue and Daytime Sleepiness: Gender-Specific Impacts on Life Quality in Patients with Sleep Disorders. Diseases. 2025; 13(6):172. https://doi.org/10.3390/diseases13060172
Chicago/Turabian StyleTemporini, Bianca, Dario Bottignole, Giulia Balella, Giorgio Ughetti, Irene Pollara, Margherita Soglia, Francesco Rausa, Ylenia Ciuro, Christian Franceschini, Marcello Giuseppe Maggio, and et al. 2025. "The Overlapping Burdens of Fatigue and Daytime Sleepiness: Gender-Specific Impacts on Life Quality in Patients with Sleep Disorders" Diseases 13, no. 6: 172. https://doi.org/10.3390/diseases13060172
APA StyleTemporini, B., Bottignole, D., Balella, G., Ughetti, G., Pollara, I., Soglia, M., Rausa, F., Ciuro, Y., Franceschini, C., Maggio, M. G., Parrino, L., & Mutti, C. (2025). The Overlapping Burdens of Fatigue and Daytime Sleepiness: Gender-Specific Impacts on Life Quality in Patients with Sleep Disorders. Diseases, 13(6), 172. https://doi.org/10.3390/diseases13060172