Overdiagnosis and Overtreatment in Prostate Cancer
Abstract
:1. Introduction
2. Risk of Overdiagnosis and Overtreatment of Prostate Cancer
3. Consequences of Overdiagnosis and Overtreatment of Prostate Cancer
4. Challenges in Treatment and Prognosis of Prostate Cancer
Treatment Option | Description | Advantages | Problems | Ref. |
---|---|---|---|---|
Active Surveillance | Closely monitoring cancer progression without immediate treatment, often recommended for low-risk PCa or patients with limited life expectancy. | Avoids unnecessary treatment side effects. | Requires close monitoring; may cause anxiety. | [62,63] |
Radical Prostatectomy | Surgical removal of the entire prostate gland and surrounding tissue. | Offers a chance of cure, especially for localized PCa. | Risk of urinary incontinence, erectile dysfunction, and other surgical complications. | [64,65] |
Radiation Therapy | Uses high-energy X-rays or other forms of radiation to kill or suppress cancer cells. Types include external beam radiation therapy (EBRT) and brachytherapy (internal radiation therapy). | Effective for localized PCa; fewer side effects compared to surgery. | Potential side effects: urinary problems, bowel irritation, erectile dysfunction. | [51,66] |
Hormone Therapy (ADT) | Reduces levels of male hormones (androgens) that contribute to the growth of PCa. | Slows cancer progression; relieves symptoms. | Side effects: hot flashes, loss of libido, osteoporosis, fatigue. | [67,68] |
Chemotherapy | Uses drugs to kill cancer cells or prevent their proliferation, typically for advanced or metastatic PCa. | Blocks tumor development; prolongs survival. | Potential side effects: nausea, hair loss, fatigue, increased susceptibility to infections, decreased immunity. | [69,70] |
Immunotherapy | Stimulates the body’s immune system to recognize and attack PCa cells. Includes checkpoint inhibitors and therapeutic vaccines. | Potential for long-term response; fewer systemic side effects. | Limited effectiveness in some patients; adverse immune-related events. | [71,72] |
5. Factors Influencing Treatment Strategy for Prostate Cancer
Biomarker | Type | Sample Type | Detection Method | Potential | Clinical Relevance | Ref. |
---|---|---|---|---|---|---|
Prostate Cancer Antigen 3 (PCA3) | Long non-coding RNA | Urine | Urine-based assay | Non-invasive, assists in distinguishing between benign and malignant prostate conditions | Moderate | [79] |
TMPRSS2-ERG Fusion | Gene fusion | Tissue/ Urine | Molecular analysis (PCR) | Aids in diagnosis, prognosis, and risk stratification of prostate cancer | Low to Emerging | [81] |
Prostate Health Index (phi) | Protein | Blood | Immunoassay | Improves specificity of PSA testing, aids in identifying aggressive prostate cancer | Moderate to High | [83] |
SelectMDx | Gene expression | Urine | mRNA analysis (RT-qPCR) | Identifies patients at risk of clinically significant prostate cancer, reduces unnecessary biopsies | Emerging | [86] |
Circulating Tumor Cells (CTCs) | Cancer cells | Blood | Immunocytochemistry | Prognostic biomarker for disease progression, potential for treatment monitoring | Low for early detection | [88] |
Prostate-Specific Antigen Density (PSAD) | Antigen | Blood | PSAD calculated by dividing the serum level of prostate-specific antigen (PSA) by the volume of the prostate. | PSAD is a clinical measure used to help assess the risk of PCa. | High | [91] |
6. Prostate Enlargement and Cancer Risk: The Protective Hypothesis and Its Reflection in PSAD
Aspect | Traditional Methods (PSA + Random Biopsy) | MRI | Biomarkers | Targeted Biopsy | Ref. |
---|---|---|---|---|---|
Screening Tool | PSA test: blood-based, non-specific, high false positives/negatives. | mpMRI: Non-invasive imaging for lesion localization and risk assessment. | Blood/urine tests (phi, 4Kscore, PCA3, SelectMDx) increase specificity for csPCa. | Used after MRI to sample MRI-visible lesions. Not a screening tool itself. | [11,123] |
Biopsy Approach | Random TRUS-guided biopsy: blind, systematic sampling of 10–12 cores. | Identifies suspicious regions before biopsy, guides biopsy decision. | Supports biopsy decision-making by risk stratification. | MRI-TRUS fusion, cognitive, or in-bore MRI-guided biopsy targeting MRI-visible lesions. | [124,125] |
Sensitivity and Specificity | PSA: variable sensitivity (21–68%), low specificity, leads to unnecessary biopsies. | High sensitivity (~88%) and specificity (~74%) for csPCa. | Improves specificity, differentiating indolent vs. aggressive cancers. | Higher detection rate of csPCa, fewer missed lesions compared to random biopsy. | [126,127,128] |
Overdiagnosis and Overtreatment | High risk of detecting insignificant cancers, leading to overtreatment. | Reduces detection of indolent lesions, focuses on csPCa. | Helps avoid unnecessary biopsies and treatment of indolent cancers. | Targets clinically significant lesions, reduces overdiagnosis. | [129,130] |
Invasiveness and Complications | Invasive biopsy with risk of infection, bleeding, urinary retention. | Non-invasive imaging modality. | Minimally invasive (blood/urine samples). | Fewer biopsy cores, lower complication rates compared to random biopsy. | [131,132] |
Cost and Accessibility | PSA: low-cost, random biopsy widely available but resource-intensive. | High cost, limited access in some regions, requires radiology expertise. | Variable cost, availability increasing, simpler than MRI. | Requires specialized equipment and expertise for MRI-guided targeting. | [9,133] |
Clinical Guidelines and Adoption | PSA + random biopsy remains standard but controversial. | Recommended pre-biopsy tool in AUA, EAU guidelines for elevated PSA or prior negative biopsy. | Used as adjuncts for better risk assessment and biopsy decision-making. | Increasingly preferred for biopsy guidance after MRI in guidelines. | [134,135] |
Limitations | PSA lacks specificity; random biopsy may miss csPCa; overdiagnosis common. | Operator-dependent interpretation; variability in MRI quality and reporting. | Lack of universal thresholds; not all biomarkers are widely validated. | Access to technology and expertise can be limited; requires MRI integration. | [136,137] |
7. PCa Overtreatment: Trends and Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, H.J.; Zhang, W.; Zhang, L.; Qu, Y.; Xu, Z.; Tan, Z.; Yan, P.; Tang, M.; Yang, C.; Wang, Y.; et al. Risk factors for prostate cancer: An umbrella review of prospective observational studies and mendelian randomization analyses. PLoS Med. 2024, 21, e1004362. [Google Scholar] [CrossRef] [PubMed]
- Urquijo-Moraza, A.; Guinea-Castañares, J.; Iturralde-Iriso, J.M. Prostate cancer screening with prostate-specific antigen (PSA) to men over 70 years old in an urban health zone, 2018–2020: A cross-sectional study. Med. Fam-Semer. 2023, 49, 101876. [Google Scholar]
- Varaprasad, G.L.; Gupta, V.K.; Prasad, K.; Kim, E.; Tej, M.B.; Mohanty, P.; Verma, H.K.; Raju, G.S.R.; Bhaskar, L.; Huh, Y.S. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp. Hematol. Oncol. 2023, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Mumuni, S.; O’Donnell, C.; Doody, O. The Risk Factors and Screening Uptake for Prostate Cancer: A Scoping Review. Healthcare 2023, 11, 2780. [Google Scholar] [CrossRef]
- Ragavan, M.V.; Borno, H.T. The costs and inequities of precision medicine for patients with prostate cancer: A call to action. Urol. Oncol-Semin. Orig. Investig. 2023, 41, 369–375. [Google Scholar] [CrossRef]
- Tang, Y.X.; Hu, X.; Wang, Y.H.; Li, X. Gleason score 6: Overdiagnosis and overtreatment? Asian J. Surg. 2023, 46, 2637–2638. [Google Scholar] [CrossRef]
- Baseilhac, P.; Rouvière, O. Prostate cancer diagnosis: Present and future. Med. Nucl. 2023, 47, 233–240. [Google Scholar] [CrossRef]
- Kalavacherla, S.; Riviere, P.; Javier-DesLoges, J.; Banegas, M.P.; McKay, R.R.; Murphy, J.D.; Rose, B.S. Low-Value Prostate-Specific Antigen Screening in Older Males. Jama Netw. Open 2023, 6, e237504. [Google Scholar] [CrossRef]
- Maguire, N.; Moloney, A.; Fic, K. Prostate Specific Antigen (PSA) testing in a general practice 2009–2019. Ir. J. Med. Sci. 2025, 194, 1–3. [Google Scholar] [CrossRef]
- Denijs, F.B.; van Harten, M.J.; Meenderink, J.J.L.; Leenen, R.C.A.; Remmers, S.; Venderbos, L.D.F.; van den Bergh, R.C.N.; Beyer, K.; Roobol, M.J. Risk calculators for the detection of prostate cancer: A systematic review. Prostate Cancer Prostatic Dis. 2024, 27, 544–557. [Google Scholar] [CrossRef]
- Denijs, F.B.; Van Poppel, H.; Stenzl, A.; Villanueva, T.; Vilaseca, J.M.; Ungan, M.; Deschamps, A.; Collen, S.; Roobol, M.J. PSA testing in primary care: Is it time to change our practice? BMC Prim. Care 2024, 25, 436. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, M.; Hübner, A.; Al-Monajjed, R.; Albers, P.; Radtke, J.P.; Schimmöller, L.; Boschheidgen, M. Prostate cancer screening—Current overview. Radiologie 2024, 64, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.B. Contemporary Strategies for Clinical Chemoprevention of Localized Prostate Cancer. Cancer Control 2024, 31, 10732748241302863. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Tian, A.M.; Che, J.Z.; Miao, Y.D.; Liu, Y.Y.; Liu, Y.Y.; Xu, Y.K. Application and optimization of prostate-specific antigen screening strategy in the diagnosis of prostate cancer: A systematic review. Front. Oncol. 2024, 13, 1320681. [Google Scholar] [CrossRef]
- De Vrieze, M.; Al-Monajjed, R.; Boschheidgen, M.; Albers, P. Prostate Cancer Screening in Young Men. J. Pers. Med. 2024, 14, 818. [Google Scholar] [CrossRef]
- Hall, R.; Bancroft, E.; Pashayan, N.; Kote-Jarai, Z.; Eeles, R.A. Genetics of prostate cancer: A review of latest evidence. J. Med. Genet. 2024, 61, 915–926. [Google Scholar] [CrossRef]
- Sequeira, J.P.; Salta, S.; Freitas, R.; López-López, R.; Díaz-Lagares, A.; Henrique, R.; Jerónimo, C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers 2024, 16, 1363. [Google Scholar] [CrossRef] [PubMed]
- Persell, S.D.; Petito, L.C.; Lee, J.Y.; Meeker, D.; Doctor, J.N.; Goldstein, N.J.; Fox, C.R.; Rowe, T.A.; Linder, J.A.; Chmiel, R.; et al. Reducing Care Overuse in Older Patients Using Professional Norms and Accountability: A Cluster Randomized Controlled Trial. Ann. Intern. Med. 2024, 177, 324–334. [Google Scholar] [CrossRef]
- Sun, Z.N.; Wang, K.X.; Gao, G.; Wang, H.H.; Wu, P.S.; Li, J.L.; Zhang, X.D.; Wang, X.Y. Assessing the Performance of Artificial Intelligence Assistance for Prostate MRI: A Two-Center Study Involving Radiologists with Different Experience Levels. J. Magn. Reson. Imaging 2025, 61, 2234–2245. [Google Scholar] [CrossRef]
- Yim, K.; Ma, C.R.; Carlsson, S.; Lilja, H.; Mucci, L.; Penney, K.; Kibel, A.S.; Eggener, S.; Preston, M.A. Free PSA and Clinically Significant and Fatal Prostate Cancer in the PLCO Screening Trial. J. Urol. 2023, 210, 630–637. [Google Scholar] [CrossRef]
- Sweis, J.; Ofori, B.; Murphy, A.B. Concerns regarding prostate cancer screening guidelines in minority populations. Prostate Cancer Prostatic Dis. 2023, 27, 591–593. [Google Scholar] [CrossRef] [PubMed]
- de Vos, I.I.; Luiting, H.B.; Roobol, M.J. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J. Pers. Med. 2023, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Beatrici, E.; Labban, M.; Stone, B.V.; Filipas, D.K.; Reis, L.O.; Lughezzani, G.; Buffi, N.M.; Kibel, A.S.; Cole, A.P.; Trinh, Q.D. Uncovering the Changing Treatment Landscape for Low-risk Prostate Cancer in the USA from 2010 to 2020: Insights from the National Cancer Data Base. Eur. Urol. 2023, 84, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R. Reducing Prostate Cancer Overdiagnosis. N. Engl. J. Med. 2022, 387, 2187–2188. [Google Scholar] [CrossRef]
- Saliev, T.; Akhmad, N.; Altynbekova, S.; Nogaeva, M.; Tazhieva, A.; Dushimova, Z. Role of ethnic and genetic factors in the development of prostate cancer (Review). World Acad. Sci. J. 2024, 7, 13. [Google Scholar] [CrossRef]
- Ho, M.D.; Yeo, K.T.J.; Eggener, S.E. Time to stop reporting estimates of any prostate cancer risk with percentage of free prostate-specific antigen. Am. J. Clin. Pathol. 2024, 161, 1–3. [Google Scholar] [CrossRef]
- Rashid, P.; Zargar-Shoshtari, K.; Ranasinghe, W. Prostate-specific antigen testing for prostate cancer Time to reconsider the approach to screening. Aust. J. Gen. Pract. 2023, 52, 91–95. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Parnes, H. Screening for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1405–1414. [Google Scholar] [CrossRef]
- Sun, Z.A.; Wang, K.X.; Wu, C.C.; Chen, Y.T.; Kong, Z.X.; She, L.L.; Song, B.; Luo, N.; Wu, P.S.; Wang, X.P.; et al. Using an artificial intelligence model to detect and localize visible clinically significant prostate cancer in prostate magnetic resonance imaging: A multicenter external validation study. Quant. Imaging Med. Surg. 2023, 14, 43–60. [Google Scholar] [CrossRef]
- Jiang, M.J.; Yuan, B.H.; Kou, W.X.; Yan, W.; Marshall, H.; Yang, Q.Y.; Syer, T.; Punwani, S.; Emberton, M.; Barratt, D.C.; et al. Prostate cancer segmentation from MRI by a multistream fusion encoder. Med. Phys. 2023, 50, 5489–5504. [Google Scholar] [CrossRef]
- Feuer, Z.; Meng, X.S.; Rosenkrantz, A.B.; Kasivisvanathan, V.; Moore, C.M.; Huang, R.; Deng, F.M.; Lepor, H.; Wysock, J.S.; Huang, W.C.; et al. Application of the PRECISION Trial Biopsy Strategy to a Contemporary Magnetic Resonance Imaging-Targeted Biopsy Cohort—How Many Clinically Significant Prostate Cancers are Missed? J. Urol. 2021, 205, 740–747. [Google Scholar] [CrossRef]
- Kazerooni, A.F.; Bagley, S.J.; Akbari, H.; Saxena, S.; Bagheri, S.; Guo, J.; Chawla, S.; Nabavizadeh, A.; Mohan, S.; Bakas, S.; et al. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers 2021, 13, 5921. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.U.; Bosaily, A.E.S.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, Y.Q.; Zheng, X.Y.; Liu, B.; Chen, H.; Li, J.F.; Ma, X.Y.; Xiang, J.J.; Weng, G.B.; Zhu, W.Z.; et al. A prospective multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core targeted biopsy for prostate cancer diagnosis. World J. Urol. 2023, 41, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Chan, V.W.S.; Clement, K.D.; Levis, B.; Ng, A.; Asif, A.; Haider, M.A.; Emberton, M.; Pond, G.R.; Agarwal, R.; et al. VISION: An Individual Patient Data Meta-analysis of Randomised Trials Comparing Magnetic Resonance Imaging Targeted Biopsy with Standard Transrectal Ultrasound Guided Biopsy in the Detection of Prostate Cancer. Eur. Urol. 2025, 87, 512–523. [Google Scholar] [CrossRef]
- von Stauffenberg, F.; Poyet, C.; Beintner-Skawran, S.; Maurer, A.; Schmid, F.A. Current Clinical Applications of PSMA-PET for Prostate Cancer Diagnosis, Staging, and Treatment. Cancers 2024, 16, 4263. [Google Scholar] [CrossRef]
- Mohammadi, T.; Guh, D.P.; Tam, A.C.T.; Pataky, R.E.; Black, P.C.; So, A.L.; Lynd, L.D.; Zhang, W.; Conklin, A.I. Economic evaluation of prostate cancer risk assessment methods: A cost-effectiveness analysis using population data. Cancer Med. 2023, 12, 20106–20118. [Google Scholar] [CrossRef]
- Welch, H.G.; Bergmark, R. Cancer Screening, Incidental Detection, and Overdiagnosis. Clin. Chem. 2024, 70, 179–189. [Google Scholar] [CrossRef]
- Englman, C.; Barrett, T.; Moore, C.M.; Giganti, F. Active Surveillance for Prostate Cancer Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol. Clin. N. Am. 2024, 62, 69–92. [Google Scholar] [CrossRef]
- Fanshawe, J.B.; Chan, V.W.S.; Asif, A.; Ng, A.; Van Hemelrijck, M.; Cathcart, P.; Challacombe, B.; Brown, C.; Popert, R.; Elhage, O.; et al. Decision Regret in Patients with Localised Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2023, 6, 456–466. [Google Scholar] [CrossRef]
- Peyrottes, A.; Rouprêt, M.; Fiard, G.; Fromont, G.; Barret, E.; Brureau, L.; Créhange, G.; Gauthé, M.; Baboudjian, M.; Renard-Penna, R.; et al. Early detection of prostate cancer: Towards a new paradigm? Prog. Urol. 2023, 33, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Estevan-Vilar, M.; Parker, L.A.; Caballero-Romeu, J.P.; Ronda, E.; Hernández-Aguado, I.; Lumbreras, B. Barriers and facilitators of shared decision-making in prostate cancer screening in primary care: A systematic review. Prev. Med. Rep. 2024, 37, 102539. [Google Scholar] [CrossRef] [PubMed]
- Jalloh, M.; Cassell, A.; Niang, L.; Rebbeck, T. Global viewpoints: Updates on prostate cancer in Sub-Saharan Africa. Bju Int. 2024, 133, 6–13. [Google Scholar] [CrossRef]
- Orecchia, L.; Katz-Summercorn, C.; Grainger, R.; Fletcher, P.; Ippoliti, S.; Barrett, T.; Kastner, C. Clinical and economic impact of the introduction of pre-biopsy MRI-based assessment on a large prostate cancer centre diagnostic population and activity: 10 years on. World J. Urol. 2024, 42, 82. [Google Scholar] [CrossRef]
- Paterson, C.; Anderson, H.; Rosano, M.; Cowan, D.; Schulz, D.; Santoro, K.; Forshaw, T.; Hawks, C.; Roberts, N.; Australia, C.N.S. What are the perceived unmet needs for patient care, education, and research among genitourinary cancer nurses in Australia? A mixed method study. Asia-Pac. J. Oncol. Nurs. 2024, 11, 100564. [Google Scholar] [CrossRef] [PubMed]
- Krausewitz, P.; Büttner, T.; von Danwitz, M.; Weiten, R.; Cox, A.; Kluemper, N.; Stein, J.; Luetkens, J.; Kristiansen, G.; Ritter, M.; et al. Elucidating the need for prostate cancer risk calculators in conjunction with mpMRI in initial risk assessment before prostate biopsy at a tertiary prostate cancer center. Bmc Urol. 2024, 24, 71. [Google Scholar] [CrossRef]
- Chiu, P.K.; Lam, T.Y.; Ng, C.F.; Teoh, J.Y.; Cho, C.C.; Hung, H.Y.; Hong, C.Y.; Roobol, M.J.; Chu, W.C.; Wong, S.Y.; et al. The combined role of MRI prostate and prostate health index in improving detection of significant prostate cancer in a screening population of Chinese men. Asian J. Androl. 2023, 25, 674–679. [Google Scholar] [CrossRef]
- Van Poppel, H.; Albreht, T.; Basu, P.; Hogenhout, R.; Collen, S.; Roobol, M. Serum PSA-based early detection of prostate cancer in Europe and globally: Past, present and future. Nat. Rev. Urol. 2022, 19, 562–572. [Google Scholar] [CrossRef]
- Van Poppel, H.; Albers, P.; van den Bergh, R.C.N.; Barentsz, J.O.; Roobol, M.J. A European Model for an Organised Risk-stratified Early Detection Programme for Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 731–739. [Google Scholar] [CrossRef]
- Weng, X.T.; Lin, W.L.; Pan, Q.M.; Chen, T.F.; Li, S.Y.; Gu, C.M. Aggressive variant prostate cancer: A case report and literature review. World J. Clin. Cases 2023, 11, 6213–6222. [Google Scholar] [CrossRef]
- Wasim, S.; Park, J.; Nam, S.; Kim, J. Review of Current Treatment Intensification Strategies for Prostate Cancer Patients. Cancers 2023, 15, 5615. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, S.; Debnath, N.; Sidana, A. A Review of Energy Modalities Used for Focal Therapy of Prostate Cancer. Curr. Surg. Rep. 2023, 11, 331–346. [Google Scholar] [CrossRef]
- Miszczyk, M.; Slusarczyk, A.; Quhal, F.; Klemm, J.; Matsukawa, A.; Przydacz, M.; Bryniarski, P.; Shariat, S.F.; Rajwa, P. Management of oligometastatic prostate cancer. Memo-Mag. Eur. Med. Oncol. 2024, 17, 35–39. [Google Scholar] [CrossRef]
- Rajwa, P.; Zattoni, F.; Maggi, M.; Marra, G.; Kroyer, P.; Shariat, S.F.; Briganti, A.; Montorsi, F.; Heidegger, I.; Gandaglia, G.; et al. Cytoreductive Radical Prostatectomy for Metastatic Hormone-sensitive Prostate Cancer-Evidence from Recent Prospective Reports. Eur. Urol. Focus 2023, 9, 637–641. [Google Scholar] [CrossRef]
- Rog, M.; Perennec, T.; Guimas, V.; Hetet, J.F.; Rio, E.; Vaugier, L.; Supiot, S. Salvage radiotherapy after initial cryotherapy for localized prostate cancer: A systematic review of the literature. Crit. Rev. Oncol. Hemat 2023, 192, 104149. [Google Scholar] [CrossRef]
- Efstathiou, J.A.; Morgans, A.K.; Bland, C.S.; Shore, N.D. Novel hormone therapy and coordination of care in high-risk biochemically recurrent prostate cancer. Cancer Treat. Rev. 2024, 122, 102630. [Google Scholar] [CrossRef]
- Zhao, J.E.; Chen, J.R.; Sun, G.X.; Shen, P.F.; Zeng, H. Luteinizing hormone-releasing hormone receptor agonists and antagonists in prostate cancer: Effects on long-term survival and combined therapy with next-generation hormonal agents. Cancer Biol. Med. 2024, 21, 1012–1032. [Google Scholar] [CrossRef]
- Ruplin, A.; Segal, E.; McFarlane, T. Review of drug-drug interactions in patients with prostate cancer. J. Oncol. Pharm. Pract. 2024, 30, 1057–1072. [Google Scholar] [CrossRef]
- Leuva, H.; Moran, G.; Jamaleddine, N.; Meseha, M.; Zhou, M.X.; Im, Y.; Rosenberg, T.C.M.; Park, Y.H.A.; Luhrs, C.; Bates, S.E.; et al. Assessment of PSA responses and changes in the rate of tumor growth (g-rate) with immune checkpoint inhibitors in US Veterans with prostate cancer. Semin. Oncol. 2024, 51, 59–68. [Google Scholar] [CrossRef]
- Wong, H.M.C.; Cheung, B.C.S.; Yuen, V.W.F.; Teoh, J.Y.C.; Chiu, P.K.F.; Ng, C.F. Patient preference on once-daily oral versus injectable androgen deprivation therapy for Asian patients with advanced prostate cancer. Int. Urol. Nephrol. 2024, 56, 2923–2928. [Google Scholar] [CrossRef]
- Shbeer, A.M. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol. Res. Pract. 2024, 253, 155025. [Google Scholar] [CrossRef] [PubMed]
- Tiruye, T.; O’Callaghan, M.; Ettridge, K.; Moretti, K.; Jay, A.; Higgs, B.; Santoro, K.; Kichenadasse, G.; Beckmann, K. Clinical and functional outcomes for risk-appropriate treatments for prostate cancer. BJUI Compass 2024, 5, 109–120. [Google Scholar] [CrossRef]
- Subramanian, L.; Hawley, S.T.; Skolarus, T.A.; Rankin, A.; Fetters, M.D.; Witzke, K.; Chen, J.S.; Radhakrishnan, A. Patient perspectives on factors influencing active surveillance adherence for low-risk prostate cancer: A qualitative study. Cancer Med. 2024, 13, e6847. [Google Scholar] [CrossRef] [PubMed]
- Jing, Q.; Gu, J.J.; Li, Z.W.; Sun, X.; Chen, Q.Y.; Li, S.H.; Xu, W.Z. Prostatectomy postoperative urinary incontinence: From origin to treatment. Precis. Med. Sci. 2023, 12, 224–232. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dobbs, R.W.; Vuong, H.G.; Quy, K.; Ngo, H.T.T.; Mai, A.T.; Tuyet, M.T.T.; Thai, M.S.; Tiong, H.Y.; Choi, S.Y.; et al. Single-port and multiport robot-assisted radical prostatectomy: A meta-analysis. Prostate Int. 2023, 11, 187–194. [Google Scholar] [CrossRef]
- Fairweather, D.; Taylor, R.M.; Simo, R. Choosing the right questions—A systematic review of patient reported outcome measures used in radiotherapy and proton beam therapy. Radiother. Oncol. 2024, 191, 110071. [Google Scholar] [CrossRef]
- Thompson, C.; Murray, J. Management considerations for adjunct hormone therapy in prostate cancer. Trends Urol. Men’s. Health 2023, 14, 17–22. [Google Scholar] [CrossRef]
- Aziz, M.K.; Molony, D.; Smith, C.T.; Holder, T.; Mody-Bailey, N.; Brunckhorst, O.; Magill, R.; Fatakdawala, M.; Roland, J.; Kostrzanowska, G. A Systematic Review and Network Meta-Analysis of Metastatic Hormone- Sensitive Prostate Cancer Therapy Cardiotoxicity. Circulation 2023, 148, A12240. [Google Scholar] [CrossRef]
- Denis, C.; Sautois, B. Advanced and metastatic prostate cancer: Work-up and treatment strategy. Med. Nucl. 2023, 47, 300–308. [Google Scholar] [CrossRef]
- Zhao, J.N.C.; Guercio, B.J.; Sahasrabudhe, D. Current Trends in Chemotherapy in the Treatment of Metastatic Prostate Cancer. Cancers 2023, 15, 3969. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, K.C.; Zhu, H.H.; Wei, F.K.; Ma, S.; Kan, Y.; Li, B.H.; Mao, L.J. Current status and progress of the development of prostate cancer vaccines. J. Cancer 2023, 14, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.B.; Yang, Y.Q.; Mortazavi, A.; Zhang, J.S. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 14347. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.M.; Li, J.K.; Dorado, J.; Sierra, A.; González-Díaz, H.; Duardo, A.; Shen, B.R. From molecular mechanisms of prostate cancer to translational applications: Based on multi-omics fusion analysis and intelligent medicine. Health Inf. Sci. Syst. 2023, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Pauchard, F.; Kramer, F.; Kirmayr, M.; Escobar, M. Stage at diagnosis of prostate cancer in an institutional hospital. Review and comparison of national and international data. Rev. Med. Chil. 2023, 151, 711–716. [Google Scholar] [CrossRef]
- Zuur, L.G.; de Barros, H.A.; van der Mijn, K.J.C.; Vis, A.N.; Bergman, A.M.; Pos, F.J.; van Moorselaar, J.A.; van der Poel, H.G.; Vogel, W.V.; van Leeuwen, P.J. Treating Primary Node-Positive Prostate Cancer: A Scoping Review of Available Treatment Options. Cancers 2023, 15, 2962. [Google Scholar] [CrossRef]
- Li, Y.D.; Ren, Z.J.; Gou, Y.Q.; Liu, C.; Gao, L. Development and validation of a model for predicting the risk of prostate cancer. Int. Urol. Nephrol. 2024, 56, 973–980. [Google Scholar] [CrossRef]
- Zhou, J.T.; Yu, M.H.; Ding, J.; Qi, J. Does the Gleason Score 7 Upgrading Always Predict Worse Prognosis? Clin. Genitourin. Cancer 2023, 21, E412–E421. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wang, P.Y.; Liu, M.Z.; Lyu, F.; Ma, M.W.; Ren, X.Y.; Gao, X.S. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics 2023, 13, 3350. [Google Scholar] [CrossRef]
- Warli, S.M.; Warli, M.H.; Prapiska, F.F. PCA3 and TMPRSS2: ERG Urine Level as Diagnostic Biomarker of Prostate Cancer. Res. Rep. Urol. 2023, 15, 149–155. [Google Scholar] [CrossRef]
- Nabok, A.; Abu-Ali, H.; Takita, S.; Smith, D.P. Electrochemical Detection of Prostate Cancer Biomarker PCA3 Using Specific RNA-Based Aptamer Labelled with Ferrocene. Chemosensors 2021, 9, 59. [Google Scholar] [CrossRef]
- Li, Y.W.; Su, H.; Liu, K.D.; Zhao, Z.X.; Wang, Y.Q.; Chen, B.; Xia, J.; Yuan, H.T.; Huang, D.S.; Gu, Y.Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: A rank-based qualitative transcriptome signature. World J. Surg. Oncol. 2024, 22, 49. [Google Scholar] [CrossRef]
- Stopsack, K.H.; Su, X.A.; Vaselkiv, J.B.; Graff, R.E.; Ebot, E.M.; Pettersson, A.; Lis, R.T.; Fiorentino, M.; Loda, M.; Penney, K.L.; et al. Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions. Mol. Cancer Res. 2023, 21, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Ho, J.-N.; Kim, D.H.; Song, S.H.; Kim, H.; Lee, H.; Jeong, S.J.; Hong, S.K.; Byun, S.-S.; Ahn, H.; et al. The Prostate Health Index and multi-parametric MRI improve diagnostic accuracy of detecting prostate cancer in Asian populations. Investig. Clin. Urol. 2022, 63, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Castillo, Y.M.; Melgarejo-Segura, M.T.; Funes-Padilla, C.; Folgueral-Corral, M.E.; García-Larios, J.V.; Arrabal-Polo, M.A.; Muñoz, T.D.; Arrabal-Martín, M. Prostate health index (PHI) as an accurate prostate cancer predictor. J. Cancer Res. Clin. 2023, 149, 9329–9335. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.K.F.; Leow, J.J.; Chiang, C.H.; Mok, A.; Zhang, K.; Hsieh, P.F.; Zhu, Y.; Lam, W.; Tsang, W.C.; Fan, Y.H.; et al. Prostate Health Index Density Outperforms Prostate-specific Antigen Density in the Diagnosis of Clinically Significant Prostate Cancer in Equivocal Magnetic Resonance Imaging of the Prostate: A Multicenter Evaluation. J. Urol. 2023, 210, 88–98. [Google Scholar] [CrossRef]
- Hoyer, G.; Crawford, E.D.; Arangua, P.; Stanton, W.; La Rosa, F.G.; Poage, W.; Lucia, M.S.; van Bokhoven, A.; Werahera, P.N. SelectMDx versus Prostate Health Index in the identification of high-grade prostate cancer. J. Clin. Oncol. 2019, 37, 30. [Google Scholar] [CrossRef]
- Wagaskar, V.G.; Levi, M.; Ratnani, P.; Sullimada, S.; Gerenia, M.; Schlussel, K.; Choudhury, S.; Gabriele, M.; Haas, I.; Haines, K.; et al. A SelectMDx/magnetic resonance imaging-based nomogram to diagnose prostate cancer. Cancer Rep. 2023, 6, e1668. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Gvozdenovic, A.; Aceto, N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov. 2024, 14, 920–933. [Google Scholar] [CrossRef]
- Halabi, S.; Guo, S.Y.; Park, J.J.; Nanus, D.M.; George, D.J.; Antonarakis, E.S.; Danila, D.C.; Szmulewitz, R.Z.; Mcdonnell, D.P.; Norris, J.D.; et al. The Impact of Circulating Tumor Cell HOXB13 RNA Detection in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Clin. Cancer Res. 2024, 30, 1152–1159. [Google Scholar] [CrossRef]
- Mjaess, G.; Haddad, L.; Jabbour, T.; Baudewyns, A.; Bourgeno, H.A.; Lefebvre, Y.; Ferriero, M.; Simone, G.; Fourcade, A.; Fournier, G.; et al. Refining clinically relevant cut-offs of prostate specific antigen density for risk stratification in patients with PI-RADS 3 lesions. Prostate Cancer Prostatic Dis. 2025, 28, 173–179. [Google Scholar] [CrossRef]
- Ayranci, A.; Caglar, U.; Yazili, H.B.; Erdal, F.S.; Erbin, A.; Sarilar, O.; Ozgor, F. PSA Density and Lesion Volume: Key Factors in Avoiding Unnecessary Biopsies for PI-RADS 3 Lesions. Prostate 2025, 85, 385–390. [Google Scholar] [CrossRef]
- Ren, L.; Chen, Y.L.; Liu, Z.X.; Huang, G.K.; Wang, W.F.; Yang, X.; Bai, B.H.; Guo, Y.; Ling, J.; Mao, X.P. Integration of PSAd and multiparametric MRI to forecast biopsy outcomes in biopsy-naive patients with PSA 4∼20 ng/ml. Front. Oncol. 2024, 14, 1413953. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.M.; Fu, M.; Tang, Y.Z.; Li, J.X. The value of adjusted PSAD in prostate cancer detection in the Chinese population. Front. Oncol. 2024, 14, 1462997. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, S.; Tin, A.; Gandaglia, G.; Stabile, A.; Montorsi, F.; Briganti, A.; Vickers, A.J. Implementation of 4Kscore as a Secondary Test Before Prostate Biopsy: Impact on US Population Trends for Prostate Cancer. Eur. Urol. Open Sci. 2023, 52, 1–3. [Google Scholar] [CrossRef]
- Bhattu, A.S.; Zappala, S.M.; Parekh, D.J.; Punnen, S. A 4Kscore Cut -off of 7.5% for Prostate Biopsy Decisions Provides High Sensitivity and Negative Predictive Value for Significant Prostate Cancer. Urology 2021, 148, 53–58. [Google Scholar] [CrossRef]
- Amini, A.E.; Hunter, A.E.; Almashad, A.; Feng, A.J.; Patel, N.D.; O’Dea, M.R.; Mccormick, S.R.; Rodgers, L.H.; Salari, K. Magnetic Resonance Imaging-based Prostate Cancer Screening in Carriers of Pathogenic Germline Mutations: Interim Results from the Initial Screening Round of the Prostate Cancer Genetic Risk Evaluation and Screening Study. Eur. Urol. Oncol. 2024, 7, 1358–1366. [Google Scholar] [CrossRef]
- Zattoni, F.; Gandaglia, G.; van den Bergh, R.C.N.; Marra, G.; Valerio, M.; Martini, A.; Olivier, J.; Puche-Sanzi, I.; Rajwa, P.; Maggi, M.; et al. Follow-up on patients with initial negative mpMRI target and systematic biopsy for PI-RADS ≥ 3 lesions—An EAU-YAU study enhancing prostate cancer detection. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef]
- Ploussard, G.; Barret, E.; Fiard, G.; Lenfant, L.; Malavaud, B.; Giannarini, G.; Almeras, C.; Aziza, R.; Renard-Penna, R.; Descotes, J.L.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsies for Prostate Cancer Diagnosis: Final Results of the Randomized PERFECT trial (CCAFU-PR1). Eur. Urol. Oncol. 2024, 7, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Couchoux, T.; Jaouen, T.; Melodelima-Gonindard, C.; Baseilhac, P.; Branchu, A.; Arfi, N.; Aziza, R.; Delongchamps, N.B.; Bladou, F.; Bratan, F.; et al. Performance of a Region of Interest-based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database-CAD-FIRST Study. Eur. Urol. Oncol. 2024, 7, 1113–1122. [Google Scholar] [CrossRef]
- Moschovas, M.C.; Chew, C.; Bhat, S.; Sandri, M.; Rogers, T.; Dell’Oglio, P.; Roof, S.; Reddy, S.; Sighinolfi, M.C.; Rocco, B.; et al. Association Between Oncotype DX Genomic Prostate Score and Adverse Tumor Pathology After Radical Prostatectomy. Eur. Urol. Focus 2022, 8, 418–424. [Google Scholar] [CrossRef]
- Freedland, S.; Boyer, M.J.; Janes, J.; Bennett, J.; Thomas, V.M.; De, H.A.M.; Abran, J.; Aboushwareb, T.; Salama, J.K. The Oncotype DX Genomic Prostate Score® assay is associated with time to distant metastasis and prostate cancer death after external beam radiation therapy in localized prostate cancer: A retrospective study. Eur. Urol. 2022, 81, S1413–S1414. [Google Scholar] [CrossRef]
- Tuzova, A.V.; Moran, B.; Russell, N.M.; Das, S.; Delahaye, F.; Silva, R.; Barrett, C.; Watson, R.W.G.; O’Neill, A.; Gallagher, W.M.; et al. Deciphering epigenetic regulation of enhancers in high-risk prostate cancer. Gene Chromosome Cancer 2024, 63, e23218. [Google Scholar] [CrossRef]
- Zhu, A.; Ramaswamy, A.; Proudfoot, J.; Ross, A.; Liu, Y.; Davicioni, E.; Zaorsky, N.; Jia, A.; Spratt, D.; Schaeffer, E.; et al. Use of Decipher Prostate Biopsy Test in Men with Favorable Risk Disease Undergoing Conservative Management in the Seer Registry. J. Urol. 2023, 209, E618. [Google Scholar] [CrossRef]
- Coradduzza, D.; Solinas, T.; Balzano, F.; Culeddu, N.; Rossi, N.; Cruciani, S.; Azara, E.; Maioli, M.; Zinellu, A.; De Miglio, M.R.; et al. miRNAs as Molecular Biomarkers for Prostate Cancer. J. Mol. Diagn. 2022, 24, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Valbuena, G.N.; Curry, E.; Bevan, C.L.; Keun, H.C. MicroRNAs as biomarkers for prostate cancer prognosis: A systematic review and a systematic reanalysis of public data. Br. J. Cancer 2022, 126, 502–513. [Google Scholar] [CrossRef]
- Yang, L.X.; Li, H.; Cheng, Z.H.; Sun, H.Y.; Huang, J.P.; Li, Z.P.; Li, X.X.; Hu, Z.G.; Wang, J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int. J. Mol. Sci. 2025, 26, 3055. [Google Scholar] [CrossRef]
- Lu, M.L.; Zhan, H.L.; Liu, B.L.; Li, D.Y.; Li, W.B.; Chen, X.L.; Zhou, X.F. N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. Epma J. 2021, 12, 589–604. [Google Scholar] [CrossRef]
- John, A.; Almulla, N.; Elboughdiri, N.; Gacem, A.; Yadav, K.K.; Abass, A.M.; Alam, M.W.; Wani, A.; Bashir, S.M.; Rab, S.O.; et al. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol. Res. Pract. 2025, 266, 155745. [Google Scholar] [CrossRef]
- Yuan, F.; Hu, Y.; Lei, Y.M.; Jin, L.N. Recent progress in microRNA research for prostate cancer. Discov. Oncol. 2024, 15, 480. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, H.X.; Zhou, S.H.; Mao, J.S.; Zhan, Z.Q.; Duan, S.W. miRNA interplay: Mechanisms and therapeutic interventions in cancer. Medcomm-Oncol. 2024, 3, e93. [Google Scholar] [CrossRef]
- Luo, X.; Wen, W. MicroRNA in prostate cancer: From biogenesis to applicative potential. Bmc Urol. 2024, 24, 244. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Rajak, N.; Singh, Y.; Singh, A.K.; Giri, R.; Garg, N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann. Surg. Oncol. 2024, 31, 4795–4808. [Google Scholar] [CrossRef] [PubMed]
- Giordo, R.; Ahmadi, F.A.M.; Al Husaini, N.; Ahmad, S.M.S.; Pintus, G.; Zayed, H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Non-Coding Rna Res. 2024, 9, 831–852. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhan, L.J.; Jiang, X.; Tang, X.Z. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem. Pharmacol. 2024, 224, 116218. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, K.K.; Choi, J.W.; Glushko, T.; Manley, B.J.; Yu, A.; Park, J.Y.; Brown, J.S.; Pow-Sang, J.; Gantenby, R.; Wang, L.; et al. Extracellular Microvesicle MicroRNAs and Imaging Metrics Improve the Detection of Aggressive Prostate Cancer: A Pilot Study. Cancers 2025, 17, 835. [Google Scholar] [CrossRef]
- Panebianco, V.; Paci, P.; Pecoraro, M.; Conte, F.; Carnicelli, G.; Besharat, Z.; Catanzaro, G.; Splendiani, E.; Sciarra, A.; Farina, L.; et al. Network Analysis Integrating microRNA Expression Profiling with MRI Biomarkers and Clinical Data for Prostate Cancer Early Detection: A Proof of Concept Study. Biomedicines 2021, 9, 1470. [Google Scholar] [CrossRef]
- Sellers, J.; de Riese, W.T.W. Evolving Hypothesis that Prostate/BPH Size Matters in Protection against Prostate Cancer. Explor. Res. Hypothesis Med. 2022, 7, 179–183. [Google Scholar] [CrossRef]
- Sellers, J.; Horne, S.N.S.; de Riese, W.T.W. The Origin of BPH and Prostate Cancer in Different Prostate Zones and the Impact on the Incidence of Prostate Cancer: A Systematic Review and Update of the Literature for Urologists and Clinicians. Explor. Res. Hypothesis Med. 2023, 9, 44–51. [Google Scholar] [CrossRef]
- Volz, Y.; Apfelbeck, M.; Pyrgidis, N.; Pfitzinger, P.L.; Berg, E.; Ebner, B.; Enzinger, B.; Ivanova, T.; Atzler, M.; Kazmierczak, P.M.; et al. The Impact of Prostate Volume on the Prostate Imaging and Reporting Data System (PI-RADS) in a Real-World Setting. Diagnostics 2023, 13, 2677. [Google Scholar] [CrossRef]
- Smani, S.; Sundaresan, V.; Lokeshwar, S.D.; Choksi, A.U.; Carbonella, J.; Brito, J.; Renzulli, J.; Sprenkle, P.; Leapman, M.S. Risk factors for Gleason score upgrade from prostate biopsy to radical prostatectomy. Explor. Target. Anti-Tumor Ther. 2024, 5, 981–996. [Google Scholar] [CrossRef]
- Park, D.H.; Yu, J.H. Prostate-specific antigen density as the best predictor of low- to intermediate-risk prostate cancer: A cohort study. Transl. Cancer Res. 2023, 12, 502–514. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xiao, L.; Zhou, M.; Fang, Z.; Cai, Y.; Tang, Y.; Hu, S. 68Ga-PSMA PET/CT-based multivariate model for highly accurate and noninvasive diagnosis of clinically significant prostate cancer in the PSA gray zone. Cancer Imaging 2023, 23, 81. [Google Scholar] [CrossRef]
- Lu, F.; Zhao, Y.; Wang, Z.; Feng, N. Biparametric MRI-based radiomics for prediction of clinically significant prostate cancer of PI-RADS category 3 lesions. BMC Cancer 2025, 25, 615. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Cangemi, D.; Farolfi, A.; Sgro, C.M.P.; Giorgio, A.D.; Castellucci, P.; Gaudiano, C.; Corcioni, B.; Giunchi, F.; Degiovanni, A.; et al. PSMA-Targeted Biopsy with Fusion Guidance for Detecting Clinically Significant Prostate Cancer in Men with Negative MRI-Feasibility and Diagnostic Performance of a Pilot Single-Center Prospective Study. Clin. Genitourin. Cancer 2025, 23, 102348. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Qian, C.; Wang, C.; Lin, Y.; Huang, Y.; Hou, J.; Wei, X. Multiparametric MRI lesion dimension as a significant predictor of positive surgical margins following laparoscopic radical prostatectomy for transitional zone prostate cancer. World J. Urol. 2025, 43, 295. [Google Scholar] [CrossRef]
- Soeterik, T.F.W.; Wu, X.; Van den Bergh, R.C.N.; Kesch, C.; Zattoni, F.; Falagario, U.; Martini, A.; Miszczyk, M.; Fasulo, V.; Maggi, M.; et al. Personalised Prostate Cancer Diagnosis: Evaluating Biomarker-based Approaches to Reduce Unnecessary Magnetic Resonance Imaging and Biopsy Procedures. Eur. Urol. Open Sci. 2025, 75, 106–119. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Yang, J.; Xiao, L.; Zhou, M.; Cai, Y.; Rominger, A.; Shi, K.; Seifert, R.; Gao, X.; et al. Using a novel PSMA-PET and PSA-based model to enhance the diagnostic accuracy for clinically significant prostate cancer and avoid unnecessary biopsy in men with PI-RADS </= 3 MRI. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hatano, K.; Nonomura, N. Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects. World J. Men’s Health 2025, 43, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, J.; Tu, X.; Chen, B.; Jiang, J.; Ye, J.; Zheng, L.; He, C.; Tang, B.; Bao, Y.; et al. Optimizing the strategies to perform prostate biopsy in MRI-positive patients: A systematic review and network meta-analysis. EClinicalMedicine 2025, 82, 103164. [Google Scholar] [CrossRef]
- Launer, B.M.; Ellis, T.A.; Scarpato, K.R. A contemporary review: mpMRI in prostate cancer screening and diagnosis. Urol. Oncol. 2025, 43, 15–22. [Google Scholar] [CrossRef]
- Maffei, D.; Moore, C.M. Personalized risk-adapted models in prostate cancer during active surveillance using MRI—A narrative review. Eur. Radiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Mikulas, C.J.; Ali, K.; Onteddu, N. Prostate cancer screening: Is it time for a new approach? A review article. J. Investig. Med. 2025, 73, 27–34. [Google Scholar] [CrossRef]
- Prive, B.M.; Govers, T.M.; Israel, B.; Janssen, M.J.R.; Timmermans, B.J.R.; Peters, S.M.B.; de Groot, M.; Zamecnik, P.; Wijn, S.R.W.; Hoepping, A.; et al. A cost-effectiveness study of PSMA-PET/CT for the detection of clinically significant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2025. [Google Scholar] [CrossRef]
- Chelebian, E.; Avenel, C.; Jaremo, H.; Andersson, P.; Wahlby, C.; Bergh, A. A clinical prostate biopsy dataset with undetected cancer. Sci. Data 2025, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.; Carlsson, S.V.; Watts, K. Randomized trials of PSA screening. Urol. Oncol. 2025, 43, 23–28. [Google Scholar] [CrossRef]
- Obiora, D.; Orikogbo, O.; Davies, B.J.; Jacobs, B.L. Controversies in prostate cancer screening. Urol. Oncol. 2025, 43, 49–53. [Google Scholar] [CrossRef]
- Raychaudhuri, R.; Lin, D.W.; Montgomery, R.B. Prostate Cancer: A Review. JAMA 2025, 333, 1433–1446. [Google Scholar] [CrossRef]
- Barocas, D.A.; Alvarez, J.; Resnick, M.J.; Koyama, T.; Hoffman, K.E.; Tyson, M.D.; Conwill, R.; McCollum, D.; Cooperberg, M.R.; Goodman, M.; et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA 2017, 317, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qian, B.; Shi, J.; Xiao, Y. Radical prostatectomy versus brachytherapy for clinically localized prostate cancer on oncological and functional outcomes: A meta-analysis. Transl. Androl. Urol. 2020, 9, 332–343. [Google Scholar] [CrossRef]
- Han, J.H.; Herlemann, A.; Washington, S.L.; Lonergan, P.E.; Carroll, P.R.; Cooperberg, M.R.; Jeong, C.W. Observation, Radiotherapy, or Radical Prostatectomy for Localized Prostate Cancer: Survival Analysis in the United States. World J. Men’s Health 2023, 41, 940–950. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Maljkovic, J.; Bill-Axelson, A.; Hållberg, H.; Berglund, A.; Stattin, P.; Bratt, O. Time trends for the use of active surveillance and deferred treatment for localised prostate cancer in Sweden: A nationwide study. Scand. J. Urol. 2024, 59, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bock, C.H.; Janisse, J.; Woo, J.; Cher, M.L.; Ginsburg, K.; Yacoub, R.; Goodman, M. Determinants of active surveillance uptake in a diverse population-based cohort of men with low-risk prostate cancer: The Treatment Options in Prostate Cancer Study (TOPCS). Cancer 2024, 130, 1797–1806. [Google Scholar] [CrossRef]
- Halaseh, S.A.; Al-Karadsheh, A.; Mukherji, D.; Alhjahaja, A.; Farkouh, A.a.; Al-Ibraheem, A.; Abu Gheida, I.; Al-Khateeb, S.; Al-Shamsi, H.; Shahait, M. Prostate cancer clinical trials in low- and middle-income countries. ecancermedicalscience 2023, 17, 1629. [Google Scholar] [CrossRef]
- Bosland, M.C. Prostate cancer in low- and middle-income countries—Challenges and opportunities. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Abila, D.B.; Wasukira, S.B.; Ainembabazi, P.; Kisuza, R.K.; Nakiyingi, E.K.; Mustafa, A.; Kangoma, G.; Adebisi, Y.A.; Lucero-Prisno, D.E.; Wabinga, H.; et al. Socioeconomic inequalities in prostate cancer screening in low- and middle-income countries: An analysis of the demographic and health surveys between 2010 and 2019. J. Cancer Policy 2022, 34, 100360. [Google Scholar] [CrossRef]
- Galloway, L.A.S.; Cortese, B.D.; Talwar, R. Urologic Cancer Drug Costs in Low and Middle-Income Countries. Urol. Oncol. Semin. Orig. Investig. 2025, 43, 8–9. [Google Scholar] [CrossRef]
- Cirne, F.; Kappel, C.; Zhou, S.; Mukherjee, S.D.; Dehghan, M.; Petropoulos, J.-A.; Leong, D.P. Modifiable risk factors for prostate cancer in low- and lower-middle-income countries: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022, 25, 453–462. [Google Scholar] [CrossRef]
Aspect | Description | Potential Risks of Inaction | Patient Outcomes and Long-Term Effects | Ethical Considerations | Global Perspectives | Ref. |
---|---|---|---|---|---|---|
Definition of Overdiagnosis | Detection of PCa through screening that would not have caused symptoms or death during a patient’s lifetime. | Continued unnecessary diagnoses leading to overburdened healthcare systems. | Increased anxiety and potential for overtreatment. | Ethical dilemma of informing patients about non-threatening cancers. | Some countries have restricted PSA testing to high-risk individuals. | [9] |
Causes of Overdiagnosis | Widespread use of PSA testing, increased imaging, detection of slow-growing cancers. | Rising false positives and unnecessary treatments. | Psychological burden and unnecessary treatments. | Challenge of balancing early detection with avoiding overtreatment. | Countries like Sweden emphasize risk-adapted screening. | [10] |
Impact of Overdiagnosis | Psychological distress, unnecessary medical consultations, strain on healthcare resources. | Wasted resources, leading to fewer available funds for life-threatening conditions. | Potential decline in trust in medical recommendations. | Ethical responsibility of physicians to ensure patients are not harmed by overdiagnosis. | Countries adopting stricter screening criteria. | [11] |
Definition of Overtreatment | Treatment of prostate cancer that would not have progressed or caused harm if left untreated. | Increased rates of avoidable complications and reduced quality of life. | Unnecessary exposure to treatment risks and lifelong side effects. | Ethical concerns regarding patient autonomy in treatment decisions. | Some nations promote active surveillance as a first-line strategy. | [12] |
Causes of Overtreatment | Inability to distinguish aggressive from indolent cancers, patient and physician preference for active treatment. | Overuse of aggressive treatments leading to resource depletion. | Complications such as incontinence and erectile dysfunction. | Patient pressure to “do something” despite low risk. | The UK and Canada emphasize shared decision-making in treatment. | [13] |
Impact of Overtreatment | Treatment-related side effects, reduced quality of life, financial burden. | Healthcare systems burdened with avoidable interventions. | Increased economic and emotional stress on patients. | Ethical tension between providing treatment vs. potential harm. | European guidelines encourage more conservative approaches. | [12] |
Strategies to Mitigate Overdiagnosis | Risk-based screening, use of biomarkers and imaging, patient education. | Continued unnecessary treatment and financial strain. | Lower burden of unnecessary diagnoses when applied correctly. | Ensuring informed patient choices without undue influence. | Countries adopting multi-parametric MRI for risk assessment. | [12] |
Strategies to Mitigate Overtreatment | Active surveillance, personalized treatment plans, shared decision-making. | Unchecked increase in unnecessary treatments. | Reduction in treatment-related morbidity when applied correctly. | Respecting patients’ preferences while ensuring medical necessity. | Adoption of less invasive treatments globally. | [14] |
Role of Active Surveillance | Monitoring low-risk cancer progression through periodic testing. | Delayed detection of aggressive cases if not properly managed. | Reduced need for immediate intervention, preserving quality of life. | Ethical challenge of balancing risks of waiting vs. acting too soon. | Widely adopted in European healthcare systems. | [15] |
Importance of Genetic Testing | Identifying mutations (e.g., BRCA1, BRCA2) to assess risk. | Failure to incorporate genetic risk can lead to mismanagement of cases. | More accurate treatment decisions and improved patient outcomes. | Ethical concerns regarding genetic discrimination. | Countries developing genetic databases for better risk profiling. | [16] |
Research and Policy Recommendations | Promoting biomarker research, revising screening guidelines. | Lack of innovation in screening may lead to continued overdiagnosis. | Evidence-based policies can enhance patient care. | Ensuring policies align with patient safety and informed choice. | Nations integrating genetic research into clinical practice. | [17] |
Patient Education and Awareness | Providing clear information on screening risks and benefits. | Patients making uninformed decisions leading to unnecessary treatment. | Better patient engagement and reduced anxiety over low-risk cancers. | Ethical responsibility to provide unbiased and transparent information. | National campaigns promoting informed decision-making. | [18] |
Technological Advancements | AI-driven imaging, molecular diagnostics, liquid biopsy research. | Stagnation in diagnostic progress leading to persistent challenges. | Improved accuracy in early detection and risk stratification. | Ethical issues surrounding AI in medical decision-making. | Countries adopting AI-based tools in radiology. | [19] |
Study | Population (n) | Avoided Biopsies | csPCa Detection | Reduction of Insignificant Cancer |
---|---|---|---|---|
PRECISION | 500 | 28% avoided biopsy | 38% (MRI-targeted) vs. 26% (TRUS) | 9% (MRI) vs. 22% (TRUS) |
PROMIS | 576 | Up to 27% biopsies avoided | Sensitivity 93% (MRI) vs. 48% (TRUS) | High NPV (89%) reduced unnecessary biopsy |
MRI-FIRST | 251 | Confirmed MRI triage value | More csPCa detected with MRI-targeted biopsy | Fewer low-grade cancers diagnosed |
Category | Challenges | Proposed Solutions | Ref. |
---|---|---|---|
Consequences of Overdiagnosis and Overtreatment | Unnecessary physical and psychological distress from invasive treatments | Enhance screening specificity with PSA testing combined with risk stratification tools | [17] |
Increased healthcare costs for testing, diagnosis, and treatment | Implement active surveillance and watchful waiting for low-risk cases | [43] | |
Resource diversion from more critical healthcare needs | Promote shared decision-making to reduce unnecessary interventions | [44] | |
Erosion of public confidence in cancer screening programs | Education and public campaigns to improve an awareness about PCa screening | [45] | |
Challenges in Identifying Aggressive PCa | Difficulty differentiating between indolent and aggressive tumors | Develop next-generation biomarkers for accurate risk stratification | [17] |
PSA levels and Gleason scores have limited accuracy in predicting disease progression | Introduce molecular and genetic profiling for better classification of aggressive cases | [2] | |
Lack of precise biomarkers for assessing metastatic risk and recurrence | Research on new biomarkers for assessing metastatic risk and PCs recurrence | [17] | |
Limitations of Imaging Techniques | Conventional imaging methods (TRUS, MRI, PET) have low sensitivity and specificity for detecting small or early-stage tumors | Improve imaging technologies with AI-assisted interpretation | [46] |
Interpretation of imaging results requires specialized expertise in prostate anatomy and pathology | Standardize diagnostic protocols to enhance accuracy and reduce variability among radiologists | [47] | |
Complexity of PCa Diagnosis | PSA-based screening has limitations in specificity | Adopt an interdisciplinary approach integrating technological advancements, biomarker research, and personalized medicine | [48] |
High risk of inaccurate biopsy results | [44] | ||
Lack of definitive diagnostic tools for aggressive disease | [49] |
Clinical Relevance | Challenges | Solutions | Ref. |
---|---|---|---|
Improved risk stratification: ncRNAs (miRNAs, lncRNAs) help distinguish aggressive from indolent PCa, reducing overtreatment. | Lack of assay standardization and reproducibility across labs and platforms. | Develop and implement international guidelines for ncRNA assay protocols and quality control. | [108,109] |
Non-invasive diagnostics: Detection of ncRNAs in blood/urine (e.g., PCA3, miR-141) allows for less invasive testing and fewer unnecessary biopsies. | Limited validation in large, multi-ethnic, and prospective cohorts. | Need in the multi-centre, prospective studies including diverse populations to validate biomarker performance. | [110,111] |
Prognostic value: Specific ncRNAs (e.g., miR-21, SChLAP1) correlate with tumor aggressiveness, recurrence risk, and therapy resistance. | Insufficient integration with existing clinical risk models and lack of consensus on cut-off values. | Integrate ncRNA panels into multiparametric risk models and establish clinically relevant thresholds. | [112,113] |
Therapeutic guidance: ncRNA profiles can inform personalized treatment decisions and predict response to therapy. | High cost and limited accessibility of advanced molecular testing in routine practice. | Invest in technology transfer, cost reduction strategies, and reimbursement frameworks for ncRNA assays. | [112,114] |
Complementary to imaging: ncRNAs can enhance the specificity of mpMRI and PSA-based screening, improving patient selection. | Regulatory and guideline adoption lag behind emerging evidence. | Generate robust outcome data and advocate for inclusion in clinical guidelines (e.g., NCCN, EAU, AUA). | [115,116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushimova, Z.; Iztleuov, Y.; Chingayeva, G.; Shepetov, A.; Mustapayeva, N.; Shatkovskaya, O.; Pashimov, M.; Saliev, T. Overdiagnosis and Overtreatment in Prostate Cancer. Diseases 2025, 13, 167. https://doi.org/10.3390/diseases13060167
Dushimova Z, Iztleuov Y, Chingayeva G, Shepetov A, Mustapayeva N, Shatkovskaya O, Pashimov M, Saliev T. Overdiagnosis and Overtreatment in Prostate Cancer. Diseases. 2025; 13(6):167. https://doi.org/10.3390/diseases13060167
Chicago/Turabian StyleDushimova, Zaure, Yerbolat Iztleuov, Gulnar Chingayeva, Abay Shepetov, Nagima Mustapayeva, Oxana Shatkovskaya, Marat Pashimov, and Timur Saliev. 2025. "Overdiagnosis and Overtreatment in Prostate Cancer" Diseases 13, no. 6: 167. https://doi.org/10.3390/diseases13060167
APA StyleDushimova, Z., Iztleuov, Y., Chingayeva, G., Shepetov, A., Mustapayeva, N., Shatkovskaya, O., Pashimov, M., & Saliev, T. (2025). Overdiagnosis and Overtreatment in Prostate Cancer. Diseases, 13(6), 167. https://doi.org/10.3390/diseases13060167