Anticancer Mechanisms of Ginsenoside Compound K: A Review
Abstract
:1. Introduction
1.1. Caner Incidence and Etiology
1.2. Structural Difference, Chemical and Drug Properties of Ginsenosides
1.3. The Biological Metabolism of Ginsenosides, the Chemical and Drug Properties of Ginsenoside Compound K
2. Different Mechanisms of Ginsenoside CK Targeting Cancer Therapy
2.1. Ginsenoside CK Inhibits Cancer Cell Proliferation and Invasion by Reducing the Activity of PI3K/AKT/mTOR/p70S6K1 Signaling Pathway Proteins
2.2. Ginsenoside CK Can Reduce the Activity of Stromal Cell-Derived Factor 1 (SDF-1), Thereby Inhibiting the Migration of Cancer Cells
2.3. Ginsenoside CK Inhibits Angiogenesis in Cancer Cells and Blocks Cancer Cell Growth
2.4. Ginsenoside CK Inhibits Human Telomerase Reverse Transcriptase (hTERT) and Telomerase Activity, Inducing Apoptosis in Cancer Cells
2.5. Ginsenoside CK Can Reduce Chronic Inflammation Caused by Excessive Inflammatory Responses and Prevent Cell Carcinogenesis
2.6. Bidirectional Regulation of Macrophage Immune Activity by Ginsenoside CK to Inhibit Cancer Cell Proliferation
2.7. Activation of Apoptotic Proteases by Ginsenoside CK Inducing Cancer Cell Apoptosis
2.8. Enhancement of Mitochondrial Reactive Oxygen Species (ROS) by Ginsenoside CK Inducing Cancer Cell Apoptosis
2.9. Ginsenoside CK Enhances Sensitivity to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) to Induce Cancer Cell Apoptosis
2.10. Enhanced T Cell Recognition by Ginsenoside CK for Cancer Cell Elimination
Types of Treatment | Section No./ Test Model | Function | Mode of Action | Cell Line/Test Dosage | IC50 for only CK |
---|---|---|---|---|---|
The effects on cancer cells themselves | Section 2.1/Human osteosarcoma cells | Inhibit malignant tumor proliferation and invasion | CK inhibits the PI3K/mTOR/p70S6K1 signaling pathway in cancer cells and reduces the expression of MMP. | MG-63, U2-OS/ 20 μM | 20 μM |
Section 2.2/ Rat glioma cells | Inhibit cancer cell migration | CK can downregulate the SDF-1/CXCR4 signaling pathway in cancer cells, thereby inhibiting the expression of PKCα and ERK protein phosphorylation, reducing the expression of MMP. | C6/ 1 μM | 3–10 μM | |
Section 2.4/Human monocytic leukemia cells | Inhibits telomerase activity in cancer cells | CK inhibits the activity of telomerase reverse transcriptase in cancer cells, ultimately leading to cancer cell death. | U937/ 48 μM | none | |
Section 2.7/Human breast cancer cells | Enhance the expression of apoptosis proteins and induce apoptosis of cancer cells | CK inhibits AKT1 activity, activates the expression of apoptotic proteases Caspase-3, Caspase-8, and Caspase-9, induces cancer cell apoptosis, and also inhibits cancer cell migration and invasion. | SKBR3/ 50 μM | 50 μM | |
Section 2.8/Human neuroblastoma | Increase the ROS content in cancer cell mitochondria and induce apoptosis of cancer cells | CK increases the ROS concentration in cancer cell mitochondria, causing the cancer cell mitochondria to lose membrane potential, increasing the expression of pro-apoptotic protein Bax and apoptotic protease Caspase-3/9 and reducing the expression of anti-apoptotic protein Bcl-2. | SK-N-SH/ 15 μM | 15 μM | |
Section 2.9/Human colon cancer cells | Enhance the sensitivity of cancer cells to TRAIL-induced apoptosis | CK increases the concentration of ROS, causing autophagy in cancer cells and increasing the expression of the p53 gene, which can promote the expression of DR5, thereby increasing the sensitivity of cancer cells to TRAIL. DR5 and TRAIL combine to promote cell apoptosis. | HCT116/ 50 μM | >50μM | |
Angiogenesis inhibition | Section 2.3/Human umbilical vein endothelial cells | Anti-angiogenesis | CK inhibits the p38 and AKT cell pathways downstream of PI3K, blocking angiogenesis. | HUVECs/ 50 μM | 85 μM |
Modulation of immune response to identify cancer cell | Section 2.6/Mouse macrophages | Regulate immune activity | CK upregulates the expression of CD69, CD80 and CD86 proteins to activate macrophage function, enhance macrophage immune detection ability, stimulate the expression of NF-κB and AP-1 inflammatory signaling pathways. | RAW264./ 48 μM | 49–64 μM |
Section 2.10/PD-1 and PD-L1 proteins | Enhance the ability of T cells to recognize cancer cells | CK can block the binding of T cell PD-1 to cancer cell PD-L1, thus improving the ability of T cells to recognize cancer cells. | ELISA of PD-1and PD-L1/ 0.1 μM | none | |
Inflammation regulation | Section 2.5/Mouse macrophages | Suppress excessive inflammation | CK inhibits LPS-induced inflammatory responses, reduces the expression of ERK and JNK mitogen-activated protein kinases, and reduces the production of NO and PGE2 that can cause cell inflammation. | RAW264.7/40 μM | 41–60 μM |
Section 2.6/Mouse macrophages | Regulate immune activity | CK can inhibit the expression of CD82 protein and reduce the differentiation of monocytes into macrophages. | U937/ 48 μM | none |
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CK | Ginsenoside CK |
IARC | International Agency for Research on Cancer |
PPD | Propanediol |
PPT | Propanetriol |
MMP | Matrix metalloproteinase |
SDF-1 | Stromal cell-derived factor 1 |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal regulated kinase |
bFGF | Basic fibroblast growth factor |
VEGF | Vascular endothelial growth factor |
hTERT | Human telomerase reverse transcriptas |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Basu, A.K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z. Genomic instability and cancer: An introduction. J. Mol. Cell Biol. 2011, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef]
- Rastogi, N.; Mishra, D.P. Therapeutic targeting of cancer cell cycle using proteasome inhibitors. Cell Div. 2012, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Plati, J.; Bucur, O.; Khosravi-Far, R. Dysregulation of apoptotic signaling in cancer: Molecular mechanisms and therapeutic opportunities. J. Cell Biochem. 2008, 104, 1124–1149. [Google Scholar] [CrossRef]
- Turner, K.M.; Deshpande, V.; Beyter, D.; Koga, T.; Rusert, J.; Lee, C.; Li, B.; Arden, K.; Ren, B.; Nathanson, D.A. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 2017, 543, 122–125. [Google Scholar] [CrossRef]
- Yutong, W.; Fan, Y.; Zhang, X.; Ruihan, Z.; Mingyuan, W.; Kai, Y.; Shiyun, C. Amplification of Extrachromosomal Oncogene and Tumorigenesis and Development. Chin. J. Lung Cancer 2020, 23, 1101–1107. [Google Scholar]
- Bearss, D.J.; Hurley, L.H.; Von Hoff, D.D. Telomere maintenance mechanisms as a target for drug development. Oncogene 2000, 19, 6632–6641. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Friedl, P.; Locker, J.; Sahai, E.; Segall, J.E. Classifying collective cancer cell invasion. Nat. Cell Biol. 2012, 14, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Colzani, M.; Altomare, A.; Caliendo, M.; Aldini, G.; Righetti, P.G.; Fasoli, E. The secrets of Oriental panacea: Panax ginseng. J. Proteom. 2016, 130, 150–159. [Google Scholar] [CrossRef]
- Wang, H.; Peng, D.; Xie, J. Ginseng leaf-stem: Bioactive constituents and pharmacological functions. Chin. Med. 2009, 4, 20. [Google Scholar] [CrossRef]
- Christensen, L.P. Ginsenosides: Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2008, 55, 1–99. [Google Scholar]
- Lu, G.; Liu, Z.; Wang, X.; Wang, C. Recent advances in Panax ginseng CA Meyer as a herb for anti-fatigue: An effects and mechanisms review. Foods 2021, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018, 42, 264–269. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Sun, Q.; Jiao, W.; Yan, Y.; Zhang, X. Compound K induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules 2018, 23, 1482. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Hua, K.-F.; Tuan, L.-H.; Tsai, Y.-L.; Chu, L.J.; Lee, Y.-C.; Wong, W.-T.; Lee, S.-L.; Lai, J.-H.; Chu, C.-L. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol. Dial. Transplant. 2020, 35, 74–85. [Google Scholar] [CrossRef]
- Liu, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia 2010, 81, 902–905. [Google Scholar] [CrossRef]
- Liu, J.; Shiono, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. 20 (R)-ginsenoside Rh2, not 20 (S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg. Med. Chem. Lett. 2009, 19, 3320–3323. [Google Scholar] [CrossRef]
- Hasegawa, H.; Sung, J.-H.; Matsumiya, S.; Uchiyama, M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 1996, 62, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhu, L.; Wang, L. A narrative review of the pharmacology of ginsenoside compound K. Ann. Transl. Med. 2022, 10, 234. [Google Scholar] [CrossRef]
- Xu, W.; Lyu, W.; Duan, C.; Ma, F.; Li, X.; Li, D. Preparation and bioactivity of the rare ginsenosides Rg3 and Rh2: An updated review. Fitoterapia 2023, 167, 105514. [Google Scholar] [CrossRef]
- Chen, W.; Balan, P.; Popovich, D.G. Analysis of ginsenoside content (Panax ginseng) from different regions. Molecules 2019, 24, 3491. [Google Scholar] [CrossRef] [PubMed]
- Yosioka, I.; Sugawara, T.; Imai, K.; KITAGAWA, I. Soil bacterial hydrolysis leading to genuine aglycone. V. on ginsenosides-Rb1, Rb2, and Rc of the ginseng root saponins. Chem. Pharm. Bull. 1972, 20, 2418–2421. [Google Scholar] [CrossRef]
- Chu, L.L.; Hanh, N.T.Y.; Quyen, M.L.; Nguyen, Q.H.; Lien, T.T.P.; Do, K.V. Compound K production: Achievements and perspectives. Life 2023, 13, 1565. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yu, Z.; Lv, G.; Huang, X.; Lin, H.; Ma, C.; Lin, Z.; Qu, P. Functional mechanism of ginsenoside compound K on tumor growth and metastasis. Integr. Cancer Ther. 2022, 21, 15347354221101203. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Z.; Li, C.; Shen, J.; Yin, H.; Li, G. Subchronic toxicity studies with ginsenoside compound K delivered to dogs via intravenous administration. Food Chem. Toxicol. 2011, 49, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, T.; Wang, G.; Li, G.; Sun, C.; Jiang, Z.; Yang, J.; Li, Y.; You, Y.; Wu, X. Preclinical safety of ginsenoside compound K: Acute, and 26-week oral toxicity studies in mice and rats. Food Chem. Toxicol. 2019, 131, 110578. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Wang, T.; Wang, G.; Li, G.; Sun, C.; Lin, J.; Sun, L.; Sun, X.; Cho, S. Repeated-dose 26-week oral toxicity study of ginsenoside compound K in Beagle dogs. J. Ethnopharmacol. 2020, 248, 112323. [Google Scholar] [CrossRef]
- Song, G.; Guo, S.; Wang, W.; Hu, C.; Mao, Y.; Zhang, B.; Zhang, H.; Hu, T. Intestinal metabolite compound K of ginseng saponin potently attenuates metastatic growth of hepatocellular carcinoma by augmenting apoptosis via a Bid-mediated mitochondrial pathway. J. Agric. Food Chem. 2010, 58, 12753–12760. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xin, J.; Zhang, Z.; Yan, H.; Wang, J.; Sun, E.; Hou, J.; Jia, X.; Lv, H. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: Formulation design and its evaluation in vitro and in vivo. J. Pharm. Pharmacol. 2016, 68, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Han, H.; Shi, H.; Wang, T.; Wang, B.; Zhao, J. Compound K, a metabolite of ginseng saponin, induces apoptosis of hepatocellular carcinoma cells through the mitochondria-mediated caspase-dependent pathway. Int. J. Clin. Exp. Med 2017, 10, 11146–11156. [Google Scholar]
- Lee, S.J.; Lee, J.S.; Lee, E.; Lim, T.-G.; Byun, S. The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1. J. Funct. Foods. 2018, 46, 159–166. [Google Scholar] [CrossRef]
- Oh, J.-M.; Kim, E.; Chun, S. Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo. Int. J. Mol. Sci. 2019, 20, 4279. [Google Scholar] [CrossRef]
- Hou, Y.; Meng, X.; Sun, K.; Zhao, M.; Liu, X.; Yang, T.; Zhang, Z.; Su, R. Anti-cancer effects of ginsenoside CK on acute myeloid leukemia in vitro and in vivo. Heliyon 2022, 8, e12106. [Google Scholar] [CrossRef]
- Shao, L.; Guo, Y.-P.; Wang, L.; Chen, M.-Y.; Zhang, W.; Deng, S.; Huang, W.-H. Effects of ginsenoside compound K on colitis-associated colorectal cancer and gut microbiota profiles in mice. Ann. Transl. Med. 2022, 10, 408. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Kang, B.; Lee, S.; Jin, S.; Choi, M.-K.; Song, I.-S. Pharmacokinetics and intestinal metabolism of compound K in rats and mice. Pharmaceutics 2020, 12, 129. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, L.; Huang, J.; Wang, Y.; Yang, G.; Tan, Z.; Wang, Y.; Zhou, G.; Liao, J.; Ouyang, D. Single-and multiple-dose trials to determine the pharmacokinetics, safety, tolerability, and sex effect of oral ginsenoside compound K in healthy Chinese volunteers. Front. Pharmacol. 2018, 8, 965. [Google Scholar] [CrossRef]
- Jiang, B.H.; Liu, L.Z. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv. Cancer Res. 2009, 102, 19–65. [Google Scholar] [CrossRef]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Podsypanina, K.; Lee, R.T.; Politis, C.; Hennessy, I.; Crane, A.; Puc, J.; Neshat, M.; Wang, H.; Yang, L.; Gibbons, J. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA 2001, 98, 10320–10325. [Google Scholar] [CrossRef]
- Phillips, T.M.; Fadia, M.; Lea-Henry, T.N.; Smiles, J.; Walters, G.D.; Jiang, S.H. MMP2 and MMP9 associate with crescentic glomerulonephritis. Clin. Kidney J. 2017, 10, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, I.; Tapia, O.; Espinoza, J.A.; Leal, P.; Buchegger, K.; Sandoval, A.; Bizama, C.; Araya, J.C.; Peek, R.M.; Roa, J.C. The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines. Pathol. Oncol. Res. 2016, 22, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.-H. Editorial (Hot Topic: PI3K/AKT and mTOR/p70S6K1 Signaling Pathways in Human Cancer). Curr. Cancer Drug Targets 2013, 13, 233. [Google Scholar] [CrossRef]
- Chen, K.; Jiao, J.; Xue, J.; Chen, T.; Hou, Y.; Jiang, Y.; Qian, L.; Wang, Y.; Ma, Z.; Liang, Z. Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway. Oncol. Rep. 2020, 43, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.; Ahmed, S.; Iwasaki, Y.; Ohba, K.; Toi, M.; Yamamoto, N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed. Pharmacother. 2006, 60, 273–276. [Google Scholar] [CrossRef]
- He, S.; Li, Q.; Huang, Q.; Cheng, J. Targeting protein kinase C for cancer therapy. Cancers 2022, 14, 1104. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Kim, H.; Roh, H.S.; Kim, J.E.; Park, S.D.; Park, W.H.; Moon, J.-Y. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells. Nutr. Res. Pract. 2016, 10, 259–264. [Google Scholar] [CrossRef]
- Detmar, M. Tumor angiogenesis. J. Investig. Dermatol. Symp. Proc. 2000, 5, 20–23. [Google Scholar] [CrossRef]
- Fan, T.-P.D.; Jagger, R.; Bicknell, R. Controlling the vasculature: Angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol. Sci. 1995, 16, 57–66. [Google Scholar] [CrossRef]
- Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J.; Shing, Y. Angiogenesis. J. Biol. Chem. 1992, 267, 10931–10934. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer 2010, 10, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.S.; Cui, W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016, 143, 3050–3060. [Google Scholar] [CrossRef]
- Duan, C.; Bauchat, J.R.; Hsieh, T. Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I–induced vascular smooth muscle cell proliferation and migration. Circ. Res. 2000, 86, 15–23. [Google Scholar] [CrossRef]
- Ahmadi, A.; Ahrari, S.; Salimian, J.; Salehi, Z.; Karimi, M.; Emamvirdizadeh, A.; Jamalkandi, S.A.; Ghanei, M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun. Signal. 2023, 21, 314. [Google Scholar] [CrossRef]
- Jih, Y.-J.; Lien, W.-H.; Tsai, W.-C.; Yang, G.-W.; Li, C.; Wu, L.-W. Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 2001, 4, 313–321. [Google Scholar] [CrossRef]
- Jeong, A.; Lee, H.-J.; Jeong, S.-J.; Lee, H.-J.; Lee, E.-O.; Bae, H.; Kim, S.-H. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein Kinaseand AKT in human umbilical vein endothelial cells. Biol. Pharm. Bull. 2010, 33, 945–950. [Google Scholar] [CrossRef]
- Ahmed, W.; Lingner, J. Impact of oxidative stress on telomere biology. Differentiation 2018, 99, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Lee, K.H.; Chae, S.; Kim, J.K.; Seo, J.Y.; Ham, Y.H.; Lee, K.H.; Kim, B.J.; Kim, H.S.; Kim, D.H. Inhibition of telomerase activity in U937 human monocytic leukemia cells by compound K, a ginseng saponin metabolite. Biotechnol. Bioproc. Eng. 2006, 11, 7–12. [Google Scholar] [CrossRef]
- Feng, J.; Funk, W.D.; Wang, S.-S.; Weinrich, S.L.; Avilion, A.A.; Chiu, C.-P.; Adams, R.R.; Chang, E.; Allsopp, R.C.; Yu, J. The RNA component of human telomerase. Science 1995, 269, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Leão, R.; Apolónio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (h TERT) regulation: Clinical impacts in cancer. J. Biomed. Sci. 2018, 25, 22. [Google Scholar] [CrossRef]
- Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology 2020, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.-J.; Choi, J.; Lee, J.-S.; Choi, H.-S.; Yoon, K.-Y.; Hwang, J.-H.; Kim, K.J.; Lee, B.-Y. Compound K inhibits the lipopolysaccharide-induced inflammatory responses in raw 264.7 cell line and zebrafish. Appl. Sci. 2018, 8, 924. [Google Scholar] [CrossRef]
- Hammond, C.; Denzin, L.K.; Pan, M.; Griffith, J.M.; Geuze, H.J.; Cresswell, P. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR,-DM, and-DO molecules. J. Immunol. 1998, 161, 3282–3291. [Google Scholar] [CrossRef]
- McGowan, E.N.; Wong, O.; Jones, E.; Nguyen, J.; Wee, J.; Demaria, M.C.; Deliyanti, D.; Johnson, C.J.; Hickey, M.J.; McConville, M.J. Tetraspanin CD82 restrains phagocyte migration but supports macrophage activation. Iscience 2022, 25, 104520. [Google Scholar] [CrossRef]
- Yang, W.S.; Yi, Y.-S.; Kim, D.; Kim, M.H.; Park, J.G.; Kim, E.; Lee, S.Y.; Yoon, K.; Kim, J.-H.; Park, J. Nuclear factor kappa-B-and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages. J. Ginseng Res. 2017, 41, 298–306. [Google Scholar] [CrossRef]
- Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267, 1456–1462. [Google Scholar] [CrossRef]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qi, L.; Li, L.; Li, Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 2020, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Kim, E.; Kim, J.H.; Yoon, K.; Kim, S.; Lee, J.; Cho, J.Y. AKT1-targeted proapoptotic activity of compound K in human breast cancer cells. J. Ginseng Res. 2019, 43, 692–698. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Wong, W.-T.; Li, L.-H.; Chu, L.J.; Menon, M.P.; Ho, C.-L.; Chernikov, O.V.; Lee, S.-L.; Hua, K.-F. Ginsenoside M1 induces apoptosis and inhibits the migration of human oral cancer cells. Int. J. Mol. Sci. 2020, 21, 9704. [Google Scholar] [CrossRef]
- Liou, G.-Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef]
- Khan, A.Q.; Rashid, K.; AlAmodi, A.A.; Agha, M.V.; Akhtar, S.; Hakeem, I.; Raza, S.S.; Uddin, S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed. Pharmacother. 2021, 143, 112142. [Google Scholar] [CrossRef] [PubMed]
- Knudson, C.M.; Korsmeyer, S.J. Bcl-2 and Bax function independently to regulate cell death. Nat. Genet. 1997, 16, 358–363. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Pai, R.C.; Fong, S.; Leung, S.; Lawrence, D.A.; Marsters, S.A.; Blackie, C.; Chang, L.; McMurtrey, A.E.; Hebert, A. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Investig. 1999, 104, 155–162. [Google Scholar] [CrossRef]
- Gao, J.; Wang, D.; Liu, D.; Liu, M.; Ge, Y.; Jiang, M.; Liu, Y.; Zheng, D. Tumor necrosis factor–related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype. Mol. Biol. Cell. 2015, 26, 3178–3189. [Google Scholar] [CrossRef]
- Krysko, D.V.; Vandenabeele, P. Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wu, G.S.; Burns, T.F.; McDonald, E., 3rd; Jiang, W.; Meng, R.; Krantz, I.D.; Kao, G.; Gan, D.-D.; Zhou, J.-Y.; Muschel, R. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 1997, 17, 141–143. [Google Scholar] [CrossRef]
- Chen, L.; Meng, Y.; Sun, Q.; Zhang, Z.; Guo, X.; Sheng, X.; Tai, G.; Cheng, H.; Zhou, Y. Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and-independent DR5 upregulation. Cell Death Dis. 2016, 7, e2334. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Ji, Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front. Immunol. 2022, 13, 874589. [Google Scholar] [CrossRef] [PubMed]
- Sunshine, J.; Taube, J.M. Pd-1/pd-l1 inhibitors. Curr. Opin. Pharmacol. 2015, 23, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yim, N.-H.; Kim, Y.S.; Chung, H.-S. Inhibition of programmed death receptor-1/programmed death ligand-1 interactions by ginsenoside metabolites. Molecules 2020, 25, 2068. [Google Scholar] [CrossRef]
Type | Model | Administration | Dosing Frequency | Administrated Period (Weeks) | Dose (mg/kg) | MED * (mg/kg) |
---|---|---|---|---|---|---|
acute | mice | oral | single | 2 | 10,000 (NOAEL) | 10,000 |
acute | rat | oral | single | 2 | 8000 (NOAEL) | 12,800 |
chronic | rat (male) | oral | once a day | 26 | 40 (NOAEL) | 64 |
chronic | dog | oral | once a day | 26 | 12 (NOAEL) | 57.6 |
subchronic | dog | i.v. injection | once a day | 13 | 6.7 (NOAEL) | 32.2 |
Carcinoma | Cell Line | Administration | Dosing Frequency | Administrated Period | Dose (mg/kg) | Tumor Shrink (%) |
---|---|---|---|---|---|---|
Hepatoma | BEL7402 | i.p. injection | once two days | 5 weeks | 10 | 86 (weight) |
Hepatoma | Hep-G2 | i.p. injection | once three days | 18 days | 10 | 50 (volumn) |
Lung | A549 cells | i.v. injection | once three days | 15 days | 15 | 41 (volumn) |
Breast | MCF10DCIS | i.p. injection | once two days | 3 weeks | 1 | 63 (volumn) |
Neuroblastoma | SK-N-BE(2) | i.p. injection | three times a week | 53 days | 30 | 56 (weight) |
Leukemia | C1498, FLT3+ | i.p. injection | once two days | 10 days | 5 | 56, 54 (WBC count) |
Colorectal | AOM/DSS-induced | oral | freely fed | 6 weeks | 60 | 79 (volumn) |
Tumor shrink(%) = [1 − (Tumor size(CK)/Tumor size(con.))] × 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-P.; Chan, H.-T.; Li, T.-H.; Chu, L.; Lee, S.-L.; Chang, Y.-Q.; Wang, R.Y. Anticancer Mechanisms of Ginsenoside Compound K: A Review. Diseases 2025, 13, 143. https://doi.org/10.3390/diseases13050143
Lee Y-P, Chan H-T, Li T-H, Chu L, Lee S-L, Chang Y-Q, Wang RY. Anticancer Mechanisms of Ginsenoside Compound K: A Review. Diseases. 2025; 13(5):143. https://doi.org/10.3390/diseases13050143
Chicago/Turabian StyleLee, Yu-Po, Hui-Ting Chan, Tzu-Hsuan Li, Lichieh (Julie) Chu, Sheau-Long Lee, Yu-Quan Chang, and Robert YL Wang. 2025. "Anticancer Mechanisms of Ginsenoside Compound K: A Review" Diseases 13, no. 5: 143. https://doi.org/10.3390/diseases13050143
APA StyleLee, Y.-P., Chan, H.-T., Li, T.-H., Chu, L., Lee, S.-L., Chang, Y.-Q., & Wang, R. Y. (2025). Anticancer Mechanisms of Ginsenoside Compound K: A Review. Diseases, 13(5), 143. https://doi.org/10.3390/diseases13050143