Minimally Invasive Versus Full Sternotomy Approaches in Mitral Valve Surgery for Infective Endocarditis: A Retrospective Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Outcomes
2.2. Statistical Analysis
3. Results
3.1. Study Population
3.2. Postoperative Outcomes and Mortality
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [PubMed]
- Ascaso, M.; Sandoval, E.; Muro, A.; Barriuso, C.; Quintana, E.; Alcocer, J.; Sitges, M.; Vidal, B.; Pomar, J.-L.; Castellà, M.; et al. Repair of mitral prolapse: Comparison of thoracoscopic minimally-invasive and conventional approaches. Eur. J. Cardiothorac. Surg. 2023, 64, ezad235. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Kumar, R.; Mokhtassi, S.S.; Alassiri, A.K.; Odaman, A.; Khan, M.A.R.; Lakshmana, S.; Din, Z.U.; Acharya, P.; Cheema, H.A.; et al. Minimally invasive vs. conventional mitral valve surgery: A meta-analysis of randomised controlled trials. Front. Cardiovasc. Med. 2024, 11, 1437524. [Google Scholar] [CrossRef] [PubMed]
- El-Andari, R.; Watkins, A.R.; Fialka, N.M.; Kang, J.J.H.; Bozso, S.J.; Hassanabad, A.F.; Vasanthan, V.; Adams, C.; Cook, R.; Moon, M.C.; et al. Western Canadian Minimally Invasive Cardiac Surgery Working Group. Minimally Invasive Approaches to Mitral Valve Surgery: Where Are We Now? A Narrative Review. Can. J. Cardiol. 2024, 40, 1679–1689. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart. J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Barbero, C.; Pocar, M.; Brenna, D.; Parrella, B.; Baldarelli, S.; Aloi, V.; Costamagna, A.; Trompeo, A.C.; Vairo, A.; Alunni, G.; et al. Minimally Invasive Surgery: Standard of Care for Mitral Valve Endocarditis. Medicina 2023, 59, 1435. [Google Scholar] [CrossRef]
- Franz, M.; Aburahma, K.; Ius, F.; Ali-Hasan-Al-Saegh, S.; Boethig, D.; Hertel, N.; Zubarevich, A.; Kaufeld, T.; Ruhparwar, A.; Weymann, A.; et al. Minimally Invasive Surgery through Right Mini-Thoracotomy for Mitral Valve Infective Endocarditis: Contraindicated or Safely Possible? J. Clin. Med. 2024, 13, 4182. [Google Scholar] [CrossRef]
- Van Praet, K.M.; Kofler, M.; Sundermann, S.H.; Montagner, M.; Heck RStarck, C.; Stamm, C.; Jacobs, S.; Kempfert, J.; Falk, V. Minimally invasive approach for infective mitral valve endocarditis. Ann. Cardiothorac. Surg. 2019, 8, 702–704. [Google Scholar] [CrossRef]
- Fleißner, F.; Salman, J.; Naqizadah, J.; Avsar, M.; Meier, J.; Warnecke, G.; Kühn, C.; Cebotari, S.; Ziesing, S.; Haverich, A.; et al. Minimally invasive surgery in mitral valve endocarditis. Thorac. Cardiovasc. Surg. 2019, 67, 637–643. [Google Scholar] [CrossRef]
- van der Merwe, J.; Casselman, F.; Stockman, B.; Roubelakis, A.; Vermeulen, Y.; Degrieck, I.; Van Praet, F. Endoscopic port access surgery for isolated atrioventricular valve endocarditis. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 487–493. [Google Scholar] [CrossRef]
- Folkmann, S.; Seeburger, J.; Garbade, J.; Schon, U.; Misfeld, M.; Mohr, F.W.; Pfannmueller, B. Minimally invasive mitral valve surgery for mitral valve infective endocarditis. Thorac. Cardiovasc. Surg. 2018, 66, 525–529. [Google Scholar] [PubMed]
- Kofler, M.; Van Praet, K.M.; Schambach, J.; Akansel, S.; Sundermann, S.; Schonrath, F.; Jacobs, S.; Falk, V.; Kempfert, J. Minimally invasive surgery versus sternotomy in native mitral valve endocarditis: A matched comparison. Eur. J. Cardiothorac. Surg. 2021, 61, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Mihos, C.G.; Santana, O.; Pineda, A.M.; Lamas, G.A.; Lamelas, J. Right anterior minithoracotomy versus median sternotomy surgery for native mitral valve infective endocarditis. J. Heart Valve Dis. 2014, 23, 343–349. [Google Scholar] [PubMed]
- Nissen, A.P.; Miller CC 3rd Thourani, V.H.; Woo, Y.J.; Gammie, J.S.; Ailawadi, G.; Nguyen, T.C. Less Invasive Mitral Surgery Versus Conventional Sternotomy Stratified by Mitral Pathology. Ann. Thorac. Surg. 2021, 111, 819–827. [Google Scholar] [CrossRef]
- Pitts, L.; Dini, M.; Goecke, S.; Kofler, M.; Ott, S.; Stoppe, C.; O’brien, B.; Jacobs, S.; Falk, V.; Hommel, M.; et al. Enhanced recovery after minimally invasive cardiac surgery following a zero ICU concept-a propensity score-matched analysis. Eur. J. Cardiothorac. Surg. 2024, 66, ezae439. [Google Scholar] [CrossRef]
- Badhwar, V.; Vemulapalli, S.; Mack, M.A.; Gillinov, A.M.; Chikwe, J.; Dearani, J.A.; Grau-Sepulveda, M.V.; Habib, R.; Rankin, J.S.; Jacobs, J.P.; et al. Volume-Outcome Association of Mitral Valve Surgery in the United States. JAMA Cardiol. 2020, 5, 1092–1101. [Google Scholar] [CrossRef]
- Kilic, A.; Shah, A.S.; Conte, J.V.; Baumgartner, W.A.; Yuh, D.D. Operative outcomes in mitral valve surgery: Combined effect of surgeon and hospital volume in a population-based analysis. J. Thorac. Cardiovasc. Surg. 2013, 146, 638–646. [Google Scholar] [CrossRef]
- Vo, A.T.; Nguyen, D.H.; Van Hoang, S.; Le, K.M.; Nguyen, T.T.; Nguyen, V.L.; Nguyen, B.H.; Truong, B.Q. Learning curve in minimally invasive mitral valve surgery: A single-center experience. J. Cardiothorac. Surg. 2019, 14, 213. [Google Scholar] [CrossRef]
- Shih, E.; Squiers, J.J.; DiMaio, J.M. Systematic Review of Minimally Invasive Surgery for Mitral Valve Infective Endocarditis. Innovations 2021, 16, 244–248. [Google Scholar] [CrossRef]
- Mikus, E.; Fiorentino, M.; Sangiorgi, D.; Pascale, R.; Costantino, A.; Nocera, C.; Calvi, S.; Tenti, E.; Tremoli, E.; Tripodi, A.; et al. The Role of Microbes in Surgical Decision Making for Infective Endocarditis: Mitral Valve Repair or Replacement? Microorganisms 2024, 12, 1320. [Google Scholar] [CrossRef]
- Toyoda, N.; Itagaki, S.; Egorova, N.N.; Tannous, H.; Anyanwu, A.C.; El-Eshmawi, A.; Adams, D.H.; Chikwe, J. Real-world outcomes of surgery for native mitral valve endocarditis. J. Thorac. Cardiovasc. Surg. 2017, 154, 1906–1912.e9. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Cheng, Y.T.; Wu, V.C.; Chou, A.H.; Chu, P.H.; Tsai, F.C.; Chen, S.W. Nationwide cohort study of mitral valve repair versus re-placement for infective endocarditis. J. Thorac. Cardiovasc. Surg. 2018, 156, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Malvindi, P.G.; Luthra, S.; Zingale, A.; Bifulco, O.; Berretta, P.; Pierri, M.D.; Ohri, S.K.; Di Eusanio, M. Surgical repair and replacement for native mitral valve infective endocarditis. J. Cardiovasc. Med. 2024, 25, 334–341. [Google Scholar] [CrossRef]
- Di Bacco, L.; D’Alonzo, M.; Di Mauro, M.; Petruccelli, R.D.; Baudo, M.; Palacios, C.M.; Benussi, S.; Muneretto, C.; Rosati, F. Mitral valve surgery in acute infective endocarditis: Long-term outcomes of mitral valve repair versus replacement. J. Cardiovasc. Med. 2024, 25, 30–37. [Google Scholar] [CrossRef] [PubMed]
Before IPTW | After IPTW | ||||||
---|---|---|---|---|---|---|---|
Full | Mini | p-Value | SMD | Full | Mini | SMD | |
n | 94 | 40 | 170.57 | 149.59 | |||
Age, median (IQR) | 68 (58, 75) | 62 (47, 71) | 0.062 | 0.453 | 65 (52, 74) | 69 (61, 72) | 0.023 |
Female, n (%) | 45 (47.9) | 18 (45.0) | 0.851 | 0.058 | 83.0 (48.6) | 76.5 (51.2) | 0.050 |
Endocarditis Site, n (%) | 0.032 | 0.541 | 0.185 | ||||
Native Valve | 62 (66.0) | 35 (87.5) | 120.4 (70.6) | 113.5 (75.9) | |||
Native Valve + Prosthesis | 1 (1.1) | 0 (0.0) | 1.0 (0.6) | 0.0 (0.0) | |||
Prosthesis | 30 (31.9) | 5 (12.5) | 48.2 (28.3) | 36.1 (24.1) | |||
Blood Culture, n (%) | 86 (96.6) | 40 (100.0) | 0.552 | 0.264 | 162.6 (98.2) | 149.6 (100.0) | 0.192 |
Negative Blood Culture, n (%) | 8 (9.2) | 5 (12.5) | 0.546 | 0.106 | 21.3 (13.0) | 20.8 (13.9) | 0.027 |
Staphylococcus Aureus, n (%) | 26 (30.2) | 11 (28.9) | 1.000 | 0.028 | 36.4 (22.4) | 32.3 (23.1) | 0.017 |
Staphylococcus Non-Aureus, n (%) | 16 (18.6) | 1 (2.6) | 0.021 | 0.537 | 23.8 (14.6) | 16.5 (11.8) | 0.082 |
Streptococcus, n (%) | 16 (18.6) | 15 (39.5) | 0.023 | 0.472 | 50.3 (30.9) | 46.5 (33.3) | 0.050 |
Pseudomonas, n (%) | 1 (1.2) | 0 (0.0) | 1.000 | 0.153 | 1.0 (0.6) | 0.0 (0.0) | 0.111 |
Enterococcus Faecalis, n (%) | 8 (9.3) | 5 (13.2) | 0.535 | 0.122 | 14.7 (9.1) | 12.1 (8.7) | 0.014 |
Fungus, n (%) | 1 (1.2) | 0 (0.0) | 1.000 | 0.153 | 1.0 (0.6) | 0.0 (0.0) | 0.111 |
Other Pathogen, n (%) | 10 (11.6) | 2 (5.3) | 0.341 | 0.230 | 19.1 (11.7) | 20.3 (14.5) | 0.083 |
Hypertension, n (%) | 65 (69.1) | 19 (47.5) | 0.020 | 0.450 | 110.6 (64.8) | 96.9 (64.8) | 0.001 |
Diabetes, n (%) | 20 (21.3) | 9 (22.5) | 1.000 | 0.030 | 51.8 (30.4) | 49.8 (33.3) | 0.063 |
Obesity, n (%) | 24 (25.5) | 5 (12.5) | 0.112 | 0.337 | 37.3 (21.8) | 29.6 (19.8) | 0.050 |
COPD, n (%) | 12 (12.8) | 4 (10.0) | 0.777 | 0.087 | 18.9 (11.1) | 14.0 (9.4) | 0.057 |
EF, median (IQR) | 60 (55, 65) | 60 (55, 61) | 0.627 | 0.082 | 60 (55, 61) | 60 (55, 63) | 0.015 |
Drug Addiction, n (%) | 6 (6.4) | 2 (5.0) | 1.000 | 0.060 | 6.0 (3.5) | 5.0 (3.4) | 0.009 |
Redo, n (%) | 39 (41.5) | 6 (15.0) | 0.003 | 0.616 | 66.0 (38.7) | 51.7 (34.6) | 0.086 |
Number Of Prior Valves, median (IQR) | 0.0 (0.0, 1.0) | 0.0 (0.0, 0.0) | 0.008 | 0.390 | 0.0 (0.0, 1.0) | 0.0 (0.0, 0.2) | 0.050 |
Preoperative IABP, n (%) | 1 (1.1) | 0 (0.0) | 1.000 | 0.147 | 1.0 (0.6) | 0.0 (0.0) | 0.109 |
Peripheral Artery Disease, n (%) | 9 (9.6) | 2 (5.0) | 0.505 | 0.177 | 13.0 (7.6) | 10.6 (7.1) | 0.020 |
Malignancy, n (%) | 7 (7.4) | 4 (10.0) | 0.732 | 0.091 | 12.9 (7.6) | 11.7 (7.8) | 0.009 |
Neurological Disease, n (%) | 26 (27.7) | 5 (12.5) | 0.073 | 0.385 | 31.7 (18.6) | 27.5 (18.4) | 0.005 |
Unstable Angina, n (%) | 3 (3.2) | 1 (2.5) | 1.000 | 0.042 | 3.0 (1.8) | 1.0 (0.7) | 0.100 |
Shock, n (%) | 6 (6.4) | 4 (10.0) | 0.485 | 0.132 | 13.7 (8.0) | 13.4 (9.0) | 0.033 |
Heart Failure, n (%) | 23 (24.5) | 5 (12.5) | 0.164 | 0.312 | 34.8 (20.4) | 26.6 (17.8) | 0.067 |
MI Within 90 Days, n (%) | 1 (1.1) | 0 (0.0) | 1.000 | 0.147 | 1.0 (0.6) | 0.0 (0.0) | 0.109 |
Active Endocarditis, n (%) | 76 (80.9) | 27 (67.5) | 0.118 | 0.309 | 123.3 (72.3) | 105.0 (70.2) | 0.045 |
Preoperative Intubation, n (%) | 8 (8.5) | 4 (10.0) | 0.751 | 0.051 | 15.7 (9.2) | 13.4 (9.0) | 0.009 |
PAPs > 50 Mmhg, n (%) | 10 (10.6) | 0 (0.0) | 0.033 | 0.488 | 10.0 (5.9) | 0.0 (0.0) | 0.353 |
Logistic Euroscore, median (IQR) | 17.9 (8.1, 31.2) | 7.9 (4.4, 20.1) | 0.002 | 0.561 | 13.1(6.0, 27.8) | 13.6 (6.3, 36.0) | 0.096 |
Cirrhosis, n (%) | 1 (1.1) | 0 (0.0) | 1.000 | 0.147 | 1.0 (0.6) | 0.0 (0.0) | 0.109 |
Chronic Kidney Disease (creatinine > 2 mg/dL), n (%) | 12 (12.8) | 5 (12.5) | 1.000 | 0.008 | 20.9 (12.2) | 18.2 (12.2) | 0.002 |
Dialysis, n (%) | 7 (7.4) | 1 (2.5) | 0.435 | 0.229 | 7.0 (4.1) | 5.5 (3.7) | 0.021 |
Pacemaker, n (%) | 3 (3.2) | 1 (2.5) | 1.000 | 0.042 | 3.4 (2.0) | 2.0 (1.4) | 0.047 |
Before IPTW | After IPTW | ||||||
---|---|---|---|---|---|---|---|
Full | Mini | p-Value | SMD | Full | Mini | SMD | |
n | 94 | 40 | 170.57 | 149.59 | |||
Abscesses, n (%) | 16 (17.0) | 1 (2.5) | 0.022 | 0.505 | 16.0 (9.4) | 10.4 (6.9) | 0.089 |
Vegetations, n (%) | 75 (79.8) | 38 (95.0) | 0.036 | 0.471 | 150.8 (88.4) | 139.5 (93.2) | 0.168 |
Leaflet Perforation, n (%) | 21 (22.3) | 7 (17.5) | 0.645 | 0.121 | 27.8 (16.3) | 21.1 (14.1) | 0.062 |
Prosthesis Detachment, n (%) | 16 (17.0) | 2 (5.0) | 0.094 | 0.391 | 24.1 (14.2) | 17.5 (11.7) | 0.072 |
Duration Of IE (Days), median (IQR) | 20 (13, 45) | 26 (13, 46) | 0.518 | 0.101 | 23 (11, 46) | 25 (10, 47) | 0.046 |
Mitral Valve, n (%) | <0.001 | 0.728 | 0.624 | ||||
Repair | 13 (13.8) | 18 (45.0) | 29.6 (17.3) | 67.2 (44.9) | |||
Replace | 81 (86.2) | 22 (55.0) | 141.0 (82.7) | 82.4 (55.1) | |||
Type of Valve, n (%) | 0.141 | 0.411 | 0.749 | ||||
Biological | 42/81 (51.9) | 32/40 (71.4) | 94.7 (55.5) | 130.4 (87.2) | |||
Mechanical | 39/81 (48.1) | 6/40 (28.6) | 75.9 (44.5) | 19.1 (12.8) | |||
Cardiopulmonary Bypass Time, median (IQR) | 99 (78, 118) | 111 (81, 124) | 0.242 | 0.196 | 103 (81, 115) | 87 (70, 118) | 0.074 |
Clamping time, median (IQR) | 81 (63, 97) | 86 (63, 102) | 0.461 | 0.119 | 87 (65, 98) | 71 (55, 107) | 0.140 |
Before IPTW | After IPTW | |||||
---|---|---|---|---|---|---|
Full | Mini | p-Value | Full | Mini | Mini vs. Full, Coef (OR or β), 95% CI, p | |
n | 94 | 40 | 170.57 | 149.59 | ||
Intubation Hours, median (IQR) | 11 (6, 25) | 7 (4, 11) | 0.004 | 9 (5, 16) | 7 (4, 10) | −0.854 (−1.735; 0.052) p = 0.059 |
ICU Stay (Days), median (IQR) | 4.0 (2.0, 7.0) | 2.0 (2.0, 4.3) | 0.024 | 3.0 (2.0, 7.0) | 2.0 (2.0, 4.5) | −0.542 (−0.987; −0.094) p = 0.018 |
Sepsis, n (%) | 10 (10.6) | 1 (2.5) | 0.173 | 27.7 (16.2) | 1.0 (0.7) | 0.032 (0.004–0.241) p = 0.001 |
Multi-organ Failure, n (%) | 2 (2.1) | 2 (5.0) | 0.582 | 9.7 (5.7) | 6.6 (4.4) | 0.722 (0.262–1.987) p = 0.528 |
Complete Heart Block with Pacemaker, n (%) | 8 (8.5) | 1 (2.5) | 0.279 | 13.6 (8.0) | 1.2 (0.8) | 0.091 (0.013–0.622) p = 0.014 |
Cardiac Arrest with VF, n (%) | 0 (0.0) | 0 (0.0) | NA | 0.0 (0.0) | 0.0 (0.0) | / |
Atrial Fibrillation, n (%) | 25 (26.6) | 8 (20.0) | 0.514 | 29.7 (17.4) | 15.0 (10.0) | 0.535 (0.273–1.047) p = 0.068 |
Stroke, n (%) | 7 (7.4) | 1 (2.5) | 0.435 | 14.9 (8.7) | 1.0 (0.7) | 0.066 (0.009–0.506) p = 0.009 |
Acute Kidney Injury, n (%) | 11 (11.7) | 4 (10.0) | 1.000 | 20.9 (12.2) | 8.4 (5.6) | 0.420 (0.181–0.973) p = 0.043 |
Continuous Venovenous Hemofiltration, n (%) | 4 (4.3) | 2 (5.0) | 1.000 | 11.7 (6.9) | 6.6 (4.4) | 0.591 (0.222–1.572) p = 0.292 |
Bleeding Volume (mL), median (IQR) | 450 (250, 638) | 350 (163, 450) | 0.033 | 350 (261, 600) | 329 (150, 396) | −0.348 (−0.787; 0.088) p = 0.120 |
Reoperation for Bleeding, n (%) | 8 (8.5) | 2 (5.0) | 0.723 | 21.0 (12.3) | 8.8 (5.9) | 0.415 (0.182–0.942) p = 0.036 |
Reoperation for Dehiscence, n (%) | 1 (1.1) | 0 (0.0) | 1.000 | 1.0 (0.6) | 0.0 (0.0) | / |
Length of Stay, median (IQR) | 8.00 (6.00, 12.00) | 7.00 (5.00, 10.00) | 0.101 | 8.00 (6.00, 12.00) | 7.48 (6.00, 10.67) | −0.179 (−0.423; 0.065) p = 0.151 |
Death, n (%) | 6 (6.4) | 2 (5.0) | 1.000 | 13.9 (8.1) | 6.6 (4.4) | 0.492 (0.190–1.276) p = 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikus, E.; Fiorentino, M.; Sangiorgi, D.; Costantino, A.; Calvi, S.; Tenti, E.; Tremoli, E.; Tripodi, A.; Savini, C. Minimally Invasive Versus Full Sternotomy Approaches in Mitral Valve Surgery for Infective Endocarditis: A Retrospective Comparative Analysis. Diseases 2025, 13, 135. https://doi.org/10.3390/diseases13050135
Mikus E, Fiorentino M, Sangiorgi D, Costantino A, Calvi S, Tenti E, Tremoli E, Tripodi A, Savini C. Minimally Invasive Versus Full Sternotomy Approaches in Mitral Valve Surgery for Infective Endocarditis: A Retrospective Comparative Analysis. Diseases. 2025; 13(5):135. https://doi.org/10.3390/diseases13050135
Chicago/Turabian StyleMikus, Elisa, Mariafrancesca Fiorentino, Diego Sangiorgi, Antonino Costantino, Simone Calvi, Elena Tenti, Elena Tremoli, Alberto Tripodi, and Carlo Savini. 2025. "Minimally Invasive Versus Full Sternotomy Approaches in Mitral Valve Surgery for Infective Endocarditis: A Retrospective Comparative Analysis" Diseases 13, no. 5: 135. https://doi.org/10.3390/diseases13050135
APA StyleMikus, E., Fiorentino, M., Sangiorgi, D., Costantino, A., Calvi, S., Tenti, E., Tremoli, E., Tripodi, A., & Savini, C. (2025). Minimally Invasive Versus Full Sternotomy Approaches in Mitral Valve Surgery for Infective Endocarditis: A Retrospective Comparative Analysis. Diseases, 13(5), 135. https://doi.org/10.3390/diseases13050135