Leukocyte Dysregulation and Biochemical Alterations in End-Stage Kidney Disease Patients Under Hemodialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description
2.2. Patients
2.3. Sample Collection and Processing
2.4. Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic and Etiopathogenic Characteristics of the Patients
3.2. Analysis of Hematological and Biochemical Parameters
3.3. Leukocyte Subpopulations in End-Stage CKD Patients
3.4. Correlation of Leukocyte Subpopulations with Hematological and Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaidya, S.R.; Aeddula, N.R. Chronic Kidney Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535404/ (accessed on 10 February 2024).
- León-Figueroa, D.A.; Aguirre-Milachay, E.; Barboza, J.J.; Valladares-Garrido, M.J. Prevalence of hypertension and diabetes mellitus in Peruvian patients with chronic kidney disease: A systematic review and meta-analysis. BMC Nephrol. 2024, 25, 160. [Google Scholar] [CrossRef] [PubMed]
- Peruvian Society of Nephrology. Situation of Chronic Kidney Disease in Peru and Analysis of Mortality Due to Renal Failure During the COVID-19 Pandemic. Available online: https://www.spn.pe/archivos/SITUACION-DE-LA-ENFEREMEDAD-RENAL-CRONICA-EN-EL-PERU-2020-2021.pdf (accessed on 10 February 2024).
- Yang, M.; Zhang, C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J. Pharm. Anal. 2024, 14, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Naicker, S.D.; Cormican, S.; Griffin, T.P.; Maretto, S.; Martin, W.P.; Ferguson, J.P.; Cotter, D.; Connaughton, E.P.; Dennedy, M.C.; Griffin, M.D. Chronic Kidney Disease Severity Is Associated with Selective Expansion of a Distinctive Intermediate Monocyte Subpopulation. Front. Immunol. 2018, 9, 2845. [Google Scholar] [CrossRef]
- Tecklenborg, J.; Clayton, D.; Siebert, S.; Coley, S.M. The Role of the Immune System in Kidney Disease. Clin. Exp. Immunol. 2018, 192, 142–150. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, F. Immune Cells and Inflammation in Diabetic Nephropathy. J. Diabetes Res. 2016, 2016, 1841690. [Google Scholar] [CrossRef]
- Ozcicek, A.; Ozcicek, F.; Yildiz, G.; Timuroglu, A.; Demirtas, L.; Buyuklu, M.; Kuyrukluyildiz, U.; Akbas, E.M.; Topal, E.; Turkmen, K. Neutrophil-to-Lymphocyte Ratio as a Possible Indicator of Epicardial Adipose Tissue in Patients Undergoing Hemodialysis. Arch. Med. Sci. 2017, 13, 118–123. [Google Scholar] [CrossRef]
- Tucker, P.S.; Scanlan, A.T.; Dalbo, V.J. Chronic Kidney Disease Influences Multiple Systems: Describing the Relationship Between Oxidative Stress, Inflammation, Kidney Damage, and Concomitant Disease. Oxid. Med. Cell. Longev. 2015, 2015, 806358. [Google Scholar] [CrossRef] [PubMed]
- Kanter, J.E.; Hsu, C.C.; Bornfeldt, K.E. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front. Cardiovasc. Med. 2020, 7, 10. [Google Scholar] [CrossRef]
- Chiu, Y.L.; Shu, K.H.; Yang, F.J.; Chou, T.Y.; Chen, P.M.; Lay, F.Y.; Pan, S.-Y.; Lin, C.-J.; Litjens, N.H.R.; Betjes, M.G.H.; et al. A Comprehensive Characterization of Aggravated Aging-Related Changes in T Lymphocytes and Monocytes in End-Stage Renal Disease: The iESRD Study. Immun. Aging 2018, 15, 27. [Google Scholar] [CrossRef]
- Narasimhan, P.B.; Marcovecchio, P.; Hamers, A.A.J.; Hedrick, C.C. Nonclassical Monocytes in Health and Disease. Annu. Rev. Immunol. 2019, 37, 439–456. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Jeron, A.; Shah, A.; Bruder, D.; Mertens, P.R.; Gorny, X. Hemodialysis-Related Changes in Phenotypical Fea-tures of Monocytes. Sci. Rep. 2018, 8, 13964. [Google Scholar] [CrossRef]
- Francis, E.R.; Kuo, C.C.; Bernabe-Ortiz, A.; Nessel, L.; Gilman, R.H.; Checkley, W.; Miranda, J.J.; Feldman, H.I.; CRONICAS Cohort Study Group. Burden of Chronic Kidney Disease in Resource-Limited Settings from Peru: A Population-Based Study. BMC Nephrol. 2015, 16, 114. [Google Scholar] [CrossRef]
- Xiong, J.; Qiao, Y.; Yu, Z.; Huang, Y.; Yang, K.; He, T.; Zhao, J. T-Lymphocyte Subsets Alteration, Infection and Renal Outcome in Advanced Chronic Kidney Disease. Front. Med. 2021, 8, 742419. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Rao, X.; Zhong, J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J. Diabetes Res. 2017, 2017, 6494795. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Zúñiga, J.; Saldarriaga, E.M.; Chávez-Gómez, R.; Gálvez-Inga, J.; Valdivia-Vega, R.; Villavicencio-Carranza, M.; Espejo-Sotelo, J.; Medina-Sal y Rosas, C.; Suarez-Moreno, V.; Hurtado-Roca, Y. Effectiveness of Adherence to a Renal Health Program in a Health Network in Peru. Rev. Saúde Pública 2020, 54, 80. [Google Scholar] [CrossRef]
- Shah, S.; Mehta, H. Reproducibility of the Neutrophil-Lymphocyte Ratio Measurement: An Analysis. J. Clin. Lab. Anal. 2021, 35, e23878. [Google Scholar] [CrossRef]
- Shaman, A.M.; Kowalski, S.R. Hyperphosphatemia Management in Patients with Chronic Kidney Disease. Saudi Pharm. J. 2016, 24, 494–505. [Google Scholar] [CrossRef]
- Flores, A.R.; Melchor-López, A.; Huerta-Ramírez, S.; Cerda-Téllez, F.; Elizalde-Hernández, P.D.; González-Antuvo, A.; Valdés-Solís, E. Use of Alkaline Phosphatase as an Alternative Marker to Parathyroid Hormone in the Diagnosis of Secondary Hyperparathyroidism in Chronic Kidney Disease. Internal Med. Mex. 2015, 31, 650–659. [Google Scholar]
- Becerra Ortiz, M.L.; Rodríguez López, E.R. Assessment of the Nutritional Status of Patients on Hemodialysis at the SERSALUD Amazonia Hemodialysis Center EIRL Iquitos, 2016. Sci. J. Health Sci. 2017, 9, 54–62. [Google Scholar] [CrossRef]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The Fate and Lifespan of Human Monocyte Subsets in Steady State and Systemic Inflammation. J. Exp. Med. 2017, 214, 1913–1923. [Google Scholar] [CrossRef]
- Jeng, Y.; Lim, P.S.; Wu, M.Y.; Tseng, T.Y.; Chen, C.H.; Chen, H.P.; Wu, T.K. Proportions of Proinflammatory Monocytes Are Important Predictors of Mortality Risk in Hemodialysis Patients. Mediat. Inflamm. 2017, 2017, 1070959. [Google Scholar] [CrossRef]
- Sampath, P.; Moideen, K.; Ranganathan, U.D.; Bethunaickan, R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front. Immunol. 2018, 9, 1726. [Google Scholar] [CrossRef]
- Fan, Y.; Yi, Z.; D’Agati, V.D.; Sun, Z.; Zhong, F.; Zhang, W.; Wen, J.; Zhou, T.; Li, Z.; He, L.; et al. Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression. Diabetes 2019, 68, 2301–2314. [Google Scholar] [CrossRef] [PubMed]
- Stansfield, B.K.; Ingram, D.A. Clinical Significance of Monocyte Heterogeneity. Clin. Transl. Med. 2015, 4, 5. [Google Scholar] [CrossRef]
- Bonan, N.B.; Schepers, E.; Pecoits-Filho, R.; Pletinck, A.; De Somer, F.; Vanholder, R.; Van Biesen, W.; Moreno-Amaral, A.; Glorieux, G. Contribution of the Uremic Milieu to an Increased Pro-Inflammatory Monocytic Phenotype in Chronic Kidney Disease. Sci. Rep. 2019, 9, 10236. [Google Scholar] [CrossRef]
- Prieto, V.; de los Angeles, M. Effect of Aging on Calcium Signals in Human Neutrophils and Its Relationship with the Expression of CRAC and TRPM2 Channels. Master’s Thesis, Veracruz University, Xalapa Region, Mexico, 2019. Available online: https://cdigital.uv.mx/handle/1944/50318 (accessed on 21 August 2024).
- Zhao, C.; Zhang, H.; Wong, W.C.; Sem, X.; Han, H.; Ong, S.M.; Tan, Y.-C.; Yeap, W.-H.; Gan, C.-S.; Ng, K.-Q.; et al. Identification of Novel Functional Differences in Monocyte Subsets Using Proteomic and Transcriptomic Methods. J. Proteome Res. 2009, 8, 4028–4038. [Google Scholar] [CrossRef]
- Nageshwari, B.; Merugu, R. Alkaline Phosphatase Activity of Normal and Malignant Human Lymphocytes. Indian J. Clin. Biochem. 2019, 34, 272–279. [Google Scholar] [CrossRef]
- Rios-Serna, L.J.; Rosero, A.M.; Tobón, G.J.; Cañas, C.A. Biological Changes in Human B-Cell Line Ramos (RA.1) Related to Increasing Doses of Human Parathyroid Hormone. Heliyon 2024, 10, e30556. [Google Scholar] [CrossRef]
- Chong, B.F.; Mohan, C. Targeting the CXCR4/CXCL12 Axis in Systemic Lupus Erythematosus. Expert Opin. Ther. Targets 2009, 13, 1147–1153. [Google Scholar]
- Weitzmann, M.N.; Pacifici, R. Parathyroid Diseases and T Cells. Curr. Osteoporos. Rep. 2017, 15, 135–141. [Google Scholar] [CrossRef]
- Huang, H.; Zuzarte-Luis, V.; Fragoso, G.; Calvé, A.; Hoang, T.A.; Oliero, M.; Chabot-Roy, G.; Mullins-Dansereau, V.; Lesage, S. Acute invariant NKT cell activation triggers an immune response that drives prominent changes in iron homeostasis. Sci. Rep. 2020, 10, 21026. [Google Scholar] [CrossRef]
- Minns, D.; Smith, K.J.; Hardisty, G.; Rossi, A.G.; Gwyer Findlay, E. The outcome of neutrophil-T cell contact differs depending on activation status of both cell types. Front. Immunol. 2021, 12, 633486. [Google Scholar] [CrossRef]
- Zhang, M.S.; Houtman, J.C.D. Human serum albumin (HSA) suppresses the effects of glycerol monolaurate (GML) on human T cell activation and function. PLoS ONE 2016, 11, e0165083. [Google Scholar] [CrossRef]
- Granda Alacote, A.C.; Goyoneche Linares, G.; Castañeda Torrico, M.G.; Diaz-Obregón, D.Z.; Núñez, M.B.C.; Murillo Carrasco, A.G.; Liendo, C.L.; Rufasto Goche, K.S.; Correa, V.A.; de León Delgado, J. T-Cell subpopulations and differentiation bias in diabetic and non-diabetic patients with chronic kidney disease. Biomedicines 2025, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Kidney Failure Risk Calculation Platform. Available online: https://kidneyfailurerisk.com/ (accessed on 21 August 2024).
Catalog ID | Supplier | ||
---|---|---|---|
Antibody-conjugated fluorophore | T lymphocytes | ||
PE Cy7 CD3 | 317334 | BioLegend® | |
APC CD4 | ABIN 375816 | antibodies-online Inc. | |
PerCP Cy5.5 CD8 | 344710 | BioLegend® | |
PE CD45RA | 304108 | BioLegend® | |
FITC CCR7 | ABIN 674724 | antibodies-online Inc. | |
B lymphocytes | |||
PercP Cy5.5 CD19 | 302230 | BioLegend® | |
Monocytes | |||
PECy7 CD3 | 317334 | BioLegend® | |
FITC CD14 | ABIN 93966 | antibodies-online Inc. | |
APC CD16 | ABIN 2144226 | antibodies-online Inc. | |
Reagent | Lysis Buffer | 420301 | BioLegend® |
Variables | N = 20 | % or IQR |
---|---|---|
Gender | ||
F | 9 | 45% |
M | 11 | 55% |
Age (years) | 66.5 ± 16.5 * | (57–73.5) |
Duration of uremia (years) | ||
(0–3) | 4 | 20% |
(4–6) | 5 | 25% |
(>7) | 11 | 55% |
Etiology of end-stage CKD | ||
Glomerulonephritis | 3 | 15% |
Hipertensive nephropathy | 3 | 15% |
Diabetes | 11 | 55% |
Chronic dysfunction (kidney graft) | 2 | 10% |
Renal lithiasis | 1 | 5% |
Body mass index (BMI) | ||
Underweight (<18.5) | 1 | 5.6% |
Normal (18.5–24.9) | 10 | 55.6% |
Overweight (25–29.9) | 7 | 38.9% |
Hypertension | 11 | 55% |
Hepatitis C | 7 | 35% |
Parameters | N = 20 | IQR | Reference Value a |
---|---|---|---|
Hemoglobin (mg/dL) | 11.3 ± 2.11 | (10.6–12.7) | M: 13.5–17.5 mg/dL F: 12.0–16.0 mg/dL |
Hematocrit (%) | 35.5 ± 6.7 | (33.2–39.9) | M: 41–53% F: 36–46% |
Urea post-hemodialysis (mg/dL) | 35.5 ±16 | (26.5–42.5) | 7–20 mg/dL |
Creatinine post-hemodialysis (mg/dL) | 2.6 ± 0.9 | (2.1–3) | M: 0.7–1.3 mg/dL F: 0.6–1.1 mg/dL |
TGP (U/L) | 12 ± 10 | (9–19) | 7–56 U/L |
TGO (U/L) | 14 ± 6 | (11–17) | 5–40 U/L |
Alkaline phosphatase (U/L) | 140.5 ± 58 | (122–180) | 44–147 U/L |
Total proteins (g/dL) | 7.2 ± 0.8 | (6.8–7.6) | 6.0–8.3 g/dL |
Albumin (g/dL) | 3.8 ± 0.5 | (3.7–4.2) | 3.4–5.4 g/dL |
CRP (mg/L) | 1.2 ± 0.5 | (0.9–1.4) | <1 mg/L |
Serum calcium (mg/dL) | 8.6 ± 0.8 | (8.3–9.1) | 8.5–10.2 mg/dL |
Phosphorus (mg/dL) | 5.2 ± 2.1 | (4.6–6.7) | 2.4–4.1 mg/dL |
Iron (μM/L) | 10.2 ± 8.2 | (8.4–16.6) | 10.74–30.4 μM/L |
Transferrin (mg/dL) | 180 ± 51 | (153.5–204.5) | M: 215–360 mg/dL F: 245–370 mg/dL |
Kt/v | 1.7 ± 0.3 | (1.5–1.8) | ≥1 |
Cells | Reference Values a | N = 20 | IQR |
---|---|---|---|
Leukocytes (cells/mm3) | 4500–10,000 | 7190 ± 1905 | 6310–8215 |
Total monocytes (cells/mm3) | 500–1200 | 536.1 ± 221.4 | 471.2–692.6 |
Neutrophils (cells/mm3) | 1800–7000 | 4.5859 ± 1277.9 | 3979.2–5257.2 |
Total lymphocytes (cells/mm3) | 1000–4800 | 1463.1 ± 732.5 | 1172.9–1905.5 |
T CD3+ (cell/mm3) | 690–2540 | 1195.6 ± 570.6 | 837.3–1407.8 |
T CD3+CD4+ (cells/mm3) | 410–1590 | 587.4 ± 498 | 395.6–893.6 |
T CD3+CD8+ (cells/mm3) | 190–1140 | 417.8 ± 238.1 | 293.5–531.5 |
B CD19+ (cells/mm3) | 90–660 | 91.8 ± 122.7 | 48.9–171.7 |
NK CD16+CD56+ (cells/mm3) | 90–590 | 289.9 ± 178.6 | 217.7–396.3 |
iNKT CD3+CD16+CD56+ (cells/mm3) | NA | 0.29 ± 0.80 | 0.15–0.95 |
T CD4+/CD8+ ratio | ≥2.0 | 1.4 ± 0.79 | 1.1–1.9 |
Subpopulation of Monocytes | Reference Values a | N = 20 | IQR |
---|---|---|---|
Classical monocytes CD14++CD16− (cell/mm3) | 329.7 ± 232.6 | (248.5–481.1) | |
% | 80–95% | 69.4 ± 19.3 | (55–74.3) |
Intermediate monocytes CD14+CD16+ (cell/mm3) | 35.3 ± 43.1 | (24.03–67.1) | |
% | 2–11% | 7.7 ± 5 | (5.2–10.2) |
Non-classical monocytes CD14+CD16++ (cell/mm3) | 129.5 ± 115.8 | (84.2–199.9) | |
% | 2–8% | 21.8 ± 15.95 | (17.1–33) |
Variables | DKD (n = 11) | Nephropathy Due to Other Causes (n = 9) | |||
---|---|---|---|---|---|
* Rho | p Value | * Rho | p Value | ||
T lymphocytes | Serum albumin (g/dL) | +0.167 | 0.623 | +0.874 | 0.005 |
T lymphocytes | Neutrophils (cells/mm3) | −0.118 | 0.729 | −0.667 | 0.049 |
NK CD3−CD16+CD56+ (cells/mm3) | Serum iron (g/dL) | −0.564 | 0.071 | −0.214 | 0.645 |
iNKT CD3+CD16+CD56+ (cells/mm3) | Serum iron (g/dL) | −0.719 | 0.029 | −0.342 | 0.452 |
B CD19+ (cells/mm3) | Alkaline phosphatase (U/L) | −0.764 | 0.006 | +0.179 | 0.702 |
B CD19+ (cells/mm3) | Parathyroid hormone | −0.929 | 0.003 | 0.200 | 0.747 |
B CD19+ (cells/mm3) | Ferritin (mg/dL) | −0.893 | 0.007 | −0.700 | 0.188 |
T CD3+CD4+ | Serum albumin (g/dL) | 0.033 | 0.925 | +0.934 | 0.001 |
T CD3+CD4+ | Parathyroid hormone | −0.929 | 0.003 | −0.100 | 0.873 |
T CD3+CD4+ | Neutrophils (103 cells/mm3) | +0.127 | 0.709 | −0.683 | 0.042 |
T CD3+CD4+ | Total monocytes | +0.627 | 0.039 | −0.017 | 0.966 |
Variables | Spearman’s Rho | p Value | |
---|---|---|---|
Non-classical monocyte | Total lymphocytes | +0.495 | 0.027 |
Non-classical monocyte | B lymphocytes | +0.567 | 0.009 |
Variables | DKD (n = 11) | Nephrophaty Due to Other Causes (n = 9) | |||
---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | ||
Classic monocyte | Neutrophils | +0.627 | 0.039 | + 0.700 | 0.036 |
Non-classical monocyte | Eosinophils | +0.691 | 0.019 | −0.2667 | 0.488 |
Non-classical monocyte | B lymphocytes | +0.591 | 0.056 | +0.500 | 0.171 |
Non-classical monocyte | Total lymphocytes | +0.309 | 0.355 | + 0.683 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyoneche Linares, G.; Diaz-Obregón, D.Z.; Granda Alacote, A.; Castro Núñez, M.B.; Castañeda Torrico, M.G.; Murillo Carrasco, A.G.; Liendo Liendo, C.; Rufasto Goche, K.S.; Arrunátegui Correa, V.; de León Delgado, J. Leukocyte Dysregulation and Biochemical Alterations in End-Stage Kidney Disease Patients Under Hemodialysis. Diseases 2025, 13, 90. https://doi.org/10.3390/diseases13040090
Goyoneche Linares G, Diaz-Obregón DZ, Granda Alacote A, Castro Núñez MB, Castañeda Torrico MG, Murillo Carrasco AG, Liendo Liendo C, Rufasto Goche KS, Arrunátegui Correa V, de León Delgado J. Leukocyte Dysregulation and Biochemical Alterations in End-Stage Kidney Disease Patients Under Hemodialysis. Diseases. 2025; 13(4):90. https://doi.org/10.3390/diseases13040090
Chicago/Turabian StyleGoyoneche Linares, Gabriela, Daysi Zulema Diaz-Obregón, Ana Granda Alacote, Michael Bryant Castro Núñez, María Gracia Castañeda Torrico, Alexis Germán Murillo Carrasco, Cesar Liendo Liendo, Katherine Susan Rufasto Goche, Víctor Arrunátegui Correa, and Joel de León Delgado. 2025. "Leukocyte Dysregulation and Biochemical Alterations in End-Stage Kidney Disease Patients Under Hemodialysis" Diseases 13, no. 4: 90. https://doi.org/10.3390/diseases13040090
APA StyleGoyoneche Linares, G., Diaz-Obregón, D. Z., Granda Alacote, A., Castro Núñez, M. B., Castañeda Torrico, M. G., Murillo Carrasco, A. G., Liendo Liendo, C., Rufasto Goche, K. S., Arrunátegui Correa, V., & de León Delgado, J. (2025). Leukocyte Dysregulation and Biochemical Alterations in End-Stage Kidney Disease Patients Under Hemodialysis. Diseases, 13(4), 90. https://doi.org/10.3390/diseases13040090