Regional Cerebral Oxygen Saturation and Risk of Delirium: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Literature Search
- Population: adults aged over 18 years
- Exposure: rSO2 values obtained using NIRS
- Control: patients with no delirium
- Outcome: delirium
2.3. Study Selection and Data Collection
- Study details: date of publication, country where study took place, setting, number of patients;
- Patient characteristics: age, sex, comorbidity;
- Type of surgery;
- Details of NIRS: type of NIRS monitor, measurement interval, timing of measurement, sensor location;
- Baseline NIRS: before induction of anaesthesia with the patient breathing ambient air and 1 min after placement of the measurement sensor;
- Minimum NIRS: the lowest recorded value during assessment;
- Maximum NIRS: the highest recorded value during assessment;
- Outcome: incidence of delirium, method of diagnosis, person who made the diagnosis.
2.4. Study Quality
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Studies
| Study ID | Country | Surgery | No. of Patients/Age (Years)/% Male | Morbidity | % Delirium | Diagnostic Tool/ Professional | NIRS Monitor | Measurement Interval | Moment | Forehead Sensor Placement | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Delirium | No Delirium | ||||||||||
| Ahn 2021 [61] | Korea | Cardiac | n = 230 M 62.6 (SD 13.7) 51.7% | n = 460 M 62 (SD 14.6) 51.3% | NA | 33.3% | CAM and CAM-ICU/Trained or experienced personnel | INVOS | 5 min intervals after 1 min post sensor | During surgery | Bilateral |
| Bennett 2021 [62] | Saudi Arabia | Cardiac | n = 14 | n = 152 | NA | 8.4% | Documented in medical notes and prescribed haloperidol/NA | INVOS 5100 | Continuous | Before induction to ICU | Bilateral |
| M 8.4 a 73% a | |||||||||||
| Chan 2019 [63] | Australia | Cardiac | n = 24 Mdn 69 (IQR 64–77) 79.2% | n = 84 Mdn 66 (IQR 57–71) 71.4% | EuroSCORE, Mdn (IQR): 2.8 (1.9–4.2) vs. 2.2 (1.4–3.1) APACHE 3, Mdn (IQR): 58 (49–67) vs. 47 (39–53) *** SAPS II, Mdn (IQR): 51 (45–54) vs. 46 (42–51) | 22.2% | CAM-ICU/NA | FORESIGHT Elite | 90 min each day | ICU | Bilateral |
| Chen 2024 [64] | China | Cardiac | n = 47 M 70 (SD 5) 51.1% | n = 85 M 70 (SD 4) 50.5% | NA | 35.6% | CAM-ICU/CCU nurse specialist | INVOS 5100C | 4 intraoperative time points b | During surgery | Bilateral |
| Clemmesen 2018 [60] | Denmark | Trauma | n = 10 | n = 30 | ASA I: n = 3 (7.5%) ASA II: n = 30 (75.0%) ASA III: n = 5 (12.5%) ASA IV: n = 2 (5%) a | 25% | MDAS and CAM/Trained research personnel | INVOS 5100 | Continuous | During surgery | Right |
| Mdn 83 (IQR 78–89) a 10% a | |||||||||||
| Cui 2021 [76] | China | Thoracic | n = 35 | n = 140 | ASA I: n = 1 (0.6%) ASA II: n = 136 (77.7%) ASA III: n = 38 (21.7%) a | 20% | CAM and CAM-ICU/Trained research personnel | FORESIGHT ELITE | 2 sec intervals | During surgery | Bilateral |
| M 64.5 (SD 6.4) a 52% a | |||||||||||
| Eertmans 2020 [65] | Belgium | Cardiac | n = 29 Mdn 79 (IQR 75–83) 19% | n = 67 Mdn 75 (IQR 73–79) 45% | EuroSCORE II, Mdn (IQR): 2.61 (1.75–4.68) vs. 1.86 (1.02–3.37) * | 30% | CAM ICU/Trained research personnel | FORESIGHT Elite | 2 sec intervals | After induction to 72 h after surgery | Bilateral |
| Fischer 2022 [72] | Germany | Abdominal | n = 13 | n = 80 | NA | 16.3% | 3D-CAM/Research personnel | INVOS 5100C | 1 min intervals | During surgery | NA |
| M 66.31 (SD 10.55) a 58.7% a | |||||||||||
| Hori 2014 [66] | Japan | Cardiac | n = 45 M 69.6 (SD 9.9) 82% | n = 446 M 65.8 (SD 11. 4) 72.2% | NA | 9.2% | Presence of confusion, agitation or change in mental status/Nurses | INVOS | 10-sec intervals | Before induction of anaesthesia | Bilateral |
| Lim 2020 [67] | Korea | Cardiac | n = 105 M 71.9 (SD 8.2) 70.5% | n = 710 M 65.2 (SD 9.6) 78.3% | ASA I: n = 1 (1%) vs. n = 19 (2.7%) ASA II: n = 25 (23.8%) vs. n = 200 (28.2%) ASA III: n = 75 (71.4%) vs. n = 478 (67.3%) ASA IV: n = 4 (3.8%) vs. n = 13 (1.8%) | 14.8% | CAM-ICU/Neuropsychiatrist | INVOS | 5 min intervals | During surgery | Bilateral |
| Mailhot 2019 [68] | Canada | Cardiac | n = 173 Mdn 74 (IQR 68–74) 73.4% | n = 173 Mdn 69 (IQR 61–75) 76.3% | EuroSCORE, Mdn (IQR): 3.49 (1.96–5.38) vs. 2.20 (0.84–3.43) * NYHA ≥ 3: n = 8 (4.6%) vs. n = 15 (8.7%) | 50% | DSM-V/Physician | NA | NA | Pre-operative | NA |
| Momeni 2019 [69] | Belgium | Cardiac | n = 303 Mdn 75 (IQR 64–80) | n = 1201 Mdn 67 (IQR 57–75) | EuroSCORE II, Mdn (IQR): 2.64 (1.42–4.92) vs. 2.25 (1.19–3.86) ** | 20.14% | Validated chart review method searching in the medical record/NA | INVOS 5100 | Continuous | During surgery | Bilateral |
| 71% a | |||||||||||
| Morimoto 2009 [73] | Japan | Abdominal | n = 5 M 76 (SD 4) 75% | n = 15 M 68 (SD 3) 66% | NA | 25% | DSM-IV/NA | INVOS 3100 | 1 min intervals | During surgery | Left |
| Nakano 2021 [70] | Japan | Cardiac and ICU | n = 22 | n = 112 | EuroSCORE, Mdn (IQR): 3.45 (1.72–6.09) a | 16.4% | 3D-CAM and CAM-ICU daily/NA | INVOS | 10-sec intervals | During surgery and the day after | Bilateral |
| Mdn 65 (IQR 58–71) a 74.6% a | |||||||||||
| Schoen 2011 [17] | Germany | Cardiac | n = 62 M 73.1 (SD 6.7)/54.8% | n = 169 M 64.9 (IQR 13.3)/68% | EuroSCORE, M (SD): 7.9 (3.7) vs. 5.9 (3.5) | 26.8% | CAM-ICU/Trained research personnel | INVOS | Continuous | During surgery | Bilateral |
| Soh 2016 [77] | Korea | Trauma | n = 9 Mdn 73 (IQR 70–77) 44% | n = 100 Mdn 75 (IQR 72–77) 52% | NA | 8% | ICDSC and CAM-ICU/NA | INVOS | Continuous | During surgery | Bilateral |
| Soh 2020 [71] | Korea | Cardiac | n = 16 M 71 (SD 5) 69% | n = 97 M 70 (SD 6) 62% | EuroSCORE, Mdn (IQR): 7 (5–9) vs. 6 (4–8) | 14.16% | CAM-ICU and CAM/Trained research personnel | INVOS | Continuous | During surgery | Bilateral |
| Song 2022 [74] | China | Major abdominal | n = 16 Mdn 75 (IQR 72–80.5) 56.3% | n = 85 Mdn 72 (IQR 65–77) 70.6% | CIRS, Mdn (IQR): 11.5 (7.5–14) vs. 7 (7–10) ** | 15.8% | DSM-IV/Physician | INT-100, Hefei ENO Electronics | 6 intraoperative time points c | During surgery | Bilateral |
| Susano 2021 [18] | Portugal | Elective surgical procedures | n = 53 Mdn 76 (IQR 71–80) 60% | n = 185 Mdn 72 (IQR 68–77) 68% | ASA ≥ III: n = 35 (66%) vs. n =67 (36%) | 22.2% | CAM/Trained research personnel | INVOS 5100C | 1 min post sensor | Pre-operative | Bilateral |
| Tobar 2018 [75] | Chile | Abdominal | n = 2 | n = 26 | ASA I: 35.7% ASA II: 64.3% | 7.1% | CAM/NA | INVOS 5100 | Continuous | During surgery | Bilateral |
| M 73 (SD 7) a 39.3% a | |||||||||||
| Wang 2019 [59] | China | Cardiac | n = 14 Mdn 54.1 (IQR 46.2–62) 17.9% | n = 25 Mdn 52.6 (IQR 47.7–57.5) 46.2% | ASA, M (95% CI): 2.9 (2.1–3.1) vs. 2.8 (2.7–3.5) | 35.8% | CAM/Trained nurse | C2030C, CAS Medical Systems | 1 min intervals | During surgery | Bilateral |
| Wood 2017 [19] | Canada | General medical/surgical and trauma ICU | n = 19 Mdn 71 (IQR 67–76) 79% | n = 69 Mdn 68 (IQR 54–77) 59% | APACHE, Mdn (IQR): 21 (15–27) vs. 20 (18–23) | 78.4% | CAM-ICU/Trained researchers | FORESIGHT Elite | 2 sec intervals | 24 h | Bilateral |
3.2. Oximetry Values
3.3. Methodological Quality of Included Studies
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deschamps, A.; Hall, R.; Grocott, H.; Mazer, C.D.; Choi, P.T.; Turgeon, A.F.; De Medicis, E.; Bussières, J.S.; Hudson, C.; Syed, S.; et al. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery. Anesthesiology 2016, 124, 826–836. [Google Scholar] [CrossRef]
- Edmonds, H.L.; Isley, M.R.; Balzer, J.R. A guide to central nervous system near-infrared spectroscopic monitoring. In Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals; Springer: Cham, Switzerland, 2017; pp. 205–217. [Google Scholar] [CrossRef]
- Weigl, W.; Milej, D.; Janusek, D.; Wojtkiewicz, S.; Sawosz, P.; Kacprzak, M.; Gerega, A.; Maniewski, R.; Liebert, A. Application of optical methods in the monitoring of traumatic brain injury: A review. J. Cereb. Blood Flow Metab. 2016, 36, 1825–1843. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Cody, J.; Maldonado, Y.; Ramakrishna, H. Near-Infrared Spectroscopy (NIRS) for cerebral and tissue oximetry: Analysis of evolving applications. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.M.; Shore, A.; Lee, K.F.H.; Wood, M.D.; Maslove, D.M.; Hunt, M.; Georgescu, I.; Muscedere, J.; Boyd, J.G. Cerebral autoregulation-based mean arterial pressure targets and delirium in critically ill adults without brain injury: A retrospective cohort study. Can. J. Anaesth. 2024, 71, 107–117. [Google Scholar] [CrossRef]
- Rea-Olivar, D.A. ¿Es útil el NIRS en anestesia? ¿A quién y por qué? Rev. Mex. Anestesiol. 2019, 42, 11–15. [Google Scholar]
- Moore, C.C.; Yu, S.; Aljure, O. A comprehensive review of cerebral oximetry in cardiac surgery. J. Card. Surg. 2022, 37, 5418–5433. [Google Scholar] [CrossRef]
- Turcatti, L.K. Aplicación de tecnologías al cuidado de enfermería: Monitorización de la saturación regional de oxígeno por espectroscopia por infrarrojo cercano. Rev. Enferm. Neonatal 2017, 24, 3–10. [Google Scholar]
- Loberman, D.; Consalvi, C.; Healey, A.; Rivera, B.; Poulin, K.; Mohr, R.; Ziv-Baran, T. Adverse cerebral outcomes after coronary artery bypass surgery—More than a decade of experience in a single center. Thorac. Cardiovasc. Surg. 2018, 66, 452–456. [Google Scholar] [CrossRef]
- Fong, T.G.; Inouye, S.K. The inter-relationship between delirium and dementia: The importance of delirium prevention. Nat. Rev. Neurol. 2022, 18, 579–596. [Google Scholar] [CrossRef]
- Lee, S.; Howard, M.A.; Han, J.H. Delirium and delirium prevention in the emergency department. Clin. Geriatr. Med. 2023, 39, 535–551. [Google Scholar] [CrossRef]
- Ormseth, C.H.; LaHue, S.C.; Oldham, M.A.; Josephson, S.A.; Whitaker, E.; Douglas, V.C. Predisposing and precipitating factors associated with delirium: A systematic review. JAMA Netw. Open 2023, 6, e2249950. [Google Scholar] [CrossRef]
- Inouye, S.K.; Zhang, Y.; Jones, R.N.; Kiely, D.K.; Yang, F.; Marcantonio, E.R. Risk Factors for Delirium at Discharge: Development and Validation of a Predictive Model. Arch. Intern. Med. 2007, 167, 1406. [Google Scholar] [CrossRef] [PubMed]
- Fong, T.G.; Jones, R.N.; Marcantonio, E.R.; Tommet, D.; Gross, A.L.; Habtemariam, D.; Schmitt, E.; Yap, L.; Inouye, S.K. Adverse outcomes after hospitalization and delirium in persons with alzheimer disease. Ann. Intern. Med. 2012, 156, 848. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.M.; Wood, M.D.; Lee, K.F.H.; Maslove, D.; Muscedere, J.; English, S.W.; Ball, I.; Slessarev, M.; Boyd, J.G. Delirium, Cerebral Perfusion, and High-Frequency Vital-Sign Monitoring in the Critically Ill. The CONFOCAL-2 Feasibility Study. Ann. Am. Thorac. Soc. 2021, 18, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.; McCluskey, L.; Wilson, D. Geriatric Medicine Research Collaborative Delirium is prevalent in older hospital inpatients and associated with adverse outcomes: Results of a prospective multi-centre study on World Delirium Awareness Day. BMC Med. 2019, 17, 229. [Google Scholar] [CrossRef]
- Schoen, J.; Meyerrose, J.; Paarmann, H.; Heringlake, M.; Hueppe, M.; Berger, K.-U. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: A prospective observational trial. Crit. Care 2011, 15, R218. [Google Scholar] [CrossRef]
- Susano, M.J.; Dias, M.; Seixas, F.S.; Vide, S.; Grasfield, R.; Abelha, F.J.; Crosby, G.; Culley, D.J.; Amorim, P. Association Among Preoperative Cognitive Performance, Regional Cerebral Oxygen Saturation, and Postoperative Delirium in Older Portuguese Patients. Anesth. Analg. 2021, 132, 846–855. [Google Scholar] [CrossRef]
- Wood, M.D.; Maslove, D.M.; Muscedere, J.G.; Day, A.G.; Boyd, J.G.; The Cerebral Oxygenation and Neurological Outcomes Following Critical Illness (CONFOCAL) Research Group. Low brain tissue oxygenation contributes to the development of delirium in critically ill patients: A prospective observational study. J. Crit. Care 2017, 41, 289–295. [Google Scholar] [CrossRef]
- He, K.; Wang, S.; Zhang, W.; Liu, Q.; Chai, X. What is the impact of perioperative cerebral oxygen desaturation on postoperative delirium in old population: A systemic review and meta-analysis. Aging Clin. Exp. Res. 2022, 34, 1761–1770. [Google Scholar] [CrossRef]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Shenkin, S.D.; Harrison, J.K.; Wilkinson, T.; Dodds, R.M.; Ioannidis, J.P.A. Systematic reviews: Guidance relevant for studies of older people. Age Ageing 2017, 46, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Funk, D.J.; Kumar, A.; Klar, G. Decreases in cerebral saturation in patients with septic shock are associated with increased risk of death: A prospective observational single center study. J. Intensive Care 2016, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Mailhot, T.; Cossette, S.; Lambert, J.; Cournoyer, A.; Denault, A.Y. Cerebral oximetry as a biomarker of postoperative delirium in cardiac surgery patients. J. Crit. Care 2016, 34, 17–23. [Google Scholar] [CrossRef]
- Rajaram, A.; Milej, D.; Suwalski, M.; Yip, L.C.M.; Guo, L.R.; Chu, M.W.A.; Chui, J.; Diop, M.; Murkin, J.M.; St Lawrence, K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. Biomed. Opt. Express 2020, 11, 5967–5981. [Google Scholar] [CrossRef]
- Schmidt, G.; Kreissl, H.; Vigelius-Rauch, U.; Schneck, E.; Edinger, F.; Nef, H.; Böning, A.; Sander, M.; Koch, C. Cerebral Tissue Oxygen Saturation Is Enhanced in Patients following Transcatheter Aortic Valve Implantation: A Retrospective Study. J. Clin. Med. 2022, 11, 1930. [Google Scholar] [CrossRef]
- Badenes, R.; Gouvea Bogossian, E.; Chisbert, V.; Robba, C.; Oddo, M.; Taccone, F.S.; Matta, B.F. The role of noninvasive brain oximetry in adult critically ill patients without primary non-anoxic brain injury. Minerva Anestesiol. 2021, 87, 1226–1238. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, P.; Liu, H.; Ge, S. Decoding Action Observation Using Complex Brain Networks from Simultaneously Recorded EEG-fNIRS Signals; Gedeon, T., Wong, K., Lee, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 1142, pp. 559–569. [Google Scholar] [CrossRef]
- Li, D.; Liu, H. Cognitive function assessment should be included in preoperative evaluation. J. Biomed. Res. 2018, 32, 161–163. [Google Scholar] [CrossRef]
- Amouzegar Zavareh, S.M.; Araghizade, H.; Eskandari, N.; Lak, M. Brain oximetry is not a good monitor on reducing neurological complications after cardiac surgery. Universa Med. 2019, 38, 81–89. [Google Scholar] [CrossRef]
- Fuest, K.E.; Servatius, A.; Ulm, B.; Schaller, S.J.; Jungwirth, B.; Blobner, M.; Schmid, S. Perioperative Hemodynamic Optimization in Patients at Risk for Delirium—A Randomized-Controlled Trial. Front. Med. 2022, 9, 893459. [Google Scholar] [CrossRef]
- Kunst, G.; Gauge, N.; Salaunkey, K.; Spazzapan, M.; Amoako, D.; Ferreira, N.; Green, D.W.; Ballard, C. Intraoperative Optimization of Both Depth of Anesthesia and Cerebral Oxygenation in Elderly Patients Undergoing Coronary Artery Bypass Graft Surgery—A Randomized Controlled Pilot Trial. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1172–1181. [Google Scholar] [CrossRef]
- Lei, L.; Katznelson, R.; Fedorko, L.; Carroll, J.; Poonawala, H.; Machina, M.; Styra, R.; Rao, V.; Djaiani, G. Cerebral oximetry and postoperative delirium after cardiac surgery: A randomised, controlled trial. Anaesthesia 2017, 72, 1456–1466. [Google Scholar] [CrossRef]
- Murniece, S.; Soehle, M.; Vanags, I.; Mamaja, B. Near Infrared Spectroscopy Based Clinical Algorithm Applicability During Spinal Neurosurgery and Postoperative Cognitive Disturbances. Medicina 2019, 55, 179. [Google Scholar] [CrossRef] [PubMed]
- Onur, T.; Karaca, Ü.; Ata, F.; Sayan, H.E.; Onur, A.; Yilmaz, C.; Balkaya, A.N.; Eriş, C. Intraoperative hyperoxygenation may negatively affect postoperative cognitive functions in coronary artery bypass graft operations: A randomized controlled study. J. Card. Surg. 2022, 37, 2552–2563. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Siegemund, M.; Dell-Kuster, S.; Smielewski, P.; Rüegg, S.; Strebel, S.P.; Marsch, S.C.U.; Pargger, H.; Steiner, L.A. Cerebral perfusion in sepsis-associated delirium. Crit. Care 2008, 12, R63. [Google Scholar] [CrossRef] [PubMed]
- Siepe, M.; Pfeiffer, T.; Gieringer, A.; Zemann, S.; Benk, C.; Schlensak, C.; Beyersdorf, F. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardiothorac. Surg. 2011, 40, 200–207. [Google Scholar] [CrossRef]
- Trafidlo, T.; Gaszynski, T.; Gaszynski, W.; Nowakowska-Domagala, K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: A pilot study. Int. J. Surg. 2015, 16, 23–30. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Li, Y.; Yin, C.; Hou, Z.; Wang, Q. The potential role of lung-protective ventilation in preventing postoperative delirium in elderly patients undergoing prone spinal surgery: A preliminary study. Med. Sci. Monit. 2020, 26, e926526. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Hu, X.W.; Zhang, M.C.; Xu, X.M.; Tang, J. Comparison of restrictive fluid therapy with goal-directed fluid therapy for postoperative delirium in patients undergoing spine surgery: A randomized controlled trial. Perioper. Med. 2021, 10, 48. [Google Scholar] [CrossRef]
- Xu, X.; Hu, X.; Wu, Y.; Li, Y.; Zhang, Y.; Zhang, M.; Yang, Q. Effects of different BP management strategies on postoperative delirium in elderly patients undergoing hip replacement: A single center randomized controlled trial. J. Clin. Anesth. 2020, 62, 109730. [Google Scholar] [CrossRef]
- Xu, N.; Li, L.X.; Wang, T.L.; Jiao, L.Q.; Hua, Y.; Yao, D.X.; Wu, J.; Ma, Y.H.; Tian, T.; Sun, X.L. Processed multiparameter electroencephalogram-guided general anesthesia management can reduce postoperative delirium following carotid endarterectomy: A randomized clinical trial. Front. Neurol. 2021, 12, 666814. [Google Scholar] [CrossRef]
- Baehner, T.; Perlewitz, O.; Ellerkmann, R.K.; Menzenbach, J.; Brand, G.; Thudium, M.; Velten, M. Preoperative cerebral oxygenation in high-risk noncardiac surgical patients: An observational study on postoperative mortality and complications. J. Clin. Monit. Comput. 2023, 37, 743–752. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Karanikolas, M.; Liarmakopoulou, A.; Papathanakos, G.; Korre, M.; Beris, A. Cerebral oximetry and cognitive dysfunction in elderly patients undergoing surgery for hip fractures: A prospective observational study. Open Orthop. J. 2012, 6, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.H.; Copuroglu, E.; Delen, E.; Tutunculer, B.; Sut, N.; Colak, A.; Sagiroglu, G.; Sag, F. The Effect of Cerebral Oxygen Saturation Changes on Early Postoperative Neuropsychological Function in Patients Undergoing Cranial Surgery. Turk. Neurosurg. 2023, 33, 618–625. [Google Scholar] [CrossRef]
- Uysal, S.; Lin, H.-M.; Trinh, M.; Park, C.H.; Reich, D.L. Optimizing cerebral oxygenation in cardiac surgery: A randomized controlled trial examining neurocognitive and perioperative outcomes. J. Thorac. Cardiovasc. Surg. 2020, 159, 943–953.E3. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.D.; Jacobson, J.A.; Maslove, D.M.; Muscedere, J.G.; Boyd, J.G.; Cerebral Oxygenation and Neurological Outcomes Following Critical Illness (CONFOCAL) Research Group. The physiological determinants of near-infrared spectroscopy-derived regional cerebral oxygenation in critically ill adults. Intensive Care Med. Exp. 2019, 7, 23. [Google Scholar] [CrossRef]
- Wood, M.D.; Khan, J.; Lee, K.F.H.; Maslove, D.M.; Muscedere, J.; Hunt, M.; Scott, S.H.; Day, A.; Jacobson, J.A.; Ball, I.; et al. Assessing the relationship between near-infrared spectroscopy-derived regional cerebral oxygenation and neurological dysfunction in critically ill adults: A prospective observational multicentre protocol, on behalf of the Canadian Critical Care Trials Group. BMJ Open 2019, 9, e029189. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, J.; Li, P.; Zhang, X.; Yang, Y.; Liu, Y.; Fu, Q.; Cao, J.; Mi, W.; Zhang, H.; et al. The perioperative application of continuous cerebral autoregulation monitoring for cerebral protection in elderly patients. Ann. Palliat. Med. 2021, 10, 4582–4592. [Google Scholar] [CrossRef]
- Hori, D.; Max, L.; Laflam, A.; Brown, C.; Neufeld, K.J.; Adachi, H.; Sciortino, C.; Conte, J.V.; Cameron, D.E.; Hogue, C.W.J.; et al. Blood pressure deviations from optimal mean arterial pressure during cardiac surgery measured with a novel monitor of cerebral blood flow and risk for perioperative delirium: A pilot study. J. Cardiothorac. Vasc. Anesth. 2016, 30, 606–612. [Google Scholar] [CrossRef]
- Ordóñez-Velasco, L.M.; Hernández-Leiva, E. Factors associated with delirium after cardiac surgery: A prospective cohort study. Ann. Card. Anaesth. 2021, 24, 183–189. [Google Scholar] [CrossRef]
- Palmbergen, W.A.C.; van Sonderen, A.; Keyhan-Falsafi, A.M.; Keunen, R.W.M.; Wolterbeek, R. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: The Haga Brain Care Strategy. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 671–677. [Google Scholar] [CrossRef]
- Vlisides, P.E.; Li, D.; Maywood, M.; Zierau, M.; Lapointe, A.P.; Brooks, J.; McKinney, A.M.; Leis, A.M.; Mentz, G.; Mashour, G.A. Electroencephalographic Biomarkers, Cerebral Oximetry, and Postoperative Cognitive Function in Adult Noncardiac Surgical Patients: A Prospective Cohort Study. Anesthesiology 2023, 139, 568–579. [Google Scholar] [CrossRef]
- Yoshimura, A.; Goodson, C.; Johns, J.T.; Towe, M.M.; Irvine, E.S.; Rendradjaja, N.A.; Max, L.K.; LaFlam, A.; Ledford, E.C.; Probert, J.; et al. Altered cortical brain activity in end stage liver disease assessed by multi-channel near-infrared spectroscopy: Associations with delirium. Sci. Rep. 2017, 7, 9258. [Google Scholar] [CrossRef] [PubMed]
- Semrau, J.S. Characterizing the Association Between Regional Cerebral Oxygen Saturation and Neurological Impairment After Cardiac Surgery. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2021. [Google Scholar]
- Snyder, B.; Simone, S.M.; Giovannetti, T.; Floyd, T.F. Cerebral Hypoxia: Its Role in Age-Related Chronic and Acute Cognitive Dysfunction. Anesth. Analg. 2021, 132, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.-J.; Yuan, S.; Zhou, C.-H.; Yan, F.-X. The Effect of Intraoperative Cerebral Oximetry Monitoring on Postoperative Cognitive Dysfunction and ICU Stay in Adult Patients Undergoing Cardiac Surgery: An Updated Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 814313. [Google Scholar] [CrossRef] [PubMed]
- Vu, E.L.; Brady, K.; Hogue, C.W. High-resolution perioperative cerebral blood flow autoregulation measurement: A practical and feasible approach for widespread clinical monitoring. Br. J. Anaesth. 2022, 128, 405–408. [Google Scholar] [CrossRef]
- Wang, X.; Feng, K.; Liu, H.; Liu, Y.; Ye, M.; Zhao, G.; Wang, T. Regional cerebral oxygen saturation and postoperative delirium in endovascular surgery: A prospective cohort study. Trials 2019, 20, 504. [Google Scholar] [CrossRef]
- Clemmesen, C.G.; Pedersen, L.M.; Hougaard, S.; Andersson, M.L.; Rosenkvist, V.; Nielsen, H.B.; Palm, H.; Foss, N.B. Cerebral oximetry during preoperative resuscitation in elderly patients with hip fracture: A prospective observational study. J. Clin. Monit. Comput. 2018, 32, 1033–1040. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, E.K.; Kim, D.; Kang, S.; Choi, W.-J.; Byun, J.-H.; Shim, J.-G.; Lee, S.H. Effect of changes in cerebral oximeter values during cardiac surgery on the incidence of postoperative neurocognitive deficits (POND): A retrospective study based on propensity score-matched analysis. PLoS ONE 2021, 16, e0260945. [Google Scholar] [CrossRef]
- Bennett, S.R.; Abukhodair, A.W.; Alqarni, M.S.; Fernandez, J.A.; Fernandez, A.J.; Bennett, M.R. Outcomes in cardiac surgery based on preoperative, mean intraoperative and stratified cerebral oximetry values. Cureus 2021, 13, e17123. [Google Scholar] [CrossRef]
- Chan, B.; Aneman, A. A prospective, observational study of cerebrovascular autoregulation and its association with delirium following cardiac surgery. Anaesthesia 2019, 74, 33–44. [Google Scholar] [CrossRef]
- Chen, N.; Mo, Y.-C.; Xu, M.; Chen, S.-S.; Gao, W.; Zheng, Q.; Wang, J.; Wang, X.-C.; Wang, J.-L. Risk factors for postoperative delirium in elderly patients undergoing heart valve surgery with cardiopulmonary bypass. J. Cardiothorac. Surg. 2024, 19, 106. [Google Scholar] [CrossRef]
- Eertmans, W.; De Deyne, C.; Genbrugge, C.; Marcus, B.; Bouneb, S.; Beran, M.; Fret, T.; Gutermann, H.; Boer, W.; Vander Laenen, M.; et al. Association between postoperative delirium and postoperative cerebral oxygen desaturation in older patients after cardiac surgery. Br. J. Anaesth. 2020, 124, 146–153. [Google Scholar] [CrossRef]
- Hori, D.; Brown, C.; Ono, M.; Rappold, T.; Sieber, F.; Gottschalk, A.; Neufeld, K.J.; Gottesman, R.; Adachi, H.; Hogue, C.W. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br. J. Anaesth. 2014, 113, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Nam, K.; Lee, S.; Cho, Y.J.; Yeom, C.-W.; Jung, S.; Moon, J.Y.; Jeon, Y. The relationship between intraoperative cerebral oximetry and postoperative delirium in patients undergoing off-pump coronary artery bypass graft surgery: A retrospective study. BMC Anesthesiol. 2020, 20, 285. [Google Scholar] [CrossRef] [PubMed]
- Mailhot, T.; Cossette, S.; Lambert, J.; Beaubien-Souligny, W.; Cournoyer, A.; O’Meara, E.; Maheu-Cadotte, M.-A.; Fontaine, G.; Bouchard, J.; Lamarche, Y.; et al. Delirium after cardiac surgery and cumulative fluid balance: A case-control cohort study. J. Cardiothorac. Vasc. Anesth. 2019, 33, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.; Meyer, S.; Docquier, M.-A.; Lemaire, G.; Kahn, D.; Khalifa, C.; Rosal Martins, M.; Van Dyck, M.; Jacquet, L.-M.; Peeters, A.; et al. Predicting postoperative delirium and postoperative cognitive decline with combined intraoperative electroencephalogram monitoring and cerebral near-infrared spectroscopy in patients undergoing cardiac interventions. J. Clin. Monit. Comput. 2019, 33, 999–1009. [Google Scholar] [CrossRef]
- Nakano, M.; Nomura, Y.; Whitman, G.; Sussman, M.; Schena, S.; Kilic, A.; Choi, C.W.; Akiyoshi, K.; Neufeld, K.J.; Lawton, J.; et al. Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. Br. J. Anaesth. 2021, 126, 967–974. [Google Scholar] [CrossRef]
- Soh, S.; Shim, J.-K.; Song, J.-W.; Choi, N.; Kwak, Y.-L. Preoperative transcranial Doppler and cerebral oximetry as predictors of delirium following valvular heart surgery: A case-control study. J. Clin. Monit. Comput. 2020, 34, 715–723. [Google Scholar] [CrossRef]
- Fischer-Kumbruch, M.; Jung, C.; Hinken, L.; Trübenbach, D.; Fielbrand, R.; Schenk, I.; Diegmann, O.; Krauß, T.; Scheinichen, D.; Schultz, B. Pre- and intraoperative cerebral near-infrared spectroscopy and postoperative delirium: Results of a prospective cross-sectional trial. Medicine 2022, 101, e31520. [Google Scholar] [CrossRef]
- Morimoto, Y.; Yoshimura, M.; Utada, K.; Setoyama, K.; Matsumoto, M.; Sakabe, T. Prediction of postoperative delirium after abdominal surgery in the elderly. J. Anesth. 2009, 23, 51–56. [Google Scholar] [CrossRef]
- Song, J.; Cheng, C.; Sheng, K.; Jiang, L.-L.; Li, Y.; Xia, X.-Q.; Hu, X.-W. Association between the reactivity of local cerebral oxygen saturation after hypo-to-hypercapnic tests and delirium after abdominal surgery in older adults: A prospective study. Front. Psychiatry 2022, 13, 907870. [Google Scholar] [CrossRef]
- Tobar, E.; Abedrapo, M.A.; Godoy, J.A.; Llanos, J.L.; Díaz, M.J.; Azolas, R.; Bocic, G.R.; Escobar, J.A.; Cornejo, R.A.; Romero, C.M. Impact of hypotension and global hypoperfusion in postoperative delirium: A pilot study in older adults undergoing open colon surgery. Braz. J. Anesthesiol. (Engl. Ed.) 2018, 68, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhao, W.; Mu, D.-L.; Zhao, X.; Li, X.-Y.; Wang, D.-X.; Jia, H.-Q.; Dai, F.; Meng, L. Association between cerebral desaturation and postoperative delirium in thoracotomy with one-lung ventilation: A prospective cohort study. Anesth. Analg. 2021, 133, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Soh, S.; Shim, J.-K.; Song, J.-W.; Kim, K.-N.; Noh, H.-Y.; Kwak, Y.-L. Postoperative delirium in elderly patients undergoing major spinal surgery: Role of cerebral oximetry. J. Neurosurg. Anesthesiol. 2016, 29, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Butler, E.; Frost, S.A.; Chuan, A.; Aneman, A. Cerebrovascular autoregulation monitoring and patient-centred outcomes after cardiac surgery: A systematic review. ACTA Anaesthesiol. Scand. 2018, 62, 588–599. [Google Scholar] [CrossRef]
- Robba, C.; Taccone, F.S.; Citerio, G. Monitoring cerebral oxygenation in acute brain-injured patients. Intensive Care Med. 2022, 48, 1463–1466. [Google Scholar] [CrossRef]
- Wang, X.; Cui, L.; Ji, X. Cognitive impairment caused by hypoxia: From clinical evidences to molecular mechanisms. Metab. Brain Dis. 2022, 37, 51–66. [Google Scholar] [CrossRef]
- Qiu, L.; Ma, Y.; Ge, L.; Zhou, H.; Jia, W. Efficacy of cerebral oxygen saturation monitoring for perioperative neurocognitive disorder in adult noncardiac surgical patients: A systematic review and meta-Analysis of randomized controlled trials. World Neurosurg. 2025, 194, 123570. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, W. Effect of near-infrared spectroscopy on postoperative delirium in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1404210. [Google Scholar] [CrossRef]
- Wong, Z.Z.; Chiong, X.H.; Chaw, S.H.; Hashim, N.H.B.M.; Abidin, M.F.B.Z.; Yunus, S.N.B.; Subramaniam, T.; Ng, K.T. The use of cerebral oximetry in surgery: A systematic review and meta-analysis of randomized controlled trials. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2002–2011. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Zhang, L.; Zong, H.; Meng, L.; Han, R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst. Rev. 2018, 1, CD010947. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Sheinberg, R.; Yee, M.-S.; Ono, M.; Zheng, Y.; Hogue, C.W. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: A systematic review. Anesth. Analg. 2013, 116, 663–676. [Google Scholar] [CrossRef]
- Sarink, D.; Nedkoff, L.; Briffa, T.; Shaw, J.E.; Magliano, D.J.; Stevenson, C.; Mannan, H.; Knuiman, M.; Hung, J.; Hankey, G.J.; et al. Trends in age- and sex-specific prevalence and incidence of cardiovascular disease in Western Australia. Eur. J. Prev. Cardiol. 2018, 25, 1280–1290. [Google Scholar] [CrossRef]
- Mevorach, L.; Forookhi, A.; Farcomeni, A.; Romagnoli, S.; Bilotta, F. Perioperative risk factors associated with increased incidence of postoperative delirium: Systematic review, meta-analysis, and Grading of Recommendations Assessment, Development, and Evaluation system report of clinical literature. Br. J. Anaesth. 2023, 130, e254–e262. [Google Scholar] [CrossRef]
- Ho, M.; Nealon, J.; Igwe, E.; Traynor, V.; Chang, H.; Chen, K.; Montayre, J. Postoperative delirium in older patients: A systematic review of assessment and incidence of postoperative delirium. Worldviews Evid.-Based Nurs. 2021, 18, 290–301. [Google Scholar] [CrossRef]
- Igwe, E.O.; Nealon, J.; O’Shaughnessy, P.; Bowden, A.; Chang, H.; Ho, M.; Montayre, J.; Montgomery, A.; Rolls, K.; Chou, K.; et al. Incidence of postoperative delirium in older adults undergoing surgical procedures: A systematic literature review and meta-analysis. Worldviews Evid.-Based Nurs. 2023, 20, 220–237. [Google Scholar] [CrossRef]
- Liu, S.B.; Wu, H.Y.; Duan, M.L.; Yang, R.L.; Ji, C.H.; Liu, J.J.; Zhao, H. Delirium in the ICU: How much do we know? A narrative review. Ann. Med. 2024, 56, 2405072. [Google Scholar] [CrossRef]
- Wei, L.A.; Fearing, M.A.; Sternberg, E.J.; Inouye, S.K. The Confusion Assessment Method: A systematic review of current usage. J. Am. Geriatr. Soc. 2008, 56, 823–830. [Google Scholar] [CrossRef]
- Chan, M.J.; Chung, T.; Glassford, N.J.; Bellomo, R. Near-infrared spectroscopy in adult cardiac surgery patients: A systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth. 2017, 31, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Nolan, H.; Carey, D.; Reilly, R.B.; Kenny, R.A. Age and sex differences in frontal lobe cerebral oxygenation in older adults—Normative values using novel, scalable technology: Findings from the Irish Longitudinal Study on Ageing (TILDA). Arch. Gerontol. Geriatr. 2020, 87, 103988. [Google Scholar] [CrossRef] [PubMed]
- Semrau, J.S.; Motamed, M.; Ross-White, A.; Boyd, J.G. Cerebral oximetry and preventing neurological complication post-cardiac surgery: A systematic review. Eur. J. Cardiothorac. Surg. 2021, 59, 1144–1154. [Google Scholar] [CrossRef]
- Schmidt, C.; Heringlake, M.; Kellner, P.; Berggreen, A.E.; Maurer, H.; Brandt, S.; Bucsky, B.; Petersen, M.; Charitos, E.I. The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: A prospective observational study comparison of the INVOS and ForeSight Elite cerebral oximeters. Can. J. Anesth./J. Can. Anesth. 2018, 65, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Takegawa, R.; Hayashida, K.; Rolston, D.M.; Li, T.; Miyara, S.J.; Ohnishi, M.; Shiozaki, T.; Becker, L.B. Near-Infrared Spectroscopy Assessments of Regional Cerebral Oxygen Saturation for the Prediction of Clinical Outcomes in Patients with Cardiac Arrest: A Review of Clinical Impact, Evolution, and Future Directions. Front. Med. 2020, 7, 587930. [Google Scholar] [CrossRef]
- Rudolph, J.L.; Marcantonio, E.R.; Culley, D.J.; Silverstein, J.H.; Rasmussen, L.S.; Crosby, G.J.; Inouye, S.K. Delirium is associated with early postoperative cognitive dysfunction. Anaesthesia 2008, 63, 941–947. [Google Scholar] [CrossRef]
- Matcan, S.; Sanabria Carretero, P.; Gómez Rojo, M.; Castro Parga, L.; Reinoso-Barbero, F. Importancia de la monitorización bilateral de la oxigenación cerebral: Caso clínico de asimetría durante el bypass cardiopulmonar secundaria a infarto cerebral previo. Rev. Esp. Anestesiol. Reanim. 2018, 65, 165–169. [Google Scholar] [CrossRef]
- Daal, S.M.; Keyhan-Falsafi, M.A.; Hoohenkerk, G.J.F.; Ayan, K.; De Vroege, R.; Van Alphen, J.; Van Kampen, P.M.; Keunen, R.W.M. Unilateral versus bilateral cerebral oximetry in delirium prevention during CABG and valve surgery. Acta Anaesthesiol. Belg. 2024, 75, 91–97. [Google Scholar] [CrossRef]
- Lin, D.; Zhou, R. Cerebral oximetry: Defining baseline value and desaturation cautiously. Ann. Thorac. Surg. 2025, 119, 926–927. [Google Scholar] [CrossRef]

| Baseline rSO2 (%) Mean (SD)/Median (IQR) | Minimum rSO2 (%) Mean (SD)/Median (IQR) | Maximum rSO2 (%) Mean (SD)/Median (IQR) | ||||
|---|---|---|---|---|---|---|
| Study ID | Delirium | No Delirium | Delirium | No Delirium | Delirium | No Delirium |
| bilateral | ||||||
| Ahn 2021 [61] | 55.3 (11.4) | 61.9 (9.6) | 48.3 (10.5) | 52.2 (8.3) | 73.2 (9.2) | 72.7 (8.3) |
| Bennett 2021 [62] | 54 (4) a | 56.5 (2) a | — | — | — | — |
| Chan 2019 [63] | 67.4 (62.2–70.6) | 65.8 (62.1–72) | — | — | — | — |
| Chen 2024 [64] | 58.2 (6.9) | 60.5 (7.7) | — | — | — | — |
| Clemmesen 2018 [60] | 60.5 (58–75) | 68.5 (61–73) | 51.5 (46–63) | 58.5 (50–65) | — | — |
| Cui 2021 [76] | 69.3 (5.5) | 70.4 (5.6) | — | — | — | — |
| Eertmans 2020 [65] | 68 (65–69) | 68 (66–70) | 60 (55–62) | 59 (55–62) | — | — |
| Fischer 2022 [72] | 64.8 (8.3) | 69.9 (7.6) | — | — | — | — |
| Lim 2020 [67] | 54.8 (7.74) | 55.5 (6.8) | 46.7 (8.33) | 55.5 (6.8) | — | — |
| Mailhot 2019 [68] | 66 (60–70) | 69 (64–73) | 58 (52–63) | 63 (58–67) | — | — |
| Morimoto 2009 [73] | 59.5 (4.5) a | 66 (8) a | — | — | — | — |
| Schoen 2011 [17] | 58.1 (7.7) | 63.1 (7.2) | 48.6 (9.3) | 55.1 (8.6) | — | — |
| Soh 2016 [77] | 67 (54–70) | 63 (59–68) | 55 (46–66) | 56 (50–61) | 79 (62–86) | 74 (70–79) |
| Soh 2020 [71] | 56 (6) | 62 (7) | 43 (37–46) | 45 (38–49) | 67 (64–72) | 72 (68–78) |
| Song 2022 [74] | 69.9 (7.3) | 69.3 (6.8) | — | — | — | — |
| Susano 2021 [18] | 61 (52–67) | 65 (60–72) | — | — | — | — |
| Tobar 2018 [75] | 72 (2) a | 62 (10) | — | — | — | — |
| Wood 2017 [19] | 63.5 (15) a | 69 (22.5) | — | — | — | — |
| RIGHT | ||||||
| Ahn 2021 [61] | 54.8 (11.9) | 54.8 (11.9) | 47.8 (11.5) | 52.1 (8.7) | 72.8 (9.8) | 73 (8.9) |
| Hori 2014 [66] | 52 (10.1 | 55 (9.8) | — | — | — | — |
| Momeni 2019 [69] | 60 (55–67) | 63 (56–69) | — | — | — | — |
| LEFT | ||||||
| Ahn 2021 [61] | 55.7 (11.5) | 55.7 (11.5) | 48.8 (10.4) | 52.1 (9) | 73.6 (9.7) | 72.5 (8.6) |
| Hori 2014 [66] | 52 (9.5) | 54 (9.0) | — | — | — | — |
| Momeni 2019 [69] | 60 (53–66) | 62 (55–69) | — | — | — | — |
| Study ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Overall |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ahn 2021 [61] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Bennett 2021 [62] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | low |
| Chan 2019 [63] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Chen 2024 [64] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Clemmesen 2018 [60] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Cui 2021 [76] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Eertmans 2020 [65] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Fischer 2022 [72] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | moderate |
| Hori 2014 [66] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | moderate |
| Lim 2020 [67] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Mailhot 2019 [68] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Momeni 2019 [69] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Morimoto 2009 [73] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | moderate |
| Nakano 2021 [70] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Schoen 2011 [17] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Soh 2016 [77] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Soh 2020 [71] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Song 2022 [74] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Susano 2021 [18] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Tobar 2018 [75] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Wang 2019 [59] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
| Wood 2017 [19] | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | high |
: yes,
: no;
: unclear.Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rochina-Rodríguez, B.; Martínez-Arnau, F.M.; Pérez-Ros, P. Regional Cerebral Oxygen Saturation and Risk of Delirium: A Systematic Review and Meta-Analysis. Diseases 2025, 13, 383. https://doi.org/10.3390/diseases13120383
Rochina-Rodríguez B, Martínez-Arnau FM, Pérez-Ros P. Regional Cerebral Oxygen Saturation and Risk of Delirium: A Systematic Review and Meta-Analysis. Diseases. 2025; 13(12):383. https://doi.org/10.3390/diseases13120383
Chicago/Turabian StyleRochina-Rodríguez, Begoña, Francisco Miguel Martínez-Arnau, and Pilar Pérez-Ros. 2025. "Regional Cerebral Oxygen Saturation and Risk of Delirium: A Systematic Review and Meta-Analysis" Diseases 13, no. 12: 383. https://doi.org/10.3390/diseases13120383
APA StyleRochina-Rodríguez, B., Martínez-Arnau, F. M., & Pérez-Ros, P. (2025). Regional Cerebral Oxygen Saturation and Risk of Delirium: A Systematic Review and Meta-Analysis. Diseases, 13(12), 383. https://doi.org/10.3390/diseases13120383

