Vitamin B12 Deficiency Associated with Metformin and Proton Pump Inhibitors and Their Combinations: Results from a Disproportionality and Interaction Analysis
Abstract
1. Introduction
2. Methods
2.1. Data Source
- “Vitamin B12 deficiency” (MedDRA code: 10047609)
- “Vitamin B12 decreased” (MedDRA code: 10047608)
- “Anaemia vitamin B12 deficiency” (MedDRA code: 10002080)
- “Neuropathy vitamin B12 deficiency” (MedDRA code: 10079953) [16]
2.2. Data Processing
2.3. Data Mining Algorithms
2.4. Calculation of Interaction Signal Scores
2.5. Outcomes Assessed
2.6. Compliance with Reporting Standards
3. Results
3.1. Search Results
3.2. Signal Detection Measures
3.3. Interaction Signal Scores
3.4. Outcomes Reported for Monotherapies and Combination Therapies
4. Discussion
4.1. Key Findings
4.2. Comparison with Existing Literature
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drzewoski, J.; Hanefeld, M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals 2021, 14, 122. [Google Scholar]
- Pongwecharak, J.; Tengmeesri, N.; Malanusorn, N.; Panthong, M.; Pawangkapin, N. Prescribing metformin in type 2 diabetes with a contraindication: Prevalence and outcome. Pharm. World Sci. 2009, 31, 481–486. [Google Scholar] [CrossRef]
- Silverii, G.A. Optimizing metformin therapy in practice: Tailoring therapy in specific patient groups to improve tolerability, efficacy and outcomes. Diabetes Obes. Metab. 2024, 26, 42–54. [Google Scholar]
- Al Quran, T.; Khader, A.; Allan, H.; Al-Momani, R.; Aqel, H.T.; Alsaleh, M.; Bataineh, Z. Prevalence of vitamin B12 deficiency in type 2 diabetic patients taking metformin, a cross-sectional study in primary healthcare. Front. Endocrinol. 2023, 14, 1226798. [Google Scholar] [CrossRef]
- Vieira, I.H.; Barros, L.M.; Baptista, C.F.; Rodrigues, D.M.; Paiva, I.M. Recommendations for Practical Use of Metformin, a Central Pharmacological Therapy in Type 2 Diabetes. Clin. Diabetes 2022, 40, 97–107. [Google Scholar] [CrossRef]
- Aroda, V.R.; Edelstein, S.L.; Goldberg, R.B.; Knowler, W.C.; Marcovina, S.M.; Orchard, T.J.; Bray, G.A.; Schade, D.S.; Temprosa, M.G.; White, N.H.; et al. Diabetes Prevention Program Research Group. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J. Clin. Endocrinol. Metab. 2016, 101, 1754–1761. [Google Scholar] [CrossRef]
- Lin, H.C.; Hsiao, Y.T.; Lin, H.L.; Uang, Y.S.; Cheng, H.W.; Wang, Y.; Wang, L.H. The use of proton pump inhibitors decreases the risk of diabetes mellitus in patients with upper gastrointestinal disease: A population-based retrospective cohort study. Medicine 2016, 95, e4195. [Google Scholar]
- Sun, X.M.; Tan, J.C.; Zhu, Y.; Lin, L. Association between diabetes mellitus and gastroesophageal reflux disease: A meta-analysis. World J. Gastroenterol. 2015, 21, 3085–3092. [Google Scholar] [CrossRef]
- Mumtaz, H.; Ghafoor, B.; Saghir, H.; Tariq, M.; Dahar, K.; Ali, S.H.; Waheed, S.T.; Syed, A.A. Association of Vitamin B12 deficiency with long-term PPIs use: A cohort study. Ann. Med. Surg. 2022, 82, 104762. [Google Scholar] [CrossRef]
- Cotter, P.E.; O’Keefe, S.T. Use of proton pump inhibitors is not associated with Vitamin B12 deficiency and in older hospital patients: A case control study. Eur. Geriatr. Med. 2011, 2, 253–255. [Google Scholar] [CrossRef]
- Choudhury, A.; Jena, A.; Jearth, V.; Dutta, A.K.; Makharia, G.; Dutta, U.; Goenka, M.; Kochhar, R.; Sharma, V. Vitamin B12 deficiency and use of proton pump inhibitors: A systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2023, 17, 479–487. [Google Scholar] [CrossRef]
- Bilgiç, N.M.; Özel, A.M.; Bayramiçli, O.U.; Bulur, A. Frequency of gastroesophageal reflux in diabetic patients without gastrointestinal symptoms. Med. Sci. Discov. 2024, 11, 67–72. [Google Scholar]
- Long, A.N.; Atwell, C.L.; Yoo, W.; Solomon, S.S. Vitamin B (12) deficiency associated with concomitant metformin and proton pump inhibitor use. Diabetes Care 2012, 35, e84. [Google Scholar]
- FDA’s Adverse Event Reporting System (FAERS). Available online: https://www.fda.gov/drugs/surveillance/fdas-adverse-event-reporting-system-faers (accessed on 9 December 2024).
- Sridharan, K.; Sivaramakrishnan, G. A pharmacovigilance study assessing risk of angioedema with angiotensin receptor blockers using the US FDA Adverse Event Reporting System. Expert Opin. Drug Saf. 2024, 19, 1–8. [Google Scholar] [CrossRef]
- Brown, E.G.; Wood, L.; Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999, 2, 109–117. [Google Scholar] [CrossRef]
- Faillie, J.L. Case-non-case studies: Principle, methods, bias and interpretation. Therapie 2019, 74, 225–232. [Google Scholar]
- Evans, S.J. Pharmacovigilance: A science or fielding emergencies? Stat. Med. 2000, 19, 3199–3209. [Google Scholar] [CrossRef]
- Xue, Z.; Chen, M.; Wang, M.; Zhang, F.; Chen, Z. A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for avatrombopag. Sci. Rep. 2024, 14, 28488. [Google Scholar] [CrossRef]
- Noguchi, Y.; Aoyama, K.; Kubo, S.; Tachi, T.; Teramachi, H. Improved Detection Criteria for Detecting Drug-Drug Interaction Signals Using the Proportional Reporting Ratio. Pharmaceuticals 2020, 14, 4. [Google Scholar] [CrossRef]
- Fusaroli, M.; Salvo, F.; Begaud, B.; AlShammari, T.M.; Bate, A.; Battini, V.; Brueckner, A.; Candore, G.; Carnovale, C.; Crisafulli, S.; et al. The REporting of A Disproportionality Analysis for DrUg Safety Signal Detection Using Individual Case Safety Reports in PharmacoVigilance (READUS-PV): Explanation and Elaboration. Drug Saf. 2024, 47, 585–599. [Google Scholar] [CrossRef]
- Wakeman, M.; Archer, D.T. Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels? Diabetes Metab. Syndr. Obes. 2020, 13, 2093–2108. [Google Scholar] [CrossRef]
- Wee, A.K.H.; Sultana, R. Determinants of vitamin B12 deficiency in patients with type-2 diabetes mellitus—A primary-care retrospective cohort study. BMC Prim. Care 2023, 24, 102. [Google Scholar]
- Langan, R.C.; Goodbred, A.J. Vitamin B12 deficiency: Recognition and management. Am. Fam. Physician 2017, 96, 384–389. [Google Scholar]
- Wong, C.W. Vitamin B12 deficiency in the elderly: Is it worth screening? Hong Kong Med. J. 2015, 21, 155–164. [Google Scholar]
- Mazokopakis, E.E.; Starakis, I.K. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficiency. Diabetes Res. Clin. Pract. 2012, 97, 359–367. [Google Scholar]
- Mouchaileh, N. Vitamin B12 deficiency in older people: A practical approach to recognition and management. J. Pharm. Pract. Res. 2023, 53, 350–358. [Google Scholar]
- Obeid, R.; Andrès, E.; Češka, R.; Hooshmand, B.; Guéant-Rodriguez, R.-M.; Prada, G.I.; Sławek, J.; Traykov, L.; Ta Van, B.; Várkonyi, T.; et al. Diagnosis, Treatment and Long-Term Management of Vitamin B12 Deficiency in Adults: A Delphi Expert Consensus. J. Clin. Med. 2024, 13, 2176. [Google Scholar] [CrossRef]
- Reinstatler, L.; Qi, Y.P.; Williamson, R.S.; Garn, J.V.; Oakley, G.P., Jr. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: The National Health and Nutrition Examination Survey, 1999–2006. Diabetes Care 2012, 35, 327–333. [Google Scholar]
- Eussen, S.J.; de Groot, L.C.; Clarke, R.; Schneede, J.; Ueland, P.M.; Hoefnagels, W.H.; van Staveren, W.A. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: A dose-finding trial. Arch. Intern. Med. 2005, 165, 1167–1172. [Google Scholar] [CrossRef]
- Fituri, S.; Akbar, Z.; Ganji, V. Impact of metformin treatment on cobalamin status in persons with type 2 diabetes. Nutr. Rev. 2024, 82, 553–560. [Google Scholar] [CrossRef]
Characteristics. | Metformin Monotherapy (n = 274) | Metformin Combination Therapies with PPIs (n = 88) | |||||
---|---|---|---|---|---|---|---|
Pantoprazole (n = 30) | Esomeprazole (n = 18) | Lansoprazole (n = 3) | Omeprazole (n = 33) | Rabeprazole (n = 4) | |||
Age groups [n (%)] | <18 years | 2 (0.7) | Nil | Nil | Nil | Nil | Nil |
≥18 to <40 years | 13 (4.7) | 4 (22.2) | |||||
≥40 to <65 years | 56 (20.4) | 2 (6.7) | 3 (16.7) | 8 (24.2) | |||
≥65 years | 154 (56.2) | 22 (73.3) | 10 (55.6) | 2 (66.7) | 20 (60.6) | 4 (100) | |
Not specified | 49 (17.9) | 6 (20) | 1 (5.6) | 1 (33.3) | 5 (15.2) | Nil | |
Quantitative age (years) | Mean (SD) | 66.1 (15.8) | 70.6 (9.3) | 59.8 (16.1) | 77 (9.9) | 68.1 (14.4) | 82 (8) |
Median (range) | 70 (15–90) | 73 (40–82) | 66 (34–86) | 77 (70–84) | 70 (43–81) | 86 (70–86) | |
Gender [n (%)] | Male | 122 (44.5) | 13(43.3) | 9 (50) | 1 (33.3) | 13 (39.4) | 3 (75) |
Female | 121 (44.2) | 14 (46.7) | 9 (50) | 2 (66.7) | 18 (54.5) | Nil | |
Unknown | 29 (11.3) | 3 (10) | Nil | Nil | 2 (6.1) | 1 (25) | |
Reporting year [n (%)] | 2004–2008 | 29 (10.6) | Nil | 1 (33.3) | 2 (6.1) | 1 (25) | |
2009–2012 | 19 (6.9) | 5 (16.7) | 3 (16.7) | Nil | 5 (15.2) | Nil | |
2013–2016 | 33 (12) | 6 (20) | 5 (83.3) | 2 (6.1) | |||
2017–2020 | 136 (49.6) | 9 (30) | Nil | 17 (51.5) | 3 (75) | ||
2021–2024 (June) | 57 (20.8) | 10 (33.3) | 10 (55.6) | 2 (66.7) | 7 (21.2) | Nil | |
Reporting top countries | USA | 53 (19.3) | 6 (20) | 5 (27.8) | 1 (33.3) | 8 (24.2) | |
Other countries and not reported | 221 (80.7) | 24 (80) | 13 (72.2) | 2 (66.7) | 25 (75.8) | 4 (100) |
Drugs | PRR | Lower 95% CI of PRR | Upper 95% CI of PRR | RRR | χ2 | Number of Reports | IC025 | EBGM05 |
---|---|---|---|---|---|---|---|---|
Monotherapy | ||||||||
Metformin | 24.5 | 21.6 | 27.7 | 21.9 | 5474.5 | 274 | 3.9 | 19.3 |
Pantoprazole | 14.6 | 11.3 | 18.8 | 14.3 | 740.8 | 61 | 3 | 11.1 |
Omeprazole | 10.1 | 7.5 | 13.5 | 9.9 | 351.4 | 45 | 2.5 | 7.4 |
Esomeprazole | 7.4 | 5.7 | 9.6 | 7.2 | 295 | 56 | 2.2 | 5.5 |
Rabeprazole | 9.1 | 3.8 | 21.9 | 9.1 | 28.4 | 5 | 1.3 | 3.8 |
Lansoprazole | 3.9 | 2.4 | 6.3 | 3.9 | 33.6 | 17 | 1.2 | 2.4 |
Dexlansoprazole | 6.1 | 2.8 | 13.7 | 6.1 | 20.9 | 6 | 1.2 | 2.7 |
Combination therapies with metformin | ||||||||
Pantoprazole | 11.1 | 7.8 | 16 | 11 | 263.8 | 30 | 2.4 | 7.7 |
Omeprazole | 10 | 7.1 | 14.1 | 9.9 | 255.1 | 33 | 2.3 | 7 |
Esomeprazole | 15.3 | 9.6 | 24.4 | 15.2 | 224.8 | 18 | 2.5 | 9.5 |
Rabeprazole | 12.3 | 4.6 | 32.7 | 12.3 | 30.9 | 4 | 1.4 | 4.6 |
Lansoprazole | 2.5 | 0.8 | 7.8 | 2.5 | 1.4 | 3 | 0.4 | 0.8 |
Drugs | EBGM | EB05 | EB95 | INTSS |
---|---|---|---|---|
Monotherapy | ||||
Metformin | 21.9 | 19.7 | 24.3 | NA |
Pantoprazole | 14.3 | 11.5 | 17.7 | |
Omeprazole | 9.9 | 7.7 | 12.7 | |
Esomeprazole | 7.2 | 5.8 | 9 | |
Rabeprazole | 9.1 | 4.3 | 19 | |
Lansoprazole | 3.9 | 2.6 | 5.8 | |
Dexlansoprazole | 6.1 | 3.1 | 12 | |
Combination therapies with metformin | ||||
Pantoprazole | 11 | 8.1 | 14.9 | 0.3 |
Omeprazole | 9.9 | 7.4 | 13.2 | 0.3 |
Esomeprazole | 15.2 | 10.3 | 22.4 | 0.4 |
Rabeprazole | 12.3 | 5.4 | 28 | 0.2 |
Lansoprazole | 2.5 | 1 | 6.5 | 0.2 |
Drugs | Hospitalization | Life-Threatening Events | Disability | χ2; df; p-Value |
---|---|---|---|---|
Metformin | 145 | 15 | 15 | NA |
Pantoprazole | 13 | 4 | 6 | 7.2; 2; 0.03 * |
Metformin/Pantoprazole | 19 | 5 | 0 | |
Omeprazole | 12 | 1 | 2 | 5.2; 2; 0.07 |
Metformin/Omeprazole | 24 | 0 | 0 | |
Esomeprazole | 14 | 0 | 2 | Not estimable |
Metformin/Esomeprazole | 15 | 0 | 0 | |
Rabeprazole | 1 | 1 | 2 | 3.9; 2; 0.1 |
Metformin/Rabeprazole | 3 | 0 | 0 | |
Lansoprazole | 3 | 0 | 5 | Not estimable |
Metformin/Lansoprazole | 1 | 0 | 1 | |
Dexlansoprazole | 0 | 0 | 2 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridharan, K. Vitamin B12 Deficiency Associated with Metformin and Proton Pump Inhibitors and Their Combinations: Results from a Disproportionality and Interaction Analysis. Diseases 2025, 13, 334. https://doi.org/10.3390/diseases13100334
Sridharan K. Vitamin B12 Deficiency Associated with Metformin and Proton Pump Inhibitors and Their Combinations: Results from a Disproportionality and Interaction Analysis. Diseases. 2025; 13(10):334. https://doi.org/10.3390/diseases13100334
Chicago/Turabian StyleSridharan, Kannan. 2025. "Vitamin B12 Deficiency Associated with Metformin and Proton Pump Inhibitors and Their Combinations: Results from a Disproportionality and Interaction Analysis" Diseases 13, no. 10: 334. https://doi.org/10.3390/diseases13100334
APA StyleSridharan, K. (2025). Vitamin B12 Deficiency Associated with Metformin and Proton Pump Inhibitors and Their Combinations: Results from a Disproportionality and Interaction Analysis. Diseases, 13(10), 334. https://doi.org/10.3390/diseases13100334