Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients
Abstract
1. Introduction
2. Advantages and Disadvantages of Multiparameter Flow Cytometry
3. Next Generation Flow (NGF)
4. Current Applications of Multiparameter Flow Cytometry in Multiple Myeloma
4.1. Detection of Plasma Cells
4.2. Differential Diagnosis
4.3. Response Assessment
4.4. Prognostication
4.4.1. Prognostication Through the Assessment of Minimal Residual Disease
Study/Trial | Method of MRD Assessment | MRD Threshold | Key Outcomes (MRD− vs. MRD+) |
---|---|---|---|
Paiva et al., [38] | 4-color MFC | 10−4 | MRD– patients had significantly longer PFS and OS |
Rawstron et al., (meta-analysis) [52] | MFC (various panels) | 10−4–10−5 | MRD negativity consistently associated with improved PFS and OS across trials |
Munshi et al., (meta-analysis) [9] | MFC/NGF/NGS | 10−4–10−6 | MRD negativity associated with 50% reduction in risk of progression/death |
Avet-Loiseau et al., [44] | MFC/NGS | 10−5 | MRD negativity strongly correlated with longer PFS after consolidation |
Paiva et al., PETHEMA/GEM2012MENOS65 [28] | NGF (EuroFlow) | 10−6 | MRD– patients had 5-year PFS > 80%, MRD+ significantly worse outcomes |
Costa et al., [51] | NGF (EuroFlow) | 10−5–10−6 | Sustained MRD negativity (MRD-SURE) associated with excellent 3-year OS and PFS |
4.4.2. Prognostication Through Immunophenotypic Expression Characteristics
5. Circulating Tumor Plasma Cells (CTPCs) and Peripheral Blood Assessment
6. Immune Composition Assessment Using Flow Cytometry
7. Other Perspectives
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFC | Multiparameter Flow Cytometry |
NGF | Next-Generation Flow |
CTPC | Circulating Tumor Plasma Cell |
MRD | Measurable Residual Disease |
References
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, V.; Kyle, R.A.; van Duin, M.; Sonneveld, P.; Mateos, M.V.; Gay, F.; Anderson, K.C. Multiple myeloma. Nat. Rev. Dis. Primers 2017, 3, 17046. [Google Scholar] [CrossRef]
- van de Donk, N.; Pawlyn, C.; Yong, K.L. Multiple myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Weaver, A.; Cornell, R.F.; Costa, L.J. Challenges and opportunities in the assessment of measurable residual disease in multiple myeloma. Br. J. Haematol. 2019, 186, 807–819. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Maclachlan, K.H.; Came, N.; Diamond, B.; Roshal, M.; Ho, C.; Thoren, K.; Mayerhoefer, M.E.; Landgren, O.; Harrison, S. Minimal residual disease in multiple myeloma: Defining the role of next generation sequencing and flow cytometry in routine diagnostic use. Pathology 2021, 53, 385–399. [Google Scholar] [CrossRef]
- Diamond, B.T.; Rustad, E.; Maclachlan, K.; Thoren, K.; Ho, C.; Roshal, M.; Ulaner, G.A.; Landgren, C.O. Defining the undetectable: The current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity. Blood Rev. 2021, 46, 100732. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Romano, A.; Palumbo, G.A.; Parrinello, N.L.; Conticello, C.; Martello, M.; Terragna, C. Minimal Residual Disease Assessment Within the Bone Marrow of Multiple Myeloma: A Review of Caveats, Clinical Significance and Future Perspectives. Front. Oncol. 2019, 9, 699. [Google Scholar] [CrossRef]
- Kothari, S.; Hillengass, J.; McCarthy, P.L.; Holstein, S.A. Determination of Minimal Residual Disease in Multiple Myeloma: Does It Matter? Curr. Hematol. Malig. Rep. 2019, 14, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Galtseva, I.V.; Davydova, Y.O.; Kapranov, N.M.; Julhakyan, H.L.; Mendeleeva, L.P. Minimal residual disease in multiple myeloma: Benefits of flow cytometry. Int. J. Lab. Hematol. 2018, 40, 12–20. [Google Scholar] [CrossRef]
- Paiva, B.; Merino, J.; San Miguel, J.F. Utility of flow cytometry studies in the management of patients with multiple myeloma. Curr. Opin. Oncol. 2016, 28, 511–517. [Google Scholar] [CrossRef]
- Paiva, B.; van Dongen, J.J.; Orfao, A. New criteria for response assessment: Role of minimal residual disease in multiple myeloma. Blood 2015, 125, 3059–3068. [Google Scholar] [CrossRef]
- Jelinek, T.; Bezdekova, R.; Zatopkova, M.; Burgos, L.; Simicek, M.; Sevcikova, T.; Paiva, B.; Hajek, R. Current applications of multiparameter flow cytometry in plasma cell disorders. Blood Cancer J. 2017, 7, e617. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Davies, F.E.; DasGupta, R.; Ashcroft, A.J.; Patmore, R.; Drayson, M.T.; Owen, R.G.; Jack, A.S.; Child, J.A.; Morgan, G.J. Flow cytometric disease monitoring in multiple myeloma: The relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002, 100, 3095–3100. [Google Scholar] [CrossRef]
- San Miguel, J.F.; Almeida, J.; Mateo, G.; Bladé, J.; López-Berges, C.; Caballero, D.; Hernández, J.; Moro, M.J.; Fernández-Calvo, J.; Díaz-Mediavilla, J.; et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: A tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002, 99, 1853–1856. [Google Scholar] [CrossRef]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef]
- Mina, R.; Oliva, S.; Boccadoro, M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives. J. Clin. Med. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Bertamini, L.; D’Agostino, M.; Gay, F. MRD Assessment in Multiple Myeloma: Progress and Challenges. Curr. Hematol. Malig. Rep. 2021, 16, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Yanamandra, U.; Kumar, S.K. Minimal residual disease analysis in myeloma—When, why and where. Leuk. Lymphoma 2018, 59, 1772–1784. [Google Scholar] [CrossRef]
- Oliva, S.; D’Agostino, M.; Boccadoro, M.; Larocca, A. Clinical Applications and Future Directions of Minimal Residual Disease Testing in Multiple Myeloma. Front. Oncol. 2020, 10, 1. [Google Scholar] [CrossRef]
- Soh, K.T.; Wallace, P.K. Evaluation of measurable residual disease in multiple myeloma by multiparametric flow cytometry: Current paradigm, guidelines, and future applications. Int. J. Lab. Hematol. 2021, 43 (Suppl. 1), 43–53. [Google Scholar] [CrossRef] [PubMed]
- Soh, K.T.; Came, N.; Otteson, G.E.; Jevremovic, D.; Shi, M.; Olteanu, H.; Natoni, A.; Lagoo, A.; Theakston, E.; Óskarsson, J.; et al. Evaluation of multiple myeloma measurable residual disease by high sensitivity flow cytometry: An international harmonized approach for data analysis. Cytometry B Clin. Cytom. 2022, 102, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Rawstron, A.C.; Orfao, A.; Beksac, M.; Bezdickova, L.; Brooimans, R.A.; Bumbea, H.; Dalva, K.; Fuhler, G.; Gratama, J.; Hose, D.; et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008, 93, 431–438. [Google Scholar] [CrossRef]
- Flanders, A.; Stetler-Stevenson, M.; Landgren, O. Minimal residual disease testing in multiple myeloma by flow cytometry: Major heterogeneity. Blood 2013, 122, 1088–1089. [Google Scholar] [CrossRef]
- Flores-Montero, J.; de Tute, R.; Paiva, B.; Perez, J.J.; Böttcher, S.; Wind, H.; Sanoja, L.; Puig, N.; Lecrevisse, Q.; Vidriales, M.B.; et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin. Cytom. 2016, 90, 61–72. [Google Scholar] [CrossRef]
- Paiva, B.; Puig, N.; Cedena, M.T.; Rosiñol, L.; Cordón, L.; Vidriales, M.B.; Burgos, L.; Flores-Montero, J.; Sanoja-Flores, L.; Lopez-Anglada, L.; et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 784–792. [Google Scholar] [CrossRef]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; van der Velden, V.H.J.; Pérez-Morán, J.J.; Vidriales, M.B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef]
- Terpos, E.; Kostopoulos, I.V.; Kastritis, E.; Ntanasis-Stathopoulos, I.; Migkou, M.; Rousakis, P.; Argyriou, A.T.; Kanellias, N.; Fotiou, D.; Eleutherakis-Papaiakovou, E.; et al. Impact of Minimal Residual Disease Detection by Next-Generation Flow Cytometry in Multiple Myeloma Patients with Sustained Complete Remission after Frontline Therapy. Hemasphere 2019, 3, e300. [Google Scholar] [CrossRef] [PubMed]
- Arroz, M.; Came, N.; Lin, P.; Chen, W.; Yuan, C.; Lagoo, A.; Monreal, M.; de Tute, R.; Vergilio, J.A.; Rawstron, A.C.; et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin. Cytom. 2016, 90, 31–39. [Google Scholar] [CrossRef]
- Ocqueteau, M.; Orfao, A.; Almeida, J.; Bladé, J.; González, M.; García-Sanz, R.; López-Berges, C.; Moro, M.J.; Hernández, J.; Escribano, L.; et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am. J. Pathol. 1998, 152, 1655–1665. [Google Scholar]
- Anderson, K.C.; Auclair, D.; Adam, S.J.; Agarwal, A.; Anderson, M.; Avet-Loiseau, H.; Bustoros, M.; Chapman, J.; Connors, D.E.; Dash, A.; et al. Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clin. Cancer Res. 2021, 27, 5195–5212. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kimlinger, T.; Morice, W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best. Pract. Res. Clin. Haematol. 2010, 23, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Hu, Y.; Wang, X.; Fu, S.; Liu, Z.; Zhang, J. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018, 7, 5920–5927. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Tsitsilonis, O.E.; Terpos, E. Minimal Residual Disease in Multiple Myeloma: Current Landscape and Future Applications With Immunotherapeutic Approaches. Front. Oncol. 2020, 10, 860. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Almeida, J.; Pérez-Andrés, M.; Mateo, G.; López, A.; Rasillo, A.; Vídriales, M.B.; López-Berges, M.C.; Miguel, J.F.; Orfao, A. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin. Cytom. 2010, 78, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Vidriales, M.B.; Mateo, G.; Pérez, J.J.; Montalbán, M.A.; Sureda, A.; Montejano, L.; Gutiérrez, N.C.; García de Coca, A.; de las Heras, N.; et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood 2009, 114, 4369–4372. [Google Scholar] [CrossRef]
- Paiva, B.; Vídriales, M.B.; Rosiñol, L.; Martínez-López, J.; Mateos, M.V.; Ocio, E.M.; Montalbán, M.; Cordón, L.; Gutiérrez, N.C.; Corchete, L.; et al. A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 2013, 27, 2056–2061. [Google Scholar] [CrossRef]
- Seegmiller, A.C.; Xu, Y.; McKenna, R.W.; Karandikar, N.J. Immunophenotypic differentiation between neoplastic plasma cells in mature B-cell lymphoma vs plasma cell myeloma. Am. J. Clin. Pathol. 2007, 127, 176–181. [Google Scholar] [CrossRef]
- Ding, H.; Xu, J.; Lin, Z.; Huang, J.; Wang, F.; Yang, Y.; Cui, Y.; Luo, H.; Gao, Y.; Zhai, X.; et al. Minimal residual disease in multiple myeloma: Current status. Biomarker Research 2021, 9, 75. [Google Scholar] [CrossRef]
- Goicoechea, I.; Puig, N.; Cedena, M.T.; Burgos, L.; Cordón, L.; Vidriales, M.B.; Flores-Montero, J.; Gutierrez, N.C.; Calasanz, M.J.; Ramos, M.M.; et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood 2021, 137, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Roshal, M.; Flores-Montero, J.A.; Gao, Q.; Koeber, M.; Wardrope, J.; Durie, B.G.M.; Dogan, A.; Orfao, A.; Landgren, O. MRD detection in multiple myeloma: Comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Adv. 2017, 1, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Bene, M.C.; Wuilleme, S.; Corre, J.; Attal, M.; Arnulf, B.; Garderet, L.; Macro, M.; Stoppa, A.-M.; Delforge, M.; et al. Concordance of Post-consolidation Minimal Residual Disease Rates by Multiparametric Flow Cytometry and Next-generation Sequencing in CASSIOPEIA. Clinical Lymphoma Myeloma and Leukemia 2019, 19, e3–e4. [Google Scholar] [CrossRef]
- Medina, A.; Puig, N.; Flores-Montero, J.; Jimenez, C.; Sarasquete, M.E.; Garcia-Alvarez, M.; Prieto-Conde, I.; Chillon, C.; Alcoceba, M.; Gutierrez, N.C.; et al. Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J. 2020, 10, 108. [Google Scholar] [CrossRef]
- Levin, A.; Hari, P.; Dhakal, B. Novel biomarkers in multiple myeloma. Transl. Res. 2018, 201, 49–59. [Google Scholar] [CrossRef]
- Landgren, O.; Devlin, S.; Boulad, M.; Mailankody, S. Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: A meta-analysis. Bone Marrow Transplant. 2016, 51, 1565–1568. [Google Scholar] [CrossRef] [PubMed]
- Lahuerta, J.J.; Paiva, B.; Vidriales, M.B.; Cordón, L.; Cedena, M.T.; Puig, N.; Martinez-Lopez, J.; Rosiñol, L.; Gutierrez, N.C.; Martín-Ramos, M.L.; et al. Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials. J. Clin. Oncol. 2017, 35, 2900–2910. [Google Scholar] [CrossRef]
- Charalampous, C.; Kourelis, T. Minimal Residual Disease Assessment in Multiple Myeloma Patients: Minimal Disease With Maximal Implications. Front. Oncol. 2021, 11, 801851. [Google Scholar] [CrossRef]
- Landgren, O.; Prior, T.J.; Masterson, T.; Heuck, C.; Bueno, O.F.; Dash, A.B.; Einsele, H.; Goldschmidt, H.; Knop, S.; Li, C.; et al. EVIDENCE meta-analysis: Evaluating minimal residual disease as an intermediate clinical end point for multiple myeloma. Blood 2024, 144, 359–367. [Google Scholar] [CrossRef]
- Costa, L.; Medvedova, E.; Chhabra, S.; Dholaria, B.; Dhakal, B.; Godby, K.; Silberman, R.; Bal, S.; D’souza, A.; Giri, S.; et al. S203: QUADRUPLET INDUCTION THERAPY, ASCT AND MRD-MODULATED CONSOLIDATION AND TREATMENT CESSATION IN NEWLY DIAGNOSED MULTIPLE MYELOMA: FINAL ANALYSIS OF THE MASTER TRIAL. HemaSphere 2023, 7, e1332195. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Child, J.A.; de Tute, R.M.; Davies, F.E.; Gregory, W.M.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Feyler, S.; et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: Impact on outcome in the Medical Research Council Myeloma IX Study. J. Clin. Oncol. 2013, 31, 2540–2547. [Google Scholar] [CrossRef]
- Arana, P.; Paiva, B.; Cedena, M.T.; Puig, N.; Cordon, L.; Vidriales, M.B.; Gutierrez, N.C.; Chiodi, F.; Burgos, L.; Anglada, L.L.; et al. Prognostic value of antigen expression in multiple myeloma: A PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia 2018, 32, 971–978. [Google Scholar] [CrossRef]
- Koumpis, E.; Tassi, I.; Malea, T.; Papathanasiou, K.; Papakonstantinou, I.; Serpanou, A.; Tsolas, E.; Kapsali, E.; Vassilakopoulos, T.P.; Papoudou-Bai, A.; et al. CD56 expression in multiple myeloma: Correlation with poor prognostic markers but no effect on outcome. Pathol. Res. Pract. 2021, 225, 153567. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wu, C.; Han, W.; Zhao, S.; Wu, Y.; Jin, Y.; Qu, X.; Li, J.; Zhang, R.; Chen, L. Clinical significance of CD200 expression in newly diagnosed multiple myeloma patients and dynamic changing during treatment. Leuk. Lymphoma 2021, 62, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Sahara, N.; Ohnishi, K.; Ono, T.; Sugimoto, Y.; Kobayashi, M.; Takeshita, K.; Shigeno, K.; Nakamura, S.; Naito, K.; Tamashima, S.; et al. Clinicopathological and prognostic characteristics of CD33-positive multiple myeloma. Eur. J. Haematol. 2006, 77, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Gross Even-Zohar, N.; Pick, M.; Hofstetter, L.; Shaulov, A.; Nachmias, B.; Lebel, E.; Gatt, M.E. CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J. Clin. Med. 2022, 11. [Google Scholar] [CrossRef]
- Paiva, B.; Corchete, L.A.; Vidriales, M.B.; Puig, N.; Maiso, P.; Rodriguez, I.; Alignani, D.; Burgos, L.; Sanchez, M.L.; Barcena, P.; et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: A new model to understand chemoresistance. Blood 2016, 127, 1896–1906. [Google Scholar] [CrossRef]
- Paíno, T.; Paiva, B.; Sayagués, J.M.; Mota, I.; Carvalheiro, T.; Corchete, L.A.; Aires-Mejía, I.; Pérez, J.J.; Sanchez, M.L.; Barcena, P.; et al. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 2015, 29, 1186–1194. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Garcés, J.J.; Paiva, B.; Puig, N.; García-Mateo, A.; García-Sánchez, O.; Corral-Mateos, A.; Burgos, L.; Blanco, E.; et al. Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018, 8, 117. [Google Scholar] [CrossRef]
- An, G.; Qin, X.; Acharya, C.; Xu, Y.; Deng, S.; Shi, L.; Zang, M.; Sui, W.; Yi, S.; Li, Z.; et al. Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Ann. Hematol. 2015, 94, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Granell, M.; Calvo, X.; Garcia-Guiñón, A.; Escoda, L.; Abella, E.; Martínez, C.M.; Teixidó, M.; Gimenez, M.T.; Senín, A.; Sanz, P.; et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: Implications for plasma cell leukemia definition. Haematologica 2017, 102, 1099–1104. [Google Scholar] [CrossRef]
- Yao, W.; Yang, H.; You, H.; Shang, J.; Zhai, Y.; Yan, Z.; Yan, S.; Shi, X.; Yao, Y.; Wang, J.; et al. The prognostic significance of circulating plasma cells in newly diagnosed multiple myeloma patients. Front. Oncol. 2023, 13, 1266868. [Google Scholar] [CrossRef]
- Sathya, P.; Kayal, S.; Srinivas, B.H.; Hamide, A.; Kar, R. Quantification of circulating clonal plasma cells by multiparametric flow cytometry as a prognostic marker in patients with newly diagnosed multiple myeloma. Int. J. Lab. Hematol. 2023, 45, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N.; Tesfaluul, N.; Gao, X.; Liu, S.; Yue, B. Prognostic value of circulating plasma cells in patients with multiple myeloma: A meta-analysis. PLoS ONE 2017, 12, e0181447. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulos, I.V.; Ntanasis-Stathopoulos, I.; Rousakis, P.; Eleutherakis-Papaiakovou, E.; Panteli, C.; Malandrakis, P.; Angelis, N.; Kanellias, N.; Orologas-Stavrou, N.; Papanota, A.; et al. Circulating Plasma Cells in Newly Diagnosed Multiple Myeloma: Prognostic and More. J. Clin. Oncol. 2023, 41, 708–710. [Google Scholar] [CrossRef]
- Garcés, J.J.; Cedena, M.T.; Puig, N.; Burgos, L.; Perez, J.J.; Cordon, L.; Flores-Montero, J.; Sanoja-Flores, L.; Calasanz, M.J.; Ortiol, A.; et al. Circulating Tumor Cells for the Staging of Patients With Newly Diagnosed Transplant-Eligible Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3151–3161. [Google Scholar] [CrossRef]
- Jelinek, T.; Bezdekova, R.; Zihala, D.; Sevcikova, T.; Anilkumar Sithara, A.; Pospisilova, L.; Sevcikova, S.; Polackova, P.; Stork, M.; Knechtova, Z.; et al. More Than 2% of Circulating Tumor Plasma Cells Defines Plasma Cell Leukemia-Like Multiple Myeloma. J. Clin. Oncol. 2023, 41, 1383–1392. [Google Scholar] [CrossRef]
- Hofste Op Bruinink, D.; Kuiper, R.; van Duin, M.; Cupedo, T.; van der Velden, V.H.J.; Hoogenboezem, R.; van der Holt, B.; Beverloo, H.B.; Valent, E.T.; Vermeulen, M.; et al. Identification of High-Risk Multiple Myeloma With a Plasma Cell Leukemia-Like Transcriptomic Profile. J. Clin. Oncol. 2022, 40, 3132–3150. [Google Scholar] [CrossRef]
- Luoma, S.; Sergeev, P.; Javarappa, K.K.; Öhman, T.J.; Varjosalo, M.; Säily, M.; Anttila, P.; Sankelo, M.; Partanen, A.; Nihtinen, A.; et al. Deep Immune Profiling of Multiple Myeloma at Diagnosis and under Lenalidomide Maintenance Therapy. Cancers 2023, 15, 2604. [Google Scholar] [CrossRef]
- Krzywdzińska, A.; Puła, B.; Szymczak, D.; Milanowska, A.; Szeremet, A.; Jamroziak, K. Immunophenotypic Characteristics of Bone Marrow Microenvironment Cellular Composition at the Biochemical Progression of Multiple Myeloma. J. Clin. Med. 2022, 11, 3722. [Google Scholar] [CrossRef]
- Pessoa de Magalhães, R.J.; Vidriales, M.B.; Paiva, B.; Fernandez-Gimenez, C.; García-Sanz, R.; Mateos, M.V.; Gutierrez, N.C.; Lecrevisse, Q.; Blanco, J.F.; Hernández, J.; et al. Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica 2013, 98, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Cedena, M.T.; Puig, N.; Arana, P.; Vidriales, M.B.; Cordon, L.; Flores-Montero, J.; Gutierrez, N.C.; Martín-Ramos, M.L.; Martinez-Lopez, J.; et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 2016, 127, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Derman, B.A.; Bal, S.; Sidana, S.; Chhabra, S.; Silbermann, R.; Ye, J.C.; Cook, G.; Cornell, R.F.; Holstein, S.A.; et al. International harmonization in performing and reporting minimal residual disease assessment in multiple myeloma trials. Leukemia 2021, 35, 18–30. [Google Scholar] [CrossRef]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Caers, J.; Garderet, L.; Kortüm, K.M.; O’Dwyer, M.E.; van de Donk, N.; Binder, M.; Dold, S.M.; Gay, F.; Corre, J.; Beguin, Y.; et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: What to use and when. Haematologica 2018, 103, 1772–1784. [Google Scholar] [CrossRef]
- Pawlyn, C.; Fowkes, L.; Otero, S.; Jones, J.R.; Boyd, K.D.; Davies, F.E.; Morgan, G.J.; Collins, D.J.; Sharma, B.; Riddell, A.; et al. Whole-body diffusion-weighted MRI: A new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 2016, 30, 1446–1448. [Google Scholar] [CrossRef]
MFC | NGF | NGS | |
---|---|---|---|
Applicability | Nearly 100% | Nearly 100% | Around 90% |
Availability | Wide | Wide | Limited |
Cost | Cost-effective | Cost-Effective | High |
Sensitivity | 10−4–10−5 | 10−6 | 10−6 |
Complexity | Rapid turnaround time | Rapid turnaround time | Labor intensive, requires intense bioinformatic infrastructure |
Standardization | Not standardized | Standardized by the EuroFlow Consortium | Standardized |
Sample processing | Fresh samples within 24 h | Fresh samples within 24 h | Stored samples can be assessed |
Need for baseline sample | No | No | Yes |
Clinical utility | Diagnosis, clonality, MRD (limited sensitivity) | MRD monitoring in trials and practice; regulatory use | MRD monitoring, high sensitivity; increasingly used in clinical trials |
Tube 1 (Surface Antigens) | Tube 2 (Surface and Cytoplasmic Antigens) |
---|---|
CD138-BV421 | CD138-BV421 |
CD38-FITC | CD38-FITC |
CD19-PEC7 | CD19-PEC7 |
CD45-PERCP | CD45-PERCP |
CD56-PE | CD56-PE |
CD27-BV510 | CD27-BV510 |
CD81-APCC750 | Lamda-APCC750 |
CD117-APC | Kappa-APC |
Marker | Normal Plasma Cells | Aberrant (Clonal) Plasma Cells | Notes |
---|---|---|---|
CD19 | Positive | Typically negative | Helps distinguish normal vs. clonal PCs |
CD45 | Positive (variable intensity) | Often negative or dim | Loss associated with clonality |
CD56 | Negative | Frequently positive | Aberrant expression in ~70% of MM cases |
CD200 | Usually negative | Frequently positive | Aberrant expression associated with poor prognosis |
CD117 | Variable | Variable (positive in ~30% of MM cases) | May have prognostic significance |
CD81 | Strongly positive | Reduced or absent | Loss often indicates clonality |
CD229 | Positive | Positive (generally higher expression) | Intensity difference aids distinction |
CD307 (SLAMF7) | Positive | Positive (generally higher expression) | Target of elotuzumab; higher in clonal PCs |
Study/Year | Method of Detection | CTPC Cut-Off | Patients (n) | Median Follow-Up | Key Outcomes (PFS/OS) |
---|---|---|---|---|---|
Sanoja-Flores et al., [60] | NGF | 0.058 CTPC/μL | 264 | 24 months | CTPC- showed prolonged PFS and OS |
Kostopoulos et al., [66] | NGF | 0.02% | 525 | 42 months | CTPCs > 0.02% showed higher risk of progression, independent of baseline risk (36 vs. 60 months) |
Garces et al., [67] | NGF | 0.01% | 374 | 5 years | Progressive deterioration in PFS with higher CTPCs levels, inferior PFS, OS |
Sathya et al., [64] | MFC | 0.197% | 66 | Post-induction | Baseline CTPCs < 0.197% results in deeper responses (≥VGPR) |
Jelinek et al., [68] | MFC | 2% | 590 | 49.1 months, 37.3 months | Patients with CTPCs > 2% showed similar outcomes to pPCL |
Trials | Method of MRD Assessment | MRD Threshold | Adaptive Strategy | Key Findings |
---|---|---|---|---|
MASTER [51] | NGF (EuroFlow) | 10−5 to 10−6 | Therapy cessation after sustained MRD negativity | 81% achieved MRD negativity; patients with sustained MRD-negative status (MRD-SURE) had excellent 3-year OS and PFS irrespective of cytogenetic risk |
PETHEMA/GEM2012MENOS65 [28] | NGF | 10−5 to 10−6 | Therapy intensification in MRD-positive patients | MRD negativity before maintenance reduced risk of progression by 82% and death by 88% |
CASSIOPEIA [44] | MFC and NGS | 10−5 | Post-consolidation MRD assessment | High concordance between MFC and NGS; MRD negativity strongly correlated with improved PFS |
EMN02/HO95 [30] | NGF | 10−5 | MRD assessment after consolidation and maintenance | MRD negativity associated with prolonged survival, independent of ISS stage and cytogenetics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardos, D.; Benetatos, L.; Apostolidou, E.; Koumpis, E.; Dova, L.; Kapsali, E.; Kotsianidis, I.; Hatzimichael, E. Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients. Diseases 2025, 13, 320. https://doi.org/10.3390/diseases13100320
Leonardos D, Benetatos L, Apostolidou E, Koumpis E, Dova L, Kapsali E, Kotsianidis I, Hatzimichael E. Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients. Diseases. 2025; 13(10):320. https://doi.org/10.3390/diseases13100320
Chicago/Turabian StyleLeonardos, Dimitrios, Leonidas Benetatos, Elisavet Apostolidou, Epameinondas Koumpis, Lefkothea Dova, Eleni Kapsali, Ioannis Kotsianidis, and Eleftheria Hatzimichael. 2025. "Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients" Diseases 13, no. 10: 320. https://doi.org/10.3390/diseases13100320
APA StyleLeonardos, D., Benetatos, L., Apostolidou, E., Koumpis, E., Dova, L., Kapsali, E., Kotsianidis, I., & Hatzimichael, E. (2025). Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients. Diseases, 13(10), 320. https://doi.org/10.3390/diseases13100320