Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Populations
2.3. Equations for Aβ Dynamics
2.3.1. Intrathecal Pseudodelivery Equation
- A(t): soluble Aβ concentration in the CSF at time t (pg/mL).
- A0 = 100 pg/mL: initial concentration of soluble Aβ at baseline.
- P = 180 pg/mL/month: constant production rate of soluble Aβ.
- C = 0.05 month−1: natural clearance rate of soluble Aβ.
- CIT = 0.90 month−1: therapy-induced clearance rate for intrathecal pseudodelivery [28].
2.3.2. Intravenous (IV) mAb Equation
- A(t): soluble Aβ concentration in the CSF at time t (pg/mL).
- A(t + n): soluble Aβ concentration immediately after the n-th dose (pg/mL).
- P = 180 pg/mL/month: constant production rate of soluble Aβ.
- C = 0.05 month−1: natural clearance rate of soluble Aβ.
2.4. Simulation Metrics
- Time to PET negativity (Aβ burden below 24 centiloids).
- Magnitude of CSF-Aβ reduction over time.
- Risk of amyloid reaccumulation upon therapy discontinuation.
3. Results
3.1. Amyloid Clearance Dynamics
- Time to PET Negativity:
- ○
- Intrathecal pseudodelivery of mAb achieved PET negativity at approximately 132 months.
- ○
- IV mAb reached PET negativity at 150 months.
- CSF-Aβ Reduction:
- ○
- Intrathecal pseudodelivery of mAb led to an accelerated reduction in soluble Aβ, achieving a 90% decrease in CSF-Aβ levels within 12 months.
- ○
- IV mAb showed a slower decline, with a 60% reduction over the same period.
3.2. Long-Term Effects
- Amyloid Reaccumulation:
- ○
- Upon discontinuation, amyloid reaccumulated within 12–18 months in both cohorts, but intrathecal pseudodelivery delayed PET positivity by an additional 6 months compared to IV therapy.
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menéndez-González, M. Intrathecal Immunoselective Nanopheresis for Alzheimer’s Disease: What and How? Why and When? Int. J. Mol. Sci. 2024, 25, 10632. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Blömeke, L.; Rehn, F.; Kraemer-Schulien, V.; Kutzsche, J.; Pils, M.; Bujnicki, T.; Lewczuk, P.; Kornhuber, J.; Freiesleben, S.D.; Schneider, L.S.; et al. Aβ oligomers peak in early stages of Alzheimer’s disease preceding tau pathology. Alzheimers Dement. 2024, 16, e12589, Erratum in: Alzheimers Dement. 2024, 16, e12599. https://doi.org/10.1002/dad2.12599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blömeke, L.; Rehn, F.; Pils, M.; Kraemer-Schulien, V.; Cousin, A.; Kutzsche, J.; Bujnicki, T.; Freiesleben, S.D.; Schneider, L.-S.; Preis, L.; et al. Blood-based quantification of Aβ oligomers indicates impaired clearance from brain in ApoE ε4 positive subjects. Commun. Med. 2024, 4, 262. [Google Scholar] [CrossRef]
- Tolar, M.; Hey, J.; Power, A.; Abushakra, S. Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int. J. Mol. Sci. 2020, 22, 6355. [Google Scholar] [CrossRef] [PubMed]
- Bartley, S.C.; Proctor, M.T.; Xia, H.; Ho, E.; Kang, D.S.; Schuster, K.; Bicca, M.A.; Seckler, H.S.; Viola, K.L.; Patrie, S.M.; et al. An Essential Role for Alzheimer’s-Linked Amyloid Beta Oligomers in Neurodevelopment: Transient Expression of Multiple Proteoforms During Retina Histogenesis. Int. J. Mol. Sci. 2022, 23, 2232. [Google Scholar] [CrossRef]
- Sala, A.; Nordberg, A.; Rodriguez-Vieitez, E.; Alzheimer’s Disease Neuroimaging Initiative. Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity. Mol. Psychiatry 2021, 26, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, Q.; Xie, S.; Chen, Z.; Fu, L.; Peng, Q.; Liang, Y.; Guo, H.; Guo, T.; Alzheimer’s Disease Neuroimaging Initiative. β-Amyloid discordance of cerebrospinal fluid and positron emission tomography imaging shows distinct spatial tau patterns. Brain Commun. 2022, 4, fcac084. [Google Scholar] [CrossRef]
- Reimand, J.; de Wilde, A.; Teunissen, C.E.; Zwan, M.; Windhorst, A.D.; Boellaard, R.; Barkhof, F.; van der Flier, W.M.; Scheltens, P.; van Berckel, B.N.M.; et al. PET and CSF amyloid-β status are differently predicted by patient features: Information from discordant cases. Alzheimers Res. Ther. 2019, 11, 100. [Google Scholar] [CrossRef]
- Mastenbroek, S.E.; Sala, A.; García, D.V.; Shekari, M.; Salvadó, G.; Lorenzini, L.; Pieperhoff, L.; Wink, A.M.; Alves, I.L.; Wolz, R.; et al. Continuous β-Amyloid CSF/PET Imbalance Model to Capture Alzheimer Disease Heterogeneity. Neurology 2024, 103, e209419. [Google Scholar] [CrossRef]
- Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain 2019, 142, 2113–2126. [Google Scholar] [CrossRef]
- DiFrancesco, J.C.; Longoni, M.; Piazza, F. Anti-Aβ Autoantibodies in Amyloid-Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy. Front. Neurol. 2015, 6, 207. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.M.; Leite, M.; Lopes, L.M.; Lima, P.G.; Barros, M.L.S.; Pinheiro, S.R.; Andrade, I.; Viana, P.; Morbach, V.; Marinheiro, G.; et al. Gantenerumab for early Alzheimer’s disease: A systematic review and meta-analysis. Expert Rev. Neurother. 2024, 24, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Collij, L.E.; Bollack, A.; La Joie, R.; Shekari, M.; Bullich, S.; Roé-Vellvé, N.; Koglin, N.; Jovalekic, A.; Garciá, D.V.; Drzezga, A.; et al. Centiloid recommendations for clinical context-of-use from the AMYPAD consortium. Alzheimer’s Dement. 2024, 20, 9037–9048. [Google Scholar] [CrossRef]
- Schindler, S.E.; Johnson, S.C.; Fox, N.C.; Bateman, R.J. PET amyloid imaging for early detection and monitoring of Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16. [Google Scholar]
- Avgerinos, K.I.; Ferrucci, L.; Kapogiannis, D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res. Rev. 2021, 68, 101339. [Google Scholar] [CrossRef]
- Dantas, J.M.; Mutarelli, A.; Navalha, D.D.P.; Dagostin, C.S.; Romeiro, P.H.C.L.; Felix, N.; Nogueira, A.; Batista, S.; Teixeira, L. Efficacy of therapy with anti-amyloid-ß monoclonal antibodies in early Alzheimer’s disease: A systematic review and meta-analysis. Neurol. Sci. 2024, 45, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Villain, N.; Ayton, S.F.; Ackley, S.F.; Planche, V.; Howard, R.; Thambisetty, M. Key questions for the evaluation of anti-amyloid immunotherapies for Alzheimer’s disease. Brain Commun. 2023, 5, fcad175. [Google Scholar] [CrossRef]
- Siemers, E.; Hitchcock, J.; Sundell, K.; Dean, R.; Jerecic, J.; Cline, E.; Iverson, K.; Moore, J.; Edgar, C.; Manber, R.; et al. ACU193, a Monoclonal Antibody that Selectively Binds Soluble Aβ Oligomers: Development Rationale, Phase 1 Trial Design, and Clinical Development Plan. J. Prev. Alzheimers Dis. 2023, 10, 19–24. [Google Scholar] [CrossRef]
- Krafft, G.; Hefti, F.; Goure, W.; Jerecic, J.; Iverson, K.; Walicke, P. ACU-193: A Candidate Therapeutic Antibody that Selectively Targets Soluble Beta-Amyloid Oligomers. Alzheimers Dement. 2013, 9, P122. [Google Scholar] [CrossRef]
- Ma, K.; Martinez-Losa, M.M.; Xue, Y.Q.; Khan, A.; Ho, K.; Dodart, J.C.; Jerecic, J.; Cobos, I.; Palop, J.J. Soluble Aβ-Oligomer–Selective Antibody ACU-3B3 Reduces Amyloid Pathology and Improves Multiple Behavioral Domains in a Mouse Model of Alzheimer’s Disease. Alzheimers Dement. 2019, 15, P703. [Google Scholar] [CrossRef]
- Rozema, N.B.; Procissi, D.; Bertolino, N.; Viola, K.L.; Nandwana, V.; Abdul, N.; Pribus, S.; Dravid, V.; Klein, W.L.; Disterhoft, J.F.; et al. Aβ Oligomer Induced Cognitive Impairment and Evaluation of ACU193-MNS-Based MRI in Rabbit. Alzheimers Dement. 2020, 6, e12087. [Google Scholar] [CrossRef] [PubMed]
- Krafft, G.A.; Jerecic, J.; Siemers, E.; Cline, E.N. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front. Neurosci. 2022, 16, 848215. [Google Scholar] [CrossRef]
- Grimm, H.P.; Schumacher, V.; Schäfer, M.; Imhof-Jung, S.; Freskgård, P.-O.; Brady, K.; Hofmann, C.; Rüger, P.; Schlothauer, T.; Göpfert, U.; et al. Delivery of the Brainshuttle™ amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. mAbs 2023, 15, 2261509. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-González, M.; Padilla-Zambrano, H.S.; Alvarez, G.; Capetillo-Zarate, E. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 326515. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.G.; Menéndez-González, M.; Popescu, B.O. The “Cerebrospinal Fluid Sink Therapeutic Strategy” in Alzheimer’s Disease—From Theory to Design of Applied Systems. Biomedicines. 2022, 10, 1509. [Google Scholar] [CrossRef]
- Gong, Y.; Chang, L.; Viola, K.L.; Lacor, P.N.; Lambert, M.P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Alzheimer’s Disease-Affected Brain: Presence of Oligomeric Aβ Ligands (ADDLs) Suggests a Molecular Basis for Reversible Memory Loss. Proc. Natl. Acad. Sci. USA 2003, 100, 10417–10422. [Google Scholar] [CrossRef]
- Hong, W.; Wang, Z.; Liu, W.; O’Malley, T.T.; Jin, M.; Willem, M.; Haass, C.; Frosch, M.P.; Walsh, D.M. Diffusible, Highly Bioactive Oligomers Represent a Critical Minority of Soluble A β in Alzheimer’s Disease Brain. Acta Neuropathol. 2018, 136, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Coto-Vilcapoma, M.A.; Castilla-Silgado, J.; Fernández-García, B.; Pinto-Hernández, P.; Cipriani, R.; Capetillo-Zarate, E.; Menéndez-González, M.; Álvarez-Vega, M.; Tomás-Zapico, C. New, fully implantable device for selective clearance of CSF-target molecules: Proof of concept in a murine model of Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 9256. [Google Scholar] [CrossRef]
- McDade, E.; Cummings, J.L.; Dhadda, S.; Swanson, C.J.; Reyderman, L.; Kanekiyo, M.; Koyama, A.; Irizarry, M.; Kramer, L.D.; Bateman, R.J. Lecanemab in patients with early Alzheimer’s disease: Detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimer’s Res. Ther. 2022, 14, 191. [Google Scholar] [CrossRef]
- Velasco, M.; Guijarro, C.; Barba, R.; García-Casasola, G.; Losa, J.; Zapatero, A. Opinión de los familiares sobre el uso de procedimientos invasivos en ancianos con distintos grados de demencia o incapacidad. Rev. Española Geriatría Gerontol. 2005, 40, 138–144. [Google Scholar] [CrossRef]
- Loeffler, D.A. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J. Alzheimers Dis. 2024, 100, 379–411. [Google Scholar] [CrossRef] [PubMed]
Delivery Method | Target | Efficacy | Safety | Invasiveness | Key Limitations |
---|---|---|---|---|---|
IV mAB | Soluble and insoluble Aβ | Gradual clearance; slower PET negativity | High ARIA risk (up to 30%); systemic side effects | Minimally invasive (IV infusions) | Limited BBB penetration; ARIA risk |
Intrathecal pseudodelivery of mAB | Soluble Aβ | Rapid clearance; faster PET negativity | No ARIA risk; no systemic side effects | Moderately invasive (subcutaneous reservoir) | Does not target insoluble plaques; stability challenges |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menendez-Gonzalez, M. Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases 2025, 13, 17. https://doi.org/10.3390/diseases13010017
Menendez-Gonzalez M. Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases. 2025; 13(1):17. https://doi.org/10.3390/diseases13010017
Chicago/Turabian StyleMenendez-Gonzalez, Manuel. 2025. "Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration" Diseases 13, no. 1: 17. https://doi.org/10.3390/diseases13010017
APA StyleMenendez-Gonzalez, M. (2025). Targeting Soluble Amyloid Oligomers in Alzheimer’s Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases, 13(1), 17. https://doi.org/10.3390/diseases13010017