The Use of Kidney Biomarkers, Nephrin and KIM-1, for the Detection of Early Glomerular and Tubular Damage in Patients with Acromegaly: A Case–Control Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dineen, R.; Stewart, P.M.; Sherlock, M. Acromegaly. QJM 2017, 110, 411–420. [Google Scholar] [PubMed]
- Haffner, D.; Grund, A.; Leifheit-Nestler, M. Renal effects of growth hormone in health and in kidney disease. Pediatr. Nephrol. 2021, 36, 2511–2530. [Google Scholar] [CrossRef] [PubMed]
- Kamenický, P.; Mazziotti, G.; Lombès, M.; Giustina, A.; Chanson, P. Growth hormone, insulin-like growth factor-1, and the kidney: Pathophysiological and clinical implications. Endocr. Rev. 2014, 35, 234–281. [Google Scholar] [CrossRef] [PubMed]
- Flyvbjerg, A.; Bennett, W.F.; Rasch, R.; van Neck, J.W.; Groffen, C.A.; Kopchick, J.J.; Scarlett, J.A. Compensatory renal growth in uninephrectomized adult mice is growth hormone dependent. Kidney Int. 1999, 56, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Melsom, T.; Stefansson, V.; Schei, J.; Solbu, M.; Jenssen, T.; Wilsgaard, T.; Eriksen, B.O. Association of increasing GFR with change in albuminuria in the general population. Clin. J. Am. Soc. Nephrol. 2016, 11, 2186–2194. [Google Scholar] [CrossRef]
- Pasupulati, A.K.; Menon, R.K. Growth hormone and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 10–15. [Google Scholar] [CrossRef]
- Levi, M.; Gratton, E.; Forster, I.C.; Hernando, N.; Wagner, C.A.; Biber, J.; Sorribas, V.; Murer, H. Mechanisms of phosphate transport. Nat. Rev. Nephrol. 2019, 15, 482–500. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M. Calcium absorption across epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef]
- Auriemma, R.S.; Galdiero, M.; De Martino, M.C.; De Leo, M.; Grasso, L.F.S.; Vitale, P.; Cozzolino, A.; Lombardi, G.; Colao, A.; Pivonello, R. The kidney in acromegaly: Renal structure and function in patients with acromegaly during active disease and 1 year after disease remission. Eur. J. Endocrinol. 2010, 162, 1035–1042. [Google Scholar] [CrossRef]
- Kamenicky, P.; Viengchareun, S.; Blanchard, A.; Meduri, G.; Zizzari, P.; Imbert-Teboul, M.; Doucet, A.; Chanson, P.; Lombès, M. Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly. Endocrinology 2008, 149, 3294–3305. [Google Scholar] [CrossRef]
- Giustina, A.; Casanueva, F.F.; Cavagnini, F.; Chanson, P.; Clemmons, D.; Frohman, L.A.; Gaillard, R.; Ho, K.; Jaquet, P.; Kleinberg, D.L.; et al. Pituitary Society and the European Neuroendocrine Association. Diagnosis and treatment of acromegaly complications. J. Endocrinol. Investig. 2003, 26, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Raja, P.; Maxwell, A.P.; Brazil, D.P. The potential of albuminuria as a biomarker of diabetic complications. Cardiovasc. Drugs Ther. 2021, 35, 455–466. [Google Scholar] [CrossRef]
- Lim, A.K. Diabetic nephropathy—Complications and treatment. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, E.K. The epidemiology of diabetic kidney disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Mizdrak, M.; Kumrić, M.; Kurir, T.T.; Božić, J. Emerging biomarkers for early detection of chronic kidney disease. J. Pers. Med. 2022, 12, 548. [Google Scholar] [CrossRef]
- Petrica, L.; Vlad, A.; Gluhovschi, G.; Gadalean, F.; Dumitrascu, V.; Gluhovschi, C.; Velciov, S.; Bob, F.; Vlad, D.; Popescu, R.; et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: A cross-sectional study. PLoS ONE 2014, 9, e112538. [Google Scholar]
- Protocol Therapeutic H005E—Acromegalie și Gigantism. Available online: https://www.formaremedicala.ro/protocol-terapeutic-acromegalie-si-gigantism-h005e/ (accessed on 28 February 2024).
- KDIGO 2024. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- eGFR Using CKD-EPI (2021 Update) Calculator. Available online: https://reference.medscape.com/calculator/251/egfr-using-ckd-epi-2021-update (accessed on 28 February 2024).
- Jim, B.; Ghanta, M.; Qipo, A.; Fan, Y.; Chuang, P.Y.; Cohen, H.W.; Abadi, M.; Thomas, D.B.; He, J.C. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: A cross-sectional study. PLoS ONE 2012, 7, e36041. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Farmer, T.; Kapke, G.F. Assay validation for KIM-1: Human urinary renal dysfunction biomarker. Int. J. Biol. Sci. 2009, 5, 128–134. [Google Scholar] [CrossRef]
- Avraham, S.; Korin, B.; Chung, J.J.; Oxburgh, L.; Shaw, A.S. The mesangial cell—The glomerular stromal cell. Nat. Rev. Nephrol. 2021, 17, 855–864. [Google Scholar] [CrossRef]
- Feld, S.; Hirschberg, R. Growth hormone, the insulin-like growth factor system, and the kidney. Endocr. Rev. 1996, 17, 423–480. [Google Scholar] [PubMed]
- Ishigaki, S.; Oe, Y.; Omata, K.; Ono, Y.; Tezuka, Y.; Morimoto, R.; Watanabe, S.; Nishioka, H.; Satoh, F.; Yoshida, M.; et al. Marked reduction of proteinuria after removal of a growth hormone-producing pituitary adenoma in a patient with focal segmental glomerulosclerosis: A case report and literature review. CEN Case Rep. 2023, 12, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cui, Z.; Lv, J.C.; Duan, H.Z.; Wang, S.X.; Zhang, J.Q.; Zhou, F.D.; Guo, X.H.; Zhao, M.H. Delayed diagnosis of acromegaly in a patient with focal segmental Glomerulosclerosis: A rare case report and literature review. BMC Nephrol. 2019, 20, 435. [Google Scholar] [CrossRef] [PubMed]
- Takai, M.; Izumino, K.; Oda, Y.; Terada, Y.; Inoue, H.; Takata, M. Focal segmental glomerulosclerosis associated with acromegaly. Clin. Nephrol. 2001, 56, 75–77. [Google Scholar] [PubMed]
- Baldelli, R.; De Marinis, L.; Bianchi, A.; Pivonello, R.; Gasco, V.; Auriemma, R.; Pasimeni, G.; Cimino, V.; Appetecchia, M.; Maccario, M.; et al. Microalbuminuria in insulin sensitivity in Patients with Growth Hormone-Secreting Pituitary Tumor. J. Clin. Endocrinol. Metab. 2008, 93, 710–714. [Google Scholar] [CrossRef]
- Sindelka, G.; Skrha, J.; Hilgertová, J.; Justová, V. Early diagnosis of impaired glomerular and renal tubule function in patients with acromegaly. Cas. Lek. Ceskych 1996, 135, 657–659. [Google Scholar]
- Moustaki, M.; Paschou, S.A.; Xekouki, P.; Kotsa, K.; Peppa, M.; Psaltopoulou, T.; Kalantaridou, S.; Vryonidou, A. Secondary diabetes mellitus in acromegaly. Endocrine 2023, 81, 1–15. [Google Scholar] [CrossRef]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef]
- Alexopoulou, O.; Bex, M.; Kamenicky, P.; Mvoula, A.B.; Chanson, P.; Maiter, D. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: A study in 148 patients. Pituitary 2014, 17, 81–89. [Google Scholar] [CrossRef]
- Ferraù, F.; Albani, A.; Ciresi, A.; Giordano, C.; Cannavò, S. Diabetes secondary to acromegaly: Physiopathology, clinical features and effects of treatment. Front Endocrinol. 2018, 9, 358. [Google Scholar] [CrossRef]
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis. 2018, 25, 121–132. [Google Scholar] [CrossRef]
- Zhang, W.R.; Parikh, C.R. Biomarkers of acute and chronic kidney disease. Annu. Rev. Physiol. 2019, 81, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Hernandez, A.; Martin-Lorenzo, M.; Martínez, P.J.; Gómez-Serrano, M.; Lopez, J.A.; Cannata, P.; Esteban, V.; Heredero, A.; Aldamiz-Echevarria, G.; Vázquez, J.; et al. Early renal and vascular damage within the normoalbuminuria condition. J. Hypertens. 2021, 39, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Blecker, S.; Matsushita, K.; Köttgen, A.; Loehr, L.R.; Bertoni, A.G.; Boulware, L.E.; Coresh, J. High-normal albuminuria and risk of heart failure in the community. Am. J. Kidney Dis. 2011, 58, 47–55. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Wu, B.T.; Yang, Y.W.; Huang, Z.H.; Feng, J.F. Re-understanding and focusing on normoalbuminuric diabetic kidney disease. Front. Endocrinol. 2022, 13, 1077929. [Google Scholar] [CrossRef]
- Hong, S.; Kim, K.S.; Han, K.; Park, C.Y. A cohort study found a high risk of end-stage kidney disease associated with acromegaly. Kidney Int. 2023, 104, 820–827. [Google Scholar] [CrossRef]
- Wang, P.; Li, M.; Liu, Q.; Chen, B.; Ji, Z. Detection of urinary podocytes and nephrin as markers for children with glomerular diseases. Exp. Biol. Med. 2015, 240, 169–174. [Google Scholar] [CrossRef]
- Gohda, T.; Kamei, N.; Koshida, T.; Kubota, M.; Tanaka, K.; Yamashita, Y.; Adachi, E.; Ichikawa, S.; Murakoshi, M.; Ueda, S.; et al. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic kidney disease. J. Diabetes Investig. 2020, 11, 435–440. [Google Scholar] [CrossRef]
- Kostovska, I.; Tosheska-Trajkovska, K.; Topuzovska, S.; Cekovska, S.; Spasovski, G.; Kostovski, O.; Labudovic, D. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria. J. Med. Biochem. 2020, 39, 83–90. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Smith, R.; Lumbers, E.R.; Rudd, D. Nephrin—A biomarker of early glomerular injury. Biomark. Res. 2014, 2, 21. [Google Scholar] [CrossRef]
- Hoogenberg, K.; Sluiter, W.J.; Dullaart, R.P. Effect of growth hormone and insulin-like growth factor I on urinary albumin excretion: Studies in acromegaly and growth hormone deficiency. Acta Endocrinol. 1993, 129, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Xia, M.; Han, W.Q.; Li, X.X.; Zhang, C.; Boini, K.M.; Liu, X.C.; Li, P.L. Reversal by growth hormone of homocysteine-induced epithelial-to-mesenchymal transition through membrane raft-redox signaling in podocytes. Cell Physiol. Biochem. 2011, 27, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Vasylyeva, T.L.; Chen, X.; Ferry, R.J., Jr. Insulin-like growth factor binding protein-3 mediates cytokine-induced mesangial cell apoptosis. Growth Horm. IGF Res. 2005, 15, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.R.; Pushpanathan, M.J.; Ransom, R.F.; Holzman, L.B.; Brosius, F.C., III; Diakonova, M.; Mathieson, P.; Saleem, M.A.; List, E.O.; Kopchick, J.J.; et al. Identification of the glomerular podocyte as a target for growth hormone action. Endocrinology 2007, 148, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal 2016, 25, 657–684. [Google Scholar] [CrossRef]
- Ichimura, T.; Bonventre, J.V.; Bailly, V.; Wei, H.; Hession, C.A.; Cate, R.L.; Sanicola, M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 1998, 273, 4135–4142. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, C.; Olufade, R.; Liu, D.; Emmett, N. Kidney injury molecule-1 enhances endocytosis of albumin in renal proximal tubular cells. J. Cell Physiol. 2016, 231, 896–907. [Google Scholar] [CrossRef]
- Karmakova, T.; Sergeeva, N.S.; Kanukoev, K.Y.; Alekseev, B.Y.; Kaprin, A.D. Kidney injury molecule 1 (KIM-1): A multifunctional glycoprotein and biological marker. Sovrem. Tekhnologii Med. 2021, 13, 64–78. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Reinhard, H.; Zdunek, D.; Hess, G.; Gutiérrez, O.M.; Wolf, M.; Parving, H.H.; Jacobsen, P.K.; Rossing, P. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res. Clin. Pract. 2012, 97, 71–76. [Google Scholar] [CrossRef]
- Bondanelli, M.; Ambrosio, M.R.; degli Uberti, E.C. Pathogenesis and prevalence of hypertension in acromegaly. Pituitary 2001, 4, 239–249. [Google Scholar] [CrossRef]
- Khamsai, S.; Sanlung, T.; Limpawattana, P.; Chindaprasirt, J.; Boonsawat, W.; Silaruks, S.; Sawanyawisuth, K. Risk factors of left ventricular hypertrophy in obstructive sleep apnea. Biomed. Rep. 2023, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Bidani, A.K.; Griffin, K.A. Pathophysiology of hypertensive renal damage. Hypertension 2004, 44, 595–601. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, Y.; Zhang, W.; Xing, Y.; Guo, Y.; Wang, F.; Jia, J.; Yan, T.; Liu, Y.; Lin, S. Effects of ACE inhibitors and angiotensin receptor blockers in normotensive patients with diabetic kidney disease. Horm. Metab. Res. 2020, 52, 289–297. [Google Scholar] [CrossRef]
- Messchendorp, A.L.; Casteleijn, N.F.; Meijer, E.; Gansevoort, R.T. Somatostatin in renal physiology and autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 2020, 35, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Study Group | Control Group | p |
---|---|---|---|
Number of patients | 23 | 21 | - |
Men/women | 9/14 | 7/14 | 0.760 |
Age (years) | 50.6 ± 12.4 | 47 ± 0.5 | 0.307 |
BMI (kg/m2) | 32.0 ± 7.0 | 28.4 ± 5.7 | 0.069 |
Serum creatinine (mg/dL) | 0.9 ± 0.2 | 0.7 ± 0.1 | 0.012 |
eGFR (mL/min/1.73 m2) | 90.0 ± 22.2 | 105.5 ± 9.6 | 0.005 |
Urinary albumin (mg/L) | 16.6 ± 14.0 | 10.4 ± 5.2 | 0.028 |
UACR (mg/g) | 14.8 ± 11.8 | 7.5 ± 3.1 | 0.016 |
Nephrin (ng/mL) | 13.0 ± 1.8 | 13.0 ± 1.1 | 0.769 |
Urinary nephrin/creat (mg/g) | 0.012 ± 0.006 | 0.011 ± 0.007 | 0.449 |
KIM-1 (pg/mL) | 370.6 ± 233.9 | 229.1 ± 265.6 | 0.082 |
Urinary KIM-1/creat (ng/g) | 323.3 ± 340.7 | 265.6 ± 318.8 | 0.566 |
OR | 95% CI | p | |
---|---|---|---|
UACR-A2 | 0.200 | 0.009–4.419 | 0.489 |
Urinary KIM-1/creat (ng/g) | 0.885 | 0.225–3.483 | 1.000 |
Urinary nephrin/creat (mg/g) | 0.348 | 0.013–9.047 | 1.000 |
Parameter | r Value | p |
---|---|---|
Age (years) | −0.383 | 0.070 |
Estimated diagnostic delay (years) | 0.039 | 0.857 |
IGF-1 at diagnosis (ng/mL) | −0.028 | 0.896 |
GH at diagnosis (ng/mL) | 0.095 | 0.663 |
IGF-1 (ng/mL) | 0.359 | 0.091 |
n GH (ng/mL) | 0.154 | 0.482 |
IGF-1 ULN | 0.343 | 0.108 |
Disease duration (years) | −0.014 | 0.948 |
Serum calcium (mg/dL) | −0.115 | 0.600 |
Urinary calcium (mg/24 h) | 0.134 | 0.550 |
25(OH)vitamin D (ng/mL) | 0.141 | 0.529 |
Systolic blood pressure (mmHg) | 0.049 | 0.824 |
Diastolic blood pressure (mmHg) | 0.021 | 0.922 |
HbA1c (%) | −0.141 | 0.518 |
UACR (mg/g) | −0.080 | 0.714 |
eGFR (mL/min/1.73 m2) | 0.211 | 0.333 |
Parameter | r Value | p |
---|---|---|
Age (years) | −0.325 | 0.129 |
Estimated diagnostic delay (years) | 0.043 | 0.842 |
IGF-1 at diagnosis (ng/mL) | −0.060 | 0.784 |
GH at diagnosis (ng/mL) | 0.283 | 0.187 |
IGF-1 (ng/mL) | 0.284 | 0.188 |
n GH (ng/mL) | 0.221 | 0.309 |
IGF-1 ULN | 0.300 | 0.164 |
Disease duration (years) | −0.253 | 0.242 |
Serum calcium (mg/dL) | 0.171 | 0.434 |
Urinary calcium (mg/24 h) | 0.049 | 0.826 |
25(OH)vitamin D (ng/mL) | 0.354 | 0.106 |
Systolic blood pressure (mmHg) | 0.208 | 0.339 |
Diastolic blood pressure (mmHg) | 0.188 | 0.390 |
HbA1c (%) | 0.180 | 0.411 |
UACR (mg/g) | −0.304 | 0.158 |
eGFR (mL/min/1.73 m2) | 0.278 | 0.198 |
Parameter | Disease Control | Number of Patients | Mean/SD | p |
---|---|---|---|---|
KIM-1, (pg/mL) | Uncontrolled | 6 | 453.9 ± 154.2 | 0.592 |
Controlled | 12 | 330.0 ± 239.0 | ||
Partial control | 5 | 368.2 ± 314.2 | ||
Urinary KIM-1/creat (ng/g) | Uncontrolled | 6 | 316.8 ± 102.5 | 0.801 |
Controlled | 12 | 340.8 ± 290.7 | ||
Partial control | 5 | 442.8 ± 554.6 | ||
Nephrin, (ng/mL) | Uncontrolled | 6 | 13.3 ± 0.7 | 0.223 |
Controlled | 12 | 12.4 ± 2.2 | ||
Partial control | 5 | 14.0 ± 0.7 | ||
Urinary nephrin/creat (mg/g) | Uncontrolled | 6 | 0.009 ± 0.001 | 0.346 |
Controlled | 12 | 0.013 ± 0.006 | ||
Partial control | 5 | 0.015 ± 0.009 | ||
Serum creatinine, (mg/dL) | Uncontrolled | 6 | 0.7 ± 0.2 | 0.247 |
Controlled | 12 | 0.9 ± 0.2 | ||
Partial control | 5 | 0.8 ± 0.8 | ||
eGFR (mL/min/1.73 m2) | Uncontrolled | 6 | 91.2 ± 15.8 | 0.701 |
Controlled | 12 | 79.9 ± 22.2 | ||
Partial control | 5 | 105.8 ± 18.9 | ||
Urinary albumin, (mg/L) | Uncontrolled | 6 | 26.2 ± 24.8 | 0.204 |
Controlled | 12 | 12.8 ± 4.7 | ||
Partial control | 5 | 14.4 ± 9.0 | ||
Urinary creatinine, (mg/dL) | Uncontrolled | 6 | 144.6 ± 29.3 | 0.498 |
Controlled | 12 | 114.3 ± 56.0 | ||
Partial control | 5 | 182.0 ± 219.1 | ||
UACR, (mg/g) | Uncontrolled | 6 | 19.7 ± 20.3 | 0.868 |
Controlled | 12 | 13.5 ± 7.3 | ||
Partial control | 5 | 12.0 ± 7.6 | ||
Urinary calcium, (mg/24 h) | Uncontrolled | 6 | 128.3 ± 80.1 | 0.733 |
Controlled | 12 | 139.7 ± 100.4 | ||
Partial control | 5 | 172.4 ± 99.2 | ||
Urinary phosphorus, (g/24 h) | Uncontrolled | 6 | 0.6 ± 0.1 | 0.743 |
Controlled | 12 | 0.7 ± 0.3 | ||
Partial control | 5 | 0.7 ± 0.2 | ||
Urinary sodium, (mmol/24 h) | Uncontrolled | 6 | 110.8 ± 53.3 | 0.41 |
Controlled | 12 | 107.1 ± 51.0 | ||
Partial control | 5 | 142.0 ± 35.8 | ||
Urinary proteins, (g/24 h) | Uncontrolled | 6 | 0.1 ± 0.2 | 0.619 |
Controlled | 12 | 0.1 ± 0.1 | ||
Partial control | 5 | 0.1 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plotuna, I.S.; Balas, M.; Golu, I.; Amzar, D.; Popescu, R.; Petrica, L.; Vlad, A.; Luches, D.; Vlad, D.C.; Vlad, M. The Use of Kidney Biomarkers, Nephrin and KIM-1, for the Detection of Early Glomerular and Tubular Damage in Patients with Acromegaly: A Case–Control Pilot Study. Diseases 2024, 12, 211. https://doi.org/10.3390/diseases12090211
Plotuna IS, Balas M, Golu I, Amzar D, Popescu R, Petrica L, Vlad A, Luches D, Vlad DC, Vlad M. The Use of Kidney Biomarkers, Nephrin and KIM-1, for the Detection of Early Glomerular and Tubular Damage in Patients with Acromegaly: A Case–Control Pilot Study. Diseases. 2024; 12(9):211. https://doi.org/10.3390/diseases12090211
Chicago/Turabian StylePlotuna, Iulia Stefania, Melania Balas, Ioana Golu, Daniela Amzar, Roxana Popescu, Ligia Petrica, Adrian Vlad, Daniel Luches, Daliborca Cristina Vlad, and Mihaela Vlad. 2024. "The Use of Kidney Biomarkers, Nephrin and KIM-1, for the Detection of Early Glomerular and Tubular Damage in Patients with Acromegaly: A Case–Control Pilot Study" Diseases 12, no. 9: 211. https://doi.org/10.3390/diseases12090211
APA StylePlotuna, I. S., Balas, M., Golu, I., Amzar, D., Popescu, R., Petrica, L., Vlad, A., Luches, D., Vlad, D. C., & Vlad, M. (2024). The Use of Kidney Biomarkers, Nephrin and KIM-1, for the Detection of Early Glomerular and Tubular Damage in Patients with Acromegaly: A Case–Control Pilot Study. Diseases, 12(9), 211. https://doi.org/10.3390/diseases12090211