Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy
Abstract
:1. Introduction
2. Hypothesis
3. Evaluation of the Hypothesis
3.1. 5-ASA and Inflammation
3.2. 5-ASA and Oxidation
3.3. 5-ASA and TGF-β1 Activation
3.4. 5-ASA and PPAR-γ Activation
3.5. 5-ASA and Re-Epithelialization
4. Implications
5. Conclusions
6. Future Directions and Technical Roadmap
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Abbreviation | Full Form |
DM | Diabetes mellitus |
DW | Diabetic wound |
DFU | Diabetic foot ulcers |
5-ASA | 5-aminosalicylic acid |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
TGF-β | Transforming growth factor beta |
ECM | Extracellular matrix |
MMP | Matrix metalloproteinase |
NF-κB | Nuclear factor-kappa B |
TNF-α | Tumor necrosis factor-alpha |
HO-1 | Heme oxygenase-1 |
TREG | Regulatory T cell |
MPO | Myeloperoxidase |
CAS | Clinical activity score |
PC | Phosphatidylcholine |
ALP | Alkaline phosphatase |
COMP | Cartilage oligomeric matrix protein |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
References
- Schreml, S.; Szeimies, R.-M.; Prantl, L.; Landthaler, M.; Babilas, P. Wound healing in the 21st century. J. Am. Acad. Dermatol. 2010, 63, 866–881. [Google Scholar] [CrossRef] [PubMed]
- Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery 2008, 26, 31–37. [Google Scholar]
- Mani, M.P.; Faudzi, A.A.M.; Ramakrishna, S.; Ismail, A.F.; Jaganathan, S.K.; Tucker, N.; Rathanasamy, R. Sustainable electrospun materials with enhanced blood compatibility for wound healing applications—A mini review. Curr. Opin. Biomed. Eng. 2023, 27, 100457. [Google Scholar] [CrossRef]
- Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Ski. Wound Care 2012, 25, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Punjataewakupt, A.; Napavichayanun, S.; Aramwit, P. The downside of antimicrobial agents for wound healing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Sanapalli, B.K.R.; Kannan, E.; Balasubramanian, S.; Natarajan, J.; Baruah, U.K.; Karri, V.V.S.R. Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev. Ind. Pharm. 2018, 44, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Bello, Y.M.; Falabella, A.F.; Eaglstein, W.H. Tissue-engineered skin: Current status in wound healing. Am. J. Clin. Dermatol. 2001, 2, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; Sporn, M.B.; Assoian, R.K.; Smith, J.M.; Roche, N.S.; Wakefield, L.M.; Heine, U.I.; Liotta, L.A.; Falanga, V.; Kehrl, J.H. Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 1986, 83, 4167–4171. [Google Scholar] [CrossRef] [PubMed]
- Sanapalli, B.K.R.; Tyagi, R.; Shaik, A.B.; Pelluri, R.; Bhandare, R.R.; Annadurai, S.; Karri, V.V.S.R. L-Glutamic acid loaded collagen chitosan composite scaffold as regenerative medicine for the accelerated healing of diabetic wounds. Arab. J. Chem. 2022, 15, 103841. [Google Scholar] [CrossRef]
- Federation, I.D. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017; pp. 905–911. [Google Scholar]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic wound-healing science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed]
- Lavery, L.A.; Davis, K.E.; Berriman, S.J.; Braun, L.; Nichols, A.; Kim, P.J.; Margolis, D.; Peters, E.J.; Attinger, C. WHS guidelines update: Diabetic foot ulcer treatment guidelines. Wound Repair Regen. 2016, 24, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; May, M.J.; Kopp, E.B. NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16, 225–260. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Yamjala, K.; Mannemala, S.S.; Malayandi, R. Current and emerging therapies in the management of diabetic foot ulcers. Curr. Med. Res. Opin. 2016, 32, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Sundaram, C.; Reuter, S.; Aggarwal, B.B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta Gene Regul. Mech. 2010, 1799, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Cavicchi, M.; Gibbs, L.; Whittle, B.J. Heme oxygenase-1 (HO-l) induction in human intestinal epithelial cells by sulphasalazine and 5-aminosalicylic acid: A potential therapeutic mechanism. Gastroenterology 2000, 118, A804. [Google Scholar] [CrossRef]
- Desreumaux, P.; Ghosh, S. mode of action and delivery of 5-aminosalicylic acid–new evidence. Aliment. Pharmacol. Ther. 2006, 24, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, D.C.; Vierziger, K.; Sturm, A.; Wiedenmann, B.; Dignass, A.U. Mesalamine promotes intestinal epithelial wound healing in vitro through a TGF-beta-independent mechanism. Scand. J. Gastroenterol. 2005, 40, 958–964. [Google Scholar] [CrossRef]
- Bertin, B.; Dubuquoy, L.; Colombel, J.-F.; Desreumaux, P. PPAR-gamma in ulcerative colitis: A novel target for intervention. Curr. Drug Targets 2013, 14, 1501–1507. [Google Scholar] [CrossRef]
- Rousseaux, C.; Lefebvre, B.; Dubuquoy, L.; Lefebvre, P.; Romano, O.; Auwerx, J.; Metzger, D.; Wahli, W.; Desvergne, B.; Naccari, G.C. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. J. Exp. Med. 2005, 201, 1205–1215. [Google Scholar] [CrossRef]
- Oh-Oka, K.; Kojima, Y.; Uchida, K.; Yoda, K.; Ishimaru, K.; Nakajima, S.; Hemmi, J.; Kano, H.; Fujii-Kuriyama, Y.; Katoh, R. Induction of colonic regulatory T cells by mesalamine by activating the aryl hydrocarbon receptor. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Na, J.; Lee, K.; Na, W.; Shin, J.-Y.; Lee, M.-J.; Yune, T.Y.; Lee, H.K.; Jung, H.-S.; Kim, W.S.; Ju, B.-G. Histone H3K27 demethylase JMJD3 in cooperation with NF-κB regulates keratinocyte wound healing. J. Investig. Dermatol. 2016, 136, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Mirastschijski, U.; Impola, U.; Karsdal, M.A.; Saarialho-Kere, U.; Ågren, M.S. Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo. J. Investig. Dermatol. 2002, 118, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wahl, C.; Liptay, S.; Adler, G.; Schmid, R.M. Sulfasalazine: A potent and specific inhibitor of nuclear factor kappa B. J. Clin. Investig. 1998, 101, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Frantz, B.; O’Neill, E.A.; Ghosh, S.; Kopp, E. The effect of sodium salicylate and aspirin on NF-κB. Science 1995, 270, 2017–2019. [Google Scholar] [CrossRef] [PubMed]
- Kopp, E.; Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994, 265, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Bantel, H.; Berg, C.; Vieth, M.; Stolte, M.; Kruis, W.; Schulze-Osthoff, K. Mesalazine inhibits activation of transcription factor NF-κB in inflamed mucosa of patients with ulcerative colitis. Am. J. Gastroenterol. 2000, 95, 3452. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, G.C.; Yan, F.; Polk, D.B. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor κB activation in mouse colonocytes. Gastroenterology 1999, 116, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.R.S.; Kumar, M.S.; Gupta, S.; Naga, S.T.; Shankar, J.K.; Murthy, V.; Madhunapanthula, S.R.V.; Mulukutla, S.; Ambhore, N.S.; Tummala, S. 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma. Pulm. Pharmacol. Ther. 2014, 29, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Romero, C.; Sadidi, M.; Feldman, E.L. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev. Endocr. Metab. Disord. 2008, 9, 301–314. [Google Scholar] [CrossRef]
- White, L.A.; Mitchell, T.I.; Brinckerhoff, C.E. Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim. Biophys. Acta Gene Struct. Expr. 2000, 1490, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kim, H.T.; Park, S.H.; Cha, J.S.; Yufit, T.; Kim, S.J.; Falanga, V. Fibroblasts from chronic wounds show altered TGF-β-signaling and decreased TGF-β Type II Receptor expression. J. Cell. Physiol. 2003, 195, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Pastar, I.; Stojadinovic, O.; Krzyzanowska, A.; Barrientos, S.; Stuelten, C.; Zimmerman, K.; Blumenberg, M.; Brem, H.; Tomic-Canic, M. Attenuation of the transforming growth factor β-signaling pathway in chronic venous ulcers. Mol. Med. 2010, 16, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Michalik, L.; Wahli, W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J. Clin. Investig. 2006, 116, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, W.; Bi, M.; Wu, J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns. Int. J. Mol. Med. 2016, 38, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, A.; Wada, K.; Nakajima, A.; Saeki, M.; Katayama, K.; Mayumi, T.; Kadowaki, T.; Niwa, H.; Kamisaki, Y. Nitration of PPARγ inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett. 2002, 525, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009, 17, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Pertuit, D.; Moulari, B.; Betz, T.; Nadaradjane, A.; Neumann, D.; Ismaïli, L.; Refouvelet, B.; Pellequer, Y.; Lamprecht, A. 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J. Control. Release 2007, 123, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Jhundoo, H.D.; Siefen, T.; Liang, A.; Schmidt, C.; Lokhnauth, J.; Béduneau, A.; Pellequer, Y.; Larsen, C.C.; Lamprecht, A. Anti-inflammatory activity of chitosan and 5-amino salicylic acid combinations in experimental colitis. Pharmaceutics 2020, 12, 1038. [Google Scholar] [CrossRef]
- Jhundoo, H.D.; Siefen, T.; Liang, A.; Schmidt, C.; Lokhnauth, J.; Moulari, B.; Béduneau, A.; Pellequer, Y.; Larsen, C.C.; Lamprecht, A. Anti-inflammatory effects of acacia and guar gum in 5-amino salicylic acid formulations in experimental colitis. Int. J. Pharm. X 2021, 3, 100080. [Google Scholar] [CrossRef]
- Jhundoo, H.D.; Siefen, T.; Liang, A.; Schmidt, C.; Lokhnauth, J.; Moulari, B.; Béduneau, A.; Pellequer, Y.; Larsen, C.C.; Lamprecht, A. Hyaluronic acid increases anti-inflammatory efficacy of rectal 5-amino salicylic acid administration in a Murine Colitis Model. Biomol. Ther. 2021, 29, 536. [Google Scholar] [CrossRef]
- Aguzzi, A.C.; Ortega, A.; Bonferoni, M.C.; Sandri, G.; Cerezo, P.; Salcedo, I.; Sánchez, R.; Viseras, C.; Caramella, C. Assessement of anti-inflammatory properties of microspheres prepared with chitosan and 5-amino salicylic acid over inflamed Caco-2 cells. Carbohydr. Polym. 2011, 85, 638–644. [Google Scholar] [CrossRef]
- Li, K.; Zhu, Y.; Zhang, P.; Alini, M.; Grad, S.; Li, Z. Anti-inflammatory and pro-anabolic effects of 5-aminosalicylic acid on human inflammatory osteoarthritis models. J. Orthop. Transl. 2023, 38, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Wang, E.; Jin, B.; Li, W.; Liu, R.; Zhao, Z.-b. 5-Aminosalicylic acid inhibits inflammatory responses by suppressing JNK and p38 activity in murine macrophages. Immunopharmacol. Immunotoxicol. 2017, 39, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xiang, D.; Wang, F.; Mao, J.; Tan, X.; Wang, Y. 5-ASA-loaded SiO2 nanoparticles-a novel drug delivery system targeting therapy on ulcerative colitis in mice. Mol. Med. Rep. 2017, 15, 1117–1122. [Google Scholar] [CrossRef]
- Chiu, C.-T.; Kuo, S.-N.; Hung, S.-W.; Yang, C.-Y. Combined treatment with hyaluronic acid and mesalamine protects rats from inflammatory bowel disease induced by intracolonic administration of trinitrobenzenesulfonic acid. Molecules 2017, 22, 904. [Google Scholar] [CrossRef]
- Ahmad, A.; Ansari, M.M.; Mishra, R.K.; Kumar, A.; Vyawahare, A.; Verma, R.K.; Raza, S.S.; Khan, R. Enteric-coated gelatin nanoparticles mediated oral delivery of 5-aminosalicylic acid alleviates severity of DSS-induced ulcerative colitis. Mater. Sci. Eng. C 2021, 119, 111582. [Google Scholar] [CrossRef]
- Joshi, R.; Kumar, S.; Unnikrishnan, M.; Mukherjee, T. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: Mechanistic aspects and antioxidant activity. Free Radic. Res. 2005, 39, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Ribeiro, D.; Freitas, M.; Gomes, A.; Lima, J.L.; Fernandes, E. Scavenging of reactive oxygen and nitrogen species by the prodrug sulfasalazine and its metabolites 5-aminosalicylic acid and sulfapyridine. Redox Rep. 2010, 15, 259–267. [Google Scholar] [CrossRef]
- Pereira, S.R.; Almeida, L.M.; Dinis, T.C. Improving the anti-inflammatory activity of 5-aminosalicylic acid by combination with cyanidin-3-glucoside: An in vitro study. J. Funct. Foods 2019, 63, 103586. [Google Scholar] [CrossRef]
- Caltabiano, C.; Máximo, F.R.; Spadari, A.P.P.; da Conceição Miranda, D.D.; Serra, M.M.P.; Ribeiro, M.L.; Martinez, C.A.R. 5-aminosalicylic acid (5-ASA) can reduce levels of oxidative DNA damage in cells of colonic mucosa with and without fecal stream. Dig. Dis. Sci. 2011, 56, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.; Almeida, L.M.; Dinis, T.C. Antioxidant activity of 5-aminosalicylic acid against lipid peroxidation in the presence of vitamins C and E. Int. J. Pharm. 1998, 172, 219–228. [Google Scholar] [CrossRef]
- Managlia, E.; Katzman, R.B.; Brown, J.B.; Barrett, T.A. Antioxidant properties of mesalamine in colitis inhibit phosphoinositide 3-kinase signaling in progenitor cells. Inflamm. Bowel Dis. 2013, 19, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- Rajeh, N.A.; Al-Dhaheri, N.M. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats. Saudi Med. J. 2017, 38, 132. [Google Scholar] [CrossRef]
- Reifen, R.; Nissenkorn, A.; Matas, Z.; Bujanover, Y. 5-ASA and lycopene decrease the oxidative stress and inflammation induced by iron in rats with colitis. J. Gastroenterol. 2004, 39, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Cevallos, S.A.; Lee, J.-Y.; Velazquez, E.M. 5-Aminosalicylic Acid Ameliorates Colitis and Checks Dysbiotic Escherichia coli. mBio 2021, 12, e03227-20. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Kurotani, R.; Morimura, K.; Shah, Y.; Sanford, M.; Madison, B.B.; Gumucio, D.L.; Marin, H.E.; Peters, J.M.; Young, H.A. Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 2006, 55, 1104–1113. [Google Scholar] [CrossRef]
- Mbodji, K.; Charpentier, C.; Guérin, C.; Querec, C.; Bole-Feysot, C.; Aziz, M.; Savoye, G.; Déchelotte, P.; Marion-Letellier, R. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-κB in rats with TNBS-induced colitis. J. Nutr. Biochem. 2013, 24, 700–705. [Google Scholar] [CrossRef]
- Jung, E.S.; Jang, H.J.; Hong, E.M.; Lim, H.L.; Lee, S.P.; Kae, S.H.; Lee, J. The protective effect of 5-aminosalicylic acid against non-steroidal anti-inflammatory drug-induced injury through free radical scavenging in small intestinal epithelial cells. Medicina 2020, 56, 515. [Google Scholar] [CrossRef]
- Khare, V.; Krnjic, A.; Frick, A.; Gmainer, C.; Asboth, M.; Jimenez, K.; Lang, M.; Baumgartner, M.; Evstatiev, R.; Gasche, C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep. 2019, 9, 2842. [Google Scholar] [CrossRef]
- Deng, X.; Tolstanova, G.; Khomenko, T.; Chen, L.; Tarnawski, A.; Szabo, S.; Sandor, Z. Mesalamine restores angiogenic balance in experimental ulcerative colitis by reducing expression of endostatin and angiostatin: Novel molecular mechanism for therapeutic action of mesalamine. J. Pharmacol. Exp. Ther. 2009, 331, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
Drug/ Formulation | Pharmacological Effect | Biomarkers | Type of Study Conducted | References |
---|---|---|---|---|
5-ASA-bound nanoparticles | Inflammation | Clinical activity score (CAS), colon weight/length index, myeloperoxidase (MPO) | Preexistent colitis model in mice | [39] |
5-ASA and chitosan combination | Inflammation | Clinical activity score (CAS), colon weight/length index, myeloperoxidase (MPO), alkaline phosphatase (ALP), TNF-α, IL-6, and NF-κB, p65 | Colitis model in male Swiss/CD-1 mice | [40] |
5-ASA in combination with acacia and guar gum | Inflammation | Disease activity index, colon weight/length ratio, IL-1β, NF-κB, p65, TNF-α, and IL-6 | Colitis model in male Swiss/CD-1 mice | [41] |
5-ASA and hyaluronic acid combination | Inflammation | Clinical activity index, MPO, TNF-α, IL-6, and IL-1β | Colitis model in male Swiss/CD-1 mice | [42] |
5-ASA and chitosan microspheres | Inflammation | Cell viability and expression of mRNA levels | Caco-2 cell lines | [43] |
5-ASA | Inflammation | IL-6, IL-8, COX-2, nitric oxide, glycosaminoglycan, and anabolic genes (aggrecan (ACAN), alpha-1 chain of type II collagen (COL2A1), proteoglycan 4 (PRG4), cartilage oligomeric matrix protein (COMP)) | In vitro (chondrocyte pellets) and ex vivo (osteochondral explants) human inflammatory osteoarthritis models | [44] |
5-ASA | Inflammation | NO, IL-6, induced nitric oxide synthase (iNOS), c-Jun N-terminal kinases (JNKs), p38, and NF-κB | LPS-induced murine macrophages | [45] |
5-ASA–silicon oxide nanoparticles | Inflammation | MPO, IL-6, and TNF-α | BALB/c colitis model | [46] |
5-ASA in combination with hyaluronic acid | Inflammation | MPO, COX-2, TNF-α, IL-1β, and IL-6 | TNBS-induced colitis rat model | [47] |
5-ASA gelatin-coated nanoparticles | Inflammation | TNF-α, IL-1β, COX-2, and iNOS | Dextran sodium sulfate-induced colitis murine model | [48] |
5-ASA | Oxidation | Free radicals such as hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophany | Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways | [49] |
5-ASA | Oxidation | ROS (O2•−, H2O2, 1O2, ROO•, and HOCl) and reactive nitrogen species (•NO and ONOO−) | Chemical scavenging validated test | [50] |
5-ASA in combination with cyanidin-3-glucoside (Cy3glc) | Oxidation | ROS and NO | LPS-activated macrophage line | [51] |
5-ASA | Oxidation | ROS species for oxidative DNA damage | Diversion colitis model in experimental Wistar rats | [52] |
5-ASA and ascorbic acid | Oxidation | Vitamin E consumption, oxygen consumption and formation of conjugated dienes | Lipid peroxidation (thermal decomposition of Azo compounds) in phosphatidylcholine (PC) liposomes as a model | [53] |
5-ASA | Oxidation | ROS and catalase | Oxidant-induced cell signaling pathways in HT-29 cells and IECs from mice | [54] |
5-ASA and vitamin E | Oxidation | Change in body weight and lactate dehydrogenase activity | Acrylamide-induced kidney injury in Wistar rat model | [55] |
5-ASA and lycopene | Oxidation and inflammation | Myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) | Colitis model in iodoacetamide rat | [56] |
5-ASA | Inflammation and PPAR-γ activation | Oxygen consumption, E. coli growth | Dextran sulfate sodium (DSS)-induced colitis murine model | [57] |
5-ASA | Inflammation and PPAR-γ activation | PPAR-γ expression, β-actin, and MPO | 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis murine model | [21] |
5-ASA | Inflammation and PPAR-γ activation | IFN-γ, NF-κB, STAT-1 and -3, SOCS-1 and -3 | 10 Gy γ-irradiation (Co source)-induced colitis rat model | [58] |
5-ASA and n-3 ploy unsaturated fatty acids | Inflammation and PPAR-γ activation | NF-κB, COX-2, and leukotriene-B4 | TNBS-induced colitis rat model | [59] |
5-ASA | Inflammation, oxidation, and proliferation | ROS, MTT assay, cell apoptosis assay, caspase-3 activity, SOD2 and wound healing assay | Indomethacin-induced injury in IEC-6 cell line of rats | [60] |
5-ASA in combination with azathioprine | Inflammation, oxidation, and proliferation | ROS and senescence-associated β-galactosidase activity, cell cycle analysis, BrdU incorporation assay, TNF-α | T-84 cell lines and small intestinal large bowel organoids from C57BL/6J wild-type and IL-10−/− (IL-10 KO) mice | [61] |
5-ASA pluronic lecitin organogel | Cell proliferation and migration | MTT assay, cell migration | Full thickness excision wound rat model | [6] |
5-ASA | Cell proliferation and migration | MTT assay, migration assay | IEC-6 in vitro wounding model | [19] |
5-ASA | Angiogenesis | Expression of VEGF, endostatin, angiostatin, TNF-α, and MMP-2 and -9 | Iodoacetamide-induced ulcerative colitis rat model | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanapalli, B.K.R.; Deshpande, A.; Sanapalli, V.; Sigalapalli, D.K. Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy. Diseases 2024, 12, 172. https://doi.org/10.3390/diseases12080172
Sanapalli BKR, Deshpande A, Sanapalli V, Sigalapalli DK. Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy. Diseases. 2024; 12(8):172. https://doi.org/10.3390/diseases12080172
Chicago/Turabian StyleSanapalli, Bharat Kumar Reddy, Ashwini Deshpande, Vidyasrilekha Sanapalli, and Dilep Kumar Sigalapalli. 2024. "Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy" Diseases 12, no. 8: 172. https://doi.org/10.3390/diseases12080172
APA StyleSanapalli, B. K. R., Deshpande, A., Sanapalli, V., & Sigalapalli, D. K. (2024). Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy. Diseases, 12(8), 172. https://doi.org/10.3390/diseases12080172