Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Outcomes
4. Discussion
4.1. SARS-CoV-2 and Hypercoagulability
4.1.1. DVT and PE
4.1.2. PVT
4.2. SARS-CoV-2 and Bleeding
4.3. Cirrhosis and Coagulation
4.4. SARS-CoV-2 in Cirrhosis
4.5. Summarization
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 24 March 2024).
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Levy, J.H.; Ageno, W.; Connors, J.M.; Hunt, B.J.; Iba, T.; Levi, M.; Samama, C.M.; Thachil, J.; Giannis, D.; et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1859–1865. [Google Scholar] [CrossRef]
- Cuker, A.; Tseng, E.K.; Nieuwlaat, R.; Angchaisuksiri, P.; Blair, C.; Dane, K.; Davila, J.; DeSancho, M.T.; Diuguid, D.; Griffin, D.O.; et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv. 2021, 5, 872–888. [Google Scholar] [CrossRef] [PubMed]
- Roubinian, N.H.; Dusendang, J.R.; Mark, D.G.; Vinson, D.R.; Liu, V.X.; Schmittdiel, J.A.; Pai, A.P. Incidence of 30-Day Venous Thromboembolism in Adults Tested for SARS-CoV-2 Infection in an Integrated Health Care System in Northern California. JAMA Intern. Med. 2021, 181, 997–1000. [Google Scholar] [CrossRef]
- Wretborn, J.; Jörg, M.; Nyberg, P.B.; Wilhelms, D.B. Risk of venous thromboembolism in a Swedish healthcare system during the COVID-19 pandemic: A retrospective cross-sectional study. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12530. [Google Scholar] [CrossRef]
- Freund, Y.; Drogrey, M.; Miró, O.; Marra, A.; Féral-Pierssens, A.; Pd, A.P.; Hernandez, B.A.L.; Beaune, S.; Gorlicki, J.; Ayar, P.V.; et al. Association Between Pulmonary Embolism and COVID-19 in Emergency Department Patients Undergoing Computed Tomography Pulmonary Angiogram: The PEPCOV International Retrospective Study. Acad. Emerg. Med. 2020, 27, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Brooks, M.M.; Sciurba, F.C.; Krishnan, J.A.; Bledsoe, J.R.; Kindzelski, A.; Baucom, A.L.; Kirwan, B.-A.; Eng, H.; Martin, D.; et al. Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients with Clinically Stable Symptomatic COVID-19: The ACTIV-4B Randomized Clinical Trial. JAMA 2021, 326, 1703–1712. [Google Scholar] [CrossRef]
- Flores, B.; Trivedi, H.D.; Robson, S.C.; Bonder, A. Hemostasis, bleeding and thrombosis in liver disease. J. Transl. Sci. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Ayoub, M.; Tomanguillo, J.; Faris, C.; Anwar, N.; Chela, H.; Daglilar, E. SARS-CoV-2 Infection Is an Independent Risk Factor for Decompensation in Cirrhosis Patients. Diseases 2024, 12, 46. [Google Scholar] [CrossRef]
- Cohoon, K.P.; Ashrani, A.A.; Crusan, D.J.; Petterson, T.M.; Bailey, K.R.; Heit, J.A. Is Infection an Independent Risk Factor for Venous Thromboembolism? A Population-Based, Case-Control Study. Am. J. Med. 2018, 131, 307–316.e2. [Google Scholar] [CrossRef] [PubMed]
- Kemerley, A.; Gupta, A.; Thirunavukkarasu, M.; Maloney, M.; Burgwardt, S.; Maulik, N. COVID-19 Associated Cardiovascular Disease—Risks, Prevention and Management: Heart at Risk Due to COVID-19. Curr. Issues Mol. Biol. 2024, 46, 1904–1920. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; Iba, T.; Olson, L.B.; Corey, K.M.; Ghadimi, K.; Connors, J.M. COVID-19: Thrombosis, thromboinflammation, and anticoagulation considerations. Int. J. Lab. Hematol. 2021, 43, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.I.; Rao, G. COVID-19: A Potential Risk Factor for Acute Pulmonary Embolism. Methodist DeBakey Cardiovasc. J. 2020, 16, 155–157. [Google Scholar] [CrossRef]
- Rotzinger, D.; Beigelman-Aubry, C.; von Garnier, C.; Qanadli, S. Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography. Thromb. Res. 2020, 190, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J. 2020, 41, 1858. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; Iba, T.; Connors, J.M. Editorial commentary: Vascular injury in acute infections and COVID-19: Everything old is new again. Trends Cardiovasc. Med. 2020, 31, 6–7. [Google Scholar] [CrossRef]
- Trunz, L.M.; Lee, P.; Lange, S.M.; Pomeranz, C.L.; Needleman, L.; Ford, R.W.; Karambelkar, A.; Sundaram, B. Imaging approach to COVID-19 associated pulmonary embolism. Int. J. Clin. Pract. 2021, 75, e14340. [Google Scholar] [CrossRef]
- Yousaf, M.M.; Thomas, M.M.M.; Almughalles, S.M.; Hameed, M.A.M.; Alharafsheh, A.; Varikkodan, I.M.; Waseem, A.M.; Babikir, M.M.; Chengamaraju, D.M.; Khatib, M.Y. Pulmonary embolism in COVID-19, risk factors and association with inflammatory biomarkers. Medicine 2023, 102, e32887. [Google Scholar] [CrossRef]
- El-Qutob, D.; Alvarez-Arroyo, L.; Barreda, I.; Nieto, M.; Pin, M.; Poveda-Andrés, J.L.; Carrera-Hueso, F. High incidence of pulmonary thromboembolism in hospitalized SARS-CoV-2 infected patients despite thrombo-prophylaxis. Heart Lung 2022, 53, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Lobbes, H.; Mainbourg, S.; Mai, V.; Douplat, M.; Provencher, S.; Lega, J.-C. Risk factors for venous thromboembolism in severe COVID-19: A study-level meta-analysis of 21 studies. Int. J. Environ. Res. Public Health 2021, 18, 12944. [Google Scholar] [CrossRef]
- Sutanto, H.; Soegiarto, G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol. Rep. 2023, 15, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Shama, M.A.; Mehmood, S.; Zhang, W. Pathological Effects of SARS-CoV-2 Associated with Hematological Abnormalities. Curr. Issues Mol. Biol. 2023, 45, 7161–7182. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Zhao, Y.-Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019, 181, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef]
- The Lancet Haematology. COVID-19 coagulopathy: An evolving story. Lancet Haematol. 2020, 7, e425. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.-F.; Leclerc, M.; Chochois, C.; Monsallier, J.-M.; Ramakers, M.; Auvray, M.; Merouani, K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 2020, 18, 1743–1746. [Google Scholar] [CrossRef]
- Agarwal, G.; Hajra, A.; Chakraborty, S.; Patel, N.; Biswas, S.; Adler, M.K.; Lavie, C.J. Predictors and mortality risk of venous thromboembolism in patients with COVID-19: Systematic review and meta-analysis of observational studies. Ther. Adv. Cardiovasc. Dis. 2022, 16, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Husain, M.; Geddes, J.R.; Luciano, S.; Harrison, P.J. Cerebral venous thrombosis and portal vein thrombosis: A retrospective cohort study of 537,913 COVID-19 cases. EClinicalMedicine 2021, 39, 101061. [Google Scholar] [CrossRef]
- Hassnine, A.A.; Elsayed, A.M. COVID-19 in Cirrhotic Patients: Is Portal Vein Thrombosis a Potential Complication? Can. J. Gastroenterol. Hepatol. 2022, 2022, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rivas, N.; Abad-Motos, A.; Mestre-Gómez, B.; Sierra-Hidalgo, F.; Cortina-Camarero, C.; Lorente-Ramos, R.M.; Torres-Rubio, P.; Arranz-García, P.; Franco-Moreno, A.I.; Gómez-Mariscal, E.; et al. Systemic thrombosis in a large cohort of COVID-19 patients despite thromboprophylaxis: A retrospective study. Thromb. Res. 2021, 199, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rivas, N.; Aibar, J.; Gabara-Xancó, C.; Trueba-Vicente, Á.; Urbelz-Pérez, A.; Olmo, V.G.-D.; Demelo-Rodríguez, P.; Rivera-Gallego, A.; Bosch-Nicolau, P.; Perez-Pinar, M. Efficacy and Safety of Tinzaparin in Prophylactic, Intermediate and Thera-peutic Doses in Non-Critically Ill Patients Hospitalized with COVID-19: The PROTHROMCOVID Randomized Controlled Trial. J. Clin. Med. 2022, 11, 5632. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H.; Leaf, R.S.K.; Dzik, W.H.; Carlson, J.C.T.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE 2020, 15, e0235458. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, D.; García-Sanchez, A.; Rali, P.; Muriel, A.; Bikdeli, B.; Ruiz-Artacho, P.; Le Mao, R.; Rodríguez, C.; Hunt, B.J.; Monreal, M. Incidence of VTE and Bleeding Among Hospitalized Patients with Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Chest 2020, 159, 1182–1196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.R.; Scully, M. Clinical features of thrombosis and bleeding in COVID-19. Blood 2022, 140, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, T.A.; Stine, J.G.; Saner, F.H.; Bezinover, D. Hypercoagulability in End-stage Liver Disease: Review of Epidemiology, Etiology, and Management. Transplant. Direct 2018, 4, e403. [Google Scholar] [CrossRef] [PubMed]
- Rajani, R.; Björnsson, E.; Bergquist, A.; Danielsson, Å.; Gustavsson, A.; Grip, O.; Melin, T.; Sangfelt, P.; Wallerstedt, S.; Almer, S. The epidemiology and clinical features of portal vein thrombosis: A multicentre study. Aliment. Pharmacol. Ther. 2010, 32, 1154–1162. [Google Scholar] [CrossRef]
- Ayoub, M.; Faris, C.; Chumbe, J.T.; Daglilar, E.; Anwar, N.; Naravadi, V. Safety of DOACs in patients with Child-Pugh Class C cirrhosis and trial fibrillation. JGH Open 2024, 8, e13074. [Google Scholar] [CrossRef]
- Intagliata, N.M.; Caldwell, S.H. Changes in hemostasis in liver disease. J. Hepatol. 2017, 67, 1332–1333. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ye, L.-P.; Song, Y.-Q.; Mao, X.-L.; Wang, L.; Jiang, Y.-Z.; Que, W.-T.; Li, S.-W. Liver injury in COVID-19: Detection, pathogenesis, and treatment. World J. Gastroenterol. 2021, 27, 3022–3036. [Google Scholar] [CrossRef]
- Spiezia, L.; Boscolo, A.; Poletto, F.; Cerruti, L.; Tiberio, I.; Campello, E.; Navalesi, P.; Simioni, P. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb. Haemost. 2020, 120, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, H.A.; Abd-Elwahab, E.-S.M.; Mostafa-Hedeab, G.; Elfarargy, M.S. Portal vein thrombosis in patients with COVID-19: A systematic review. Asian J. Surg. 2022, 46, 3017–3026. [Google Scholar] [CrossRef]
- Samant, H.; Asafo-Agyei, K.O.; Garfield, K. Portal Vein Thrombosis; Springer Nature: Dordrecht, The Netherlands, 2021; pp. 1–171. [Google Scholar] [CrossRef]
- Boccatonda, A.; Gentilini, S.; Zanata, E.; Simion, C.; Serra, C.; Simioni, P.; Piscaglia, F.; Campello, E.; Ageno, W. Portal Vein Thrombosis: State-of-the-Art Review. J. Clin. Med. 2024, 13, 1517. [Google Scholar] [CrossRef]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Connolly, A.-M.F. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after COVID-19: Nationwide self-controlled cases series and matched cohort study. BMJ 2022, 377, e069590. [Google Scholar] [CrossRef]
- Papic, I.; Bistrovic, P.; Cikara, T.; Busic, N.; Keres, T.; Hadziabdic, M.O.; Lucijanic, M. Corticosteroid Dosing Level, Incidence and Profile of Bacterial Blood Stream Infections in Hospitalized COVID-19 Patients. Viruses 2024, 16, 86. [Google Scholar] [CrossRef]
Characteristic | SARS-CoV-2 Positive n = 89,227 | SARS-CoV-2 Negative n = 241,294 | p-Value | SARS-CoV-2 Positive n = 74,738 | SARS-CoV-2 Negative n = 74,738 | p-Value |
---|---|---|---|---|---|---|
Demographics | ||||||
Age at Index (Mean ± SD) | 59.5 ± 13.7 | 57.5 ± 13.3 | <0.001 | 58.8 ± 13.8 | 58.6 ± 13.6 | 0.192 |
Female | 46.3% | 43.0% | <0.001 | 45.8% | 45.5% | 0.287 |
White | 67.1% | 62.6% | <0.001 | 67.0% | 67.2% | 0.352 |
Black or African American | 15.3% | 11.3% | <0.001 | 14.5% | 14.2% | 0.229 |
Diagnosis | ||||||
CAD | 17.0% | 5.6% | <0.001 | 12.8% | 12.7% | 0.281 |
CKD | 15.3% | 5.1% | <0.001 | 11.4% | 11.3% | 0.396 |
COPD | 14.3% | 5.0% | <0.001 | 10.9% | 10.8% | 0.855 |
Hypertension | 59.5% | 26.9% | <0.001 | 52.5% | 54.5% | 0.092 |
Diabetes mellitus | 35.5% | 16.2% | <0.001 | 30.7% | 32.5% | 0.067 |
Medication | ||||||
Anti-platelets | 33.8% | 12.1% | <0.001 | 26.7% | 27.0% | 0.316 |
Anticoagulants | 42.9% | 12.2% | <0.001 | 32.4% | 31.6% | 0.073 |
Warfarin | 2.1% | 0.9% | <0.001 | 1.8% | 1.7% | 0.568 |
PVT | DVT | PE | |||||||
---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 n = 74,738 |
No SARS-CoV-2 n = 74,738 | p-Value |
SARS-CoV-2 n = 74,738 |
No SARS-CoV-2 n = 74,738 | p-Value |
SARS-CoV-2 n = 74,738 |
No SARS-CoV-2 n = 74,738 | p-Value | |
6 months |
470 (0.63%) |
372 (0.50%) | 0.001 |
592 (0.79%) |
297 (0.40%) | <0.001 |
418 (0.56%) |
187 (0.25%) | <0.001 |
1 year |
577 (0.77%) |
454 (0.61%) | <0.001 |
739 (0.99%) |
397 (0.53%) | <0.001 |
533 (0.71%) |
258 (0.35%) | <0.001 |
3 years |
732 (1.0%) |
553 (0.74%) | 0.000 |
1027 (1.37%) |
630 (0.84%) | 0.000 |
749 (1.0%) |
413 (0.55%) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, M.; Faris, C.; Juranovic, T.; Aibani, R.; Koontz, M.; Chela, H.; Anwar, N.; Daglilar, E. Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database. Diseases 2024, 12, 161. https://doi.org/10.3390/diseases12070161
Ayoub M, Faris C, Juranovic T, Aibani R, Koontz M, Chela H, Anwar N, Daglilar E. Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database. Diseases. 2024; 12(7):161. https://doi.org/10.3390/diseases12070161
Chicago/Turabian StyleAyoub, Mark, Carol Faris, Tajana Juranovic, Rafi Aibani, Morgan Koontz, Harleen Chela, Nadeem Anwar, and Ebubekir Daglilar. 2024. "Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database" Diseases 12, no. 7: 161. https://doi.org/10.3390/diseases12070161
APA StyleAyoub, M., Faris, C., Juranovic, T., Aibani, R., Koontz, M., Chela, H., Anwar, N., & Daglilar, E. (2024). Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database. Diseases, 12(7), 161. https://doi.org/10.3390/diseases12070161