Gestational Trophoblastic Disease: Complete versus Partial Hydatidiform Moles
Abstract
:1. Introduction
2. Pathogenesis of Hydatidiform Moles
3. Histopathological Features of Hydatidiform Moles
3.1. Complete Hydatidiform Moles (CHM)
3.2. Partial Hydatidiform Moles (PHM)
4. Ancillary Studies: Immunohistochemical Markers
4.1. p57
4.2. Twist 1
4.3. Ki-67
4.4. E-Cadherin
4.5. p53
4.6. p63
4.7. BCL2
4.8. Differential Immunohistochemical Expression in CHMs versus PHMs
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candelier, J.-J. The hydatidiform mole. Cell Adhes. Migr. 2015, 10, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Hui, P.; Buza, N.; Murphy, K.M.; Ronnett, B.M. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 449–485. [Google Scholar] [CrossRef] [PubMed]
- Vecchia, C.L.; Franceschi, S.; Parazzini, F.; Fasoli, M.; Decarli, A.; Gallus, G.; Tognoni, G. Risk Factors for Gestational Trophoblastic Disease in Italy. Am. J. Epidemiol. 1985, 121, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Memtsa, M.; Johns, J.; Ross, J.A.; Jurkovic, D. New insights in the pathophysiology of complete hydatidiform mole. Placenta 2018, 62, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.; Fazlollahi, L.; Nguyen, A.; Betensky, R.A.; Roberts, D.J.; Iafrate, A.J. Diagnosis of Hydatidiform Moles by Polymorphic Deletion Probe Fluorescence in Situ Hybridization. J. Mol. Diagn. 2011, 13, 406–415. [Google Scholar] [CrossRef]
- Banet, N.; DeScipio, C.; Murphy, K.M.; Beierl, K.; Adams, E.; Vang, R.; Ronnett, B.M. Characteristics of hydatidiform moles: Analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod. Pathol. 2014, 27, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Hui, P. Germline NLRP7 mutations: Genomic imprinting and hydatidiform mole. Virchows Arch. 2020, 477, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.; Suren, D.; Tutus, B.; Yararbas, K.; Sayiner, A.; Ozel, M.K.; Derbent, A.U.; Sezer, C. Comparison of p57, c-erbB-2, CD117, and Bcl-2 expression in the differential diagnosis of hydatidiform mole and hydropic abortion. Eur. J. Gynaecol. Oncol. 2016, 37, 522–529. [Google Scholar] [PubMed]
- Ngan, H.Y.S.; Seckl, M.J.; Berkowitz, R.S.; Xiang, Y.; Golfier, F.; Sekharan, P.K.; Lurain, J.R.; Massuger, L. Diagnosis and management of gestational trophoblastic disease: 2021 update. Int. J. Gynecol. Obstet. 2021, 155, 86–93. [Google Scholar] [CrossRef]
- Hoda, S.A.; Hoda, R.S. Robbins and Cotran Pathologic Basis of Disease. Am. J. Clin. Pathol. 2020, 154, 869. [Google Scholar] [CrossRef]
- Fock, V.; Plessl, K.; Fuchs, R.; Dekan, S.; Milla, S.K.; Haider, S.; Fiala, C.; Knöfler, M.; Pollheimer, J. Trophoblast subtype-specific EGFR/ERBB4 expression correlates with cell cycle progression and hyperplasia in complete hydatidiform moles. Hum. Reprod. 2015, 30, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Mello, J.B.H.d.; Ramos Cirilo, P.D.; Michelin, O.C.; Custódio Domingues, M.A.; Cunha Rudge, M.V.; Rogatto, S.R.; Maestá, I. Genomic profile in gestational and non-gestational choriocarcinomas. Placenta 2017, 50, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Coyle, C.; Short, D.; Jackson, L.; Sebire, N.J.; Kaur, B.; Harvey, R.; Savage, P.M.; Seckl, M.J. What is the optimal duration of human chorionic gonadotrophin surveillance following evacuation of a molar pregnancy? A retrospective analysis on over 20,000 consecutive patients. Gynecol. Oncol. 2018, 148, 254–257. [Google Scholar] [CrossRef]
- Lukinovic, N.; Malovrh, E.P.; Takac, I.; Sobocan, M.; Knez, J. Advances in diagnostics and management of gestational trophoblastic disease. Radiol. Oncol. 2022, 56, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Walkington, L.; Webster, J.; Hancock, B.W.; Everard, J.; Coleman, R.E. Hyperthyroidism and human chorionic gonadotrophin production in gestational trophoblastic disease. Br. J. Cancer 2011, 104, 1665–1669. [Google Scholar] [CrossRef]
- Savage, P.; Monk, D.; Hernandez Mora, J.R.; van der Westhuizen, N.; Rauw, J.; Tinker, A.; Robinson, W.; Song, Q.; Seckl, M.J.; Fisher, R.A. A case of intraplacental gestational choriocarcinoma; characterised by the methylation pattern of the early placenta and an absence of driver mutations. BMC Cancer 2019, 19, 744. [Google Scholar] [CrossRef] [PubMed]
- Ngan, H.Y.S.; Seckl, M.J.; Berkowitz, R.S.; Xiang, Y.; Golfier, F.; Sekharan, P.K.; Lurain, J.R. Update on the diagnosis and management of gestational trophoblastic disease. Int. J. Gynecol. Obstet. 2015, 131, S123–S126. [Google Scholar] [CrossRef]
- Baasanjav, B.; Usui, H.; Kihara, M.; Kaku, H.; Nakada, E.; Tate, S.; Mitsuhashi, A.; Matsui, H.; Shozu, M. The risk of post-molar gestational trophoblastic neoplasia is higher in heterozygous than in homozygous complete hydatidiform moles. Hum. Reprod. 2010, 25, 1183–1191. [Google Scholar] [CrossRef]
- Aznab, M.; Nankali, A.; Daeichin, S. Determination of Clinical Process and Response Rate to Treatment in Patients with Gestational Trophoblastic Neoplasia (GTN) with Low and High Risk and Evaluation of Their First Pregnancy Outcome. Int. J. Hematol. Oncol. Stem. Cell Res. 2018, 12, 291–297. [Google Scholar] [CrossRef]
- Miller, D.J. Review: The epic journey of sperm through the female reproductive tract. Animal 2018, 12, s110–s120. [Google Scholar] [CrossRef]
- Vaillancourt, C.; Lafond, J. Human Embryogenesis: Overview. Methods Mol. Biol. 2009, 550, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.G.; DeSaix, P.; Johnson, J.E.; Korol, O.; Kruse, D.H.; Poe, B.; Wise, J.A.; Womble, M.; Young, K.A. Anatomy and Physiology; Openstax: Houston, TX, USA, 2013. [Google Scholar]
- Khan, Y.S.; Ackerman, K.M. Embryology, Week 1. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yuk, J.-S.; Baek, J.C.; Park, J.E.; Jo, H.C.; Park, J.K.; Cho, I.A. Incidence of gestational trophoblastic disease in South Korea: A longitudinal, population-based study. PeerJ 2019, 7, e6490. [Google Scholar] [CrossRef]
- Seckl, M.J.; Sebire, S.J.; Berkowitz, R.S. Gestational Trophoblastic Disease. Lancet 2010, 376, 717–729. [Google Scholar] [CrossRef]
- Soper, J.T. Gestational Trophoblastic Disease. Obstet. Gynecol. 2021, 137, 355–370. [Google Scholar] [CrossRef]
- Braga, A.; Mora, P.; Melo, A.C.d.; Nogueira-Rodrigues, A.; Amim-Junior, J.; Rezende-Filho, J.; Seckl, M.J. Challenges in the diagnosis and treatment of gestational trophoblastic neoplasia worldwide. World J. Clin. Oncol. 2019, 10, 28–37. [Google Scholar] [CrossRef]
- Lindor, N.M.; Ney, J.A.; Gaffey, T.A.; Jenkins, R.B.; Thibodeau, S.N.; Dewald, G.W. A Genetic Review of Complete and Partial Hydatidiform Moles and Nonmolar Triploidy. Mayo Clin. Proc. 1992, 67, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Moein-Vaziri, N.; Fallahi, J.; Namavar-Jahromi, B.; Fardaei, M.; Momtahan, M.; Anvar, Z. Clinical and genetic-epignetic aspects of recurrent hydatidiform mole: A review of literature. Taiwan J. Obstet. Gynecol. 2018, 57, 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Yan, L.; Li, R.; Liu, P.; Qiao, J.; Liu, Y.; Zhi, X. Genetic screening of Chinese patients with hydatidiform mole by whole-exome sequencing and comprehensive analysis. J. Assist. Reprod. Genet. 2022, 39, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Szulman, A.E.; Surti, U. The syndromes of hydatidiform mole. Am. J. Obstet. Gynecol. 1978, 132, 20–27. [Google Scholar] [CrossRef]
- Smith, D.B.; O’Reilly, S.M.; Newlands, E.S. Current approaches to diagnosis and treatment of gestational trophoblastic disease. Curr. Opin. Obstet. Gynecol. 1993, 5, 84–91. [Google Scholar] [CrossRef]
- Sebire, N.J. Histopathological diagnosis of hydatidiform mole: Contemporary features and clinical implications. Fetal Pediatr. Pathol. 2010, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kubelka-Sabit, K.B.; Prodanova, I.; Jasar, D.; Bozinovski, G.; Filipovski, V.; Drakulevski, S.; Plaseska-Karanfilska, D. Molecular and immunohistochemical characteristics of complete hydatidiform moles. Balk. J. Med. Genet. 2017, 20, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chilosi, M.; Piazzola, E.; Lestani, M.; Benedetti, A.; Guasparri, I.; Granchelli, G.; Aldovini, D.; Leonardi, E.; Pizzolo, G.; Doglioni, C.; et al. Differential expression of p57kip2, a maternally imprinted cdk inhibitor, in normal human placenta and gestational trophoblastic disease. Lab. Investig. A J. Technol. Methods Pathol. 1998, 78, 269–276. [Google Scholar]
- McConnell, T.J.; Murphy, K.M.; Hafez, M.J.; Vang, R.; Ronnett, B.M. Diagnosis and Subclassification of Hydatidiform Moles Using p57 Immunohistochemistry and Molecular Genotyping: Validation and Prospective Analysis in Routine and Consultation Practice Settings with Development of an Algorithmic Approach. Am. J. Surg. Pathol. 2009, 33, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Buza, N.; Hui, P. Immunohistochemistry and other ancillary techniques in the diagnosis of gestational trophoblastic diseases. Semin. Diagn. Pathol. 2014, 31, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Landolsi, H.; Missaoui, N.; Brahem, S.; Hmissa, S.; Gribaa, M.; Yacoubi, M.T. The usefulness of p57KIP2 immunohistochemical staining and genotyping test in the diagnosis of the hydatidiform mole. Pathol. Res. Pr. 2011, 207, 498–504. [Google Scholar] [CrossRef]
- Kar, R.; Samadder, A. Utility of p57 immunohistochemistry in differentiating between complete mole, partial mole & non-molar or hydropic abortus. Indian J. Med. Res. 2017, 145, 133. [Google Scholar] [CrossRef]
- Xing, D.; Miller, K.; Beierl, K.; Ronnett, B.M. Loss of p57 Expression in Conceptions Other Than Complete Hydatidiform Mole. Am. J. Surg. Pathol. 2021, 46, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.H.; DeScipio, C.; Murphy, K.M.; Haley, L.; Beierl, K.; Mosier, S.; Tandy, S.; Cohen, D.S.; Lytwyn, A.; Elit, L.; et al. Characterization of androgenetic/biparental mosaic/chimeric conceptions, including those with a molar component: Morphology, p57 immnohistochemistry, molecular genotyping, and risk of persistent gestational trophoblastic disease. Int. J. Gynecol. Pathol. 2013, 32, 199–214. [Google Scholar] [CrossRef]
- Moussa, R.A.; Eesa, A.N.; Abdallah, Z.F.; Abdelmeged, A.; Mahran, A.; Bahaa, H. Diagnostic Utility of Twist1, Ki-67, and E-Cadherin in Diagnosing Molar Gestations and Hydropic Abortions. Am. J. Clin. Pathol. 2018, 149, 442–455. [Google Scholar] [CrossRef]
- Berkowitz, R.S.; Goldstein, D.P. Current management of gestational trophoblastic diseases. Gynecol. Oncol. 2009, 112, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Vang, R.; Yemelyanova, A.V.; Kurman, R.J.; Li, F.R.; Maambo, E.C.; Murphy, K.M.; DeScipio, C.; Thompson, C.B.; Ronnett, B.M. Diagnostic reproducibility of hydatidiform moles: Ancillary techniques (p57 immunohistochemistry and molecular genotyping) improve morphologic diagnosis for both recently trained and experienced gynecologic pathologists. Am. J. Surg. Pathol. 2012, 36, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
- Pirinen, E.; Soini, Y. A survey of zeb1, twist and claudin 1 and 4 expression during placental development and disease. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2014, 122, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, M.I.; Murthi, P.; Wafai, R.; Thompson, E.W.; Newgreen, D.F. Cadherins in the human placenta—Epithelial–mesenchymal transition (EMT) and placental development. Placenta 2010, 31, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Jahanbin, B.; Sarmadi, S.; Ghasemi, D.; Nili, F.; Moradi, J.-A.; Ghasemi, S. Pathogenic role of Twist-1 protein in hydatidiform molar pregnancies and investigation of its potential diagnostic utility in complete moles. Diagn. Pathol. 2023, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol. 2000, 182, 311–322. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, G.-W.; Zhang, X.-W.; Hang, B.O. Is Ki-67 of Diagnostic Value in Distinguishing Between Partial and Complete Hydatidiform Moles? A Systematic Review and Meta-analysis. Anticancer Res. 2018, 38, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Khooei, A.; Atabaki Pasdar, F.; Fazel, A.; Mahmoudi, M.; Nikravesh, M.R.; Khaje Delui, M.; Pourheydar, B. Ki-67 Expression in Hydatidiform Moles and Hydropic Abortions. Iran. Red Crescent Med. J. 2013, 15, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.; Süren, D.; Tutuş, B.; Toptaş, T.; Gökay, A.A.; Derbent, A.U.; Özel, M.K.; Sezer, C. Immunohistochemical Analysis of E-Cadherin, p53 and Inhibin-α Expression in Hydatidiform Mole and Hydropic Abortion. Pathol. Oncol. Res. POR 2016, 22, 515–521. [Google Scholar] [CrossRef]
- Ozaki, T.; Nakagawara, A. p53: The attractive tumor suppressor in the cancer research field. J. Biomed. Biotechnol. 2011, 2011, 603925. [Google Scholar] [CrossRef]
- Nabiha, M.; Hanène, L.; Sarra, M.; Essakly, A.; Nihed, A.; Sihem, H.; Moncef, M.; Mohamed Tahar, Y. Immunohistochemical analysis of c-erbB-2, Bcl-2, p53, p21WAF1/Cip1, p63 and Ki-67 expression in hydatidiform moles. Pathol. Res. Pract. 2019, 215, 446–452. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Shen, D.-H.; Gu, Y.-Q.; Zhong, P.-P.; Xie, J.-L.; Song, Q.-J.; Zhang, Y.-L.; Wen, J. Immunohistochemistry of p57 and p53 protein in differential diagnosis of hydropic abortion, partial and complete hydatidiform mole. Zhonghua Bing Li Xue Za Zhi Chin. J. Pathol. 2011, 40, 694–697. [Google Scholar]
- Kheradmand, P.; Goudarzi, M.; Tavakoli, M. Analysis of p53 expression in partial hydatidiform mole and hydropic abortion. Front. Biol. 2017, 12, 357–360. [Google Scholar] [CrossRef]
- Truong, A.B.; Kretz, M.; Ridky, T.W.; Kimmel, R.; Khavari, P.A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006, 20, 3185–3197. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, M.; Khanahmadi, M. Diagnostic value of P63 in differentiating normal gestation from molar pregnancy. J. Res. Med. Sci. 2013, 18, 462–466. [Google Scholar] [PubMed]
- Ramalho, L.N.Z.; Maggiori, M.S.; Ribeiro-Silva, A.; Peres, L.C. P63 Expression in Hydropic Abortion and Gestational Trophoblastic Diseases. Placenta 2006, 27, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabri, M.; Al-Badi, S.; Al-Kindi, H.; Arafa, M. Immunohistochemical expression of BCL-2 in hydatidiform moles: A tissue microarray study. Pathologica 2023, 1, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Stamatopoulos, N.; Espada Vaquero, M.; Leonardi, M.; Nadim, B.; Bailey, A.; Condous, G. Pre-operative classification of molar pregnancy: How good is ultrasound? Aust. N. Z. J. Obstet. Gynaecol. 2020, 60, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, I.; Spacey, A.; Scragg, B.; Szczepura, K. The diagnostic value and accuracy of ultrasound in diagnosing hydatidiform mole: A systematic review and meta-analysis of the literature. Radiography 2022, 28, 897–905. [Google Scholar] [CrossRef]
- Savage, J.L.; Maturen, K.E.; Mowers, E.L.; Pasque, K.B.; Wasnik, A.P.; Dalton, V.K.; Bell, J.D. Sonographic diagnosis of partial versus complete molar pregnancy: A reappraisal. J. Clin. Ultrasound 2016, 45, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.; Nash, B.M.; Wright, D.C. Molecular genetic studies of complete hydatidiform moles. Transl Pediatr 2015, 4, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, I.K.; Rosenbaum, A. Hydatidiform Mole in a Patient with a Concern for Neoplasia: A Case Report. Cureus 2020, 12, e10319. [Google Scholar] [CrossRef] [PubMed]
- Akyol, A.; Şimşek, M.; Üçer, Ö. Giant invasive mole presenting as a cause of abdominopelvic mass in a perimenopausal woman: An unusual presentation of a rare pathology. Obstet. Gynecol. Sci. 2016, 59, 548. [Google Scholar] [CrossRef]
- Joneborg, U.; Coopmans, L.; Trommel, N.v.; Seckl, M.; Lok, C.A.R. Fertility and pregnancy outcome in gestational trophoblastic disease. Int. J. Gynecol. Cancer 2021, 31, 399–411. [Google Scholar] [CrossRef]
Feature | Complete Hydatidiform Mole | Partial Hydatidiform Mole |
---|---|---|
Embryogenesis | Not compatible with embryogenesis | Compatible with embryogenesis |
Fetal tissue | Rarely contains fetal tissue | Contains fetal tissue |
Common karyotype | Diploid 46, XX | Triploid 69, XXY |
Genetic material | Only paternal genetic material present | Both maternal and paternal genetic material present |
Fertilization | Ovum without genetic material is fertilized by two sperm or a diploid sperm cell | Haploid ovum fertilized by two sperm cells or a diploid sperm |
Uterine anatomy | Uterine cavity is expanded by a friable and clear cystic mass | Uterine cavity is expanded by a friable and clear cystic mass |
Gross | Hydropic semitransparent villi of various sizes Absence of normal placental tissue Grossly, early CHM may have normal-appearing villi Advanced CHM may have a honeycomb appearance Honeycomb appearance rarely seen in the first trimester | Fetal parts may be seen on imaging and/or gross examination Grossly, PHM may have normal-appearing villi |
Histology | Florid cistern formation, diffuse and circumferential trophoblastic proliferation, and absence of fetal parts Hydropic swelling of poorly vascularized chorionic villi Cytological atypia and mitotic figures may be present In the first trimester, villi may have a polypoid morphology with abnormal villous stromal changes and some degree of trophoblastic hyperplasia | Some of the chorionic villi may appear normal Edematous state is appreciable on only some of the villi Slight trophoblastic proliferation with a focal distribution Histological features may be similar to CHM but less marked |
Nuclear p57 | Negative p57 nuclear staining due to absent expression of the gene in cytotrophoblast and stoma due to androgenic origin | Positive p57 nuclear staining due to maternal genes present |
Invasive potential | More invasive potential due to androgenic origin | Less invasive potential |
Risk of invasive mole and choriocarcinoma | Increased risk | No increased risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, J.; Popp, M.; Ocejo, S.; Abreu, A.; Bahmad, H.F.; Poppiti, R. Gestational Trophoblastic Disease: Complete versus Partial Hydatidiform Moles. Diseases 2024, 12, 159. https://doi.org/10.3390/diseases12070159
Gonzalez J, Popp M, Ocejo S, Abreu A, Bahmad HF, Poppiti R. Gestational Trophoblastic Disease: Complete versus Partial Hydatidiform Moles. Diseases. 2024; 12(7):159. https://doi.org/10.3390/diseases12070159
Chicago/Turabian StyleGonzalez, Jeffrey, Meagan Popp, Stephanie Ocejo, Alvaro Abreu, Hisham F. Bahmad, and Robert Poppiti. 2024. "Gestational Trophoblastic Disease: Complete versus Partial Hydatidiform Moles" Diseases 12, no. 7: 159. https://doi.org/10.3390/diseases12070159
APA StyleGonzalez, J., Popp, M., Ocejo, S., Abreu, A., Bahmad, H. F., & Poppiti, R. (2024). Gestational Trophoblastic Disease: Complete versus Partial Hydatidiform Moles. Diseases, 12(7), 159. https://doi.org/10.3390/diseases12070159