Impact of Ocrelizumab on Disease Progression, Memory Improvement, and Quality of Life in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal MRI and Clinical Criteria Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework and Ethical Considerations
2.2. Participant Selection and Definitions
2.3. Study Variables
2.4. Study Surveys
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Literature Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hauer, L.; Perneczky, J.; Sellner, J. A global view of comorbidity in multiple sclerosis: A systematic review with a focus on regional differences, methodology, and clinical implications. J. Neurol. 2021, 268, 4066–4077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barkhane, Z.; Elmadi, J.; Satish Kumar, L.; Pugalenthi, L.S.; Ahmad, M.; Reddy, S. Multiple Sclerosis and Autoimmunity: A Veiled Relationship. Cureus 2022, 14, e24294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.-Y.; Chan, K.-H. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024, 16, 120. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Rempe, T.; Whitmire, N.; Dunn-Pirio, A.; Graves, J.S. Therapeutic Advances in Multiple Sclerosis. Front. Neurol. 2022, 13, 824926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, M.; Zhang, J.; Zhang, Y.; Luo, J.; Shi, S. Ocrelizumab for multiple sclerosis. Cochrane Database Syst. Rev. 2022, 5, CD013247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCool, R.; Wilson, K.; Arber, M.; Fleetwood, K.; Toupin, S.; Thom, H.; Bennett, I.; Edwards, S. Systematic review and network meta-analysis comparing ocrelizumab with other treatments for relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 29, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cañibano, B.; Ouanes, S.; Ganesan, G.S.; Yousuf, W.; Humos, B.; Baig, T.; Ibrahim, F.; Singh, R.; Deleu, D. Real-world experience of ocrelizumab in multiple sclerosis in an Arab population. J. Drug Assess. 2021, 10, 106–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez-Diaz, E.; Perez-Vicente, J.A.; Villaverde-Gonzalez, R.; Berenguer-Ruiz, L.; Candeliere Merlicco, A.; Martinez-Navarro, M.L.; Gracia Gil, J.; Romero-Sanchez, C.M.; Alfaro-Saez, A.; Diaz, I.; et al. Real-world experience of ocrelizumab in multiple sclerosis in a Spanish population. Ann. Clin. Transl. Neurol. 2021, 8, 385–394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Selmaj, K.; Cree, B.A.; Barnett, M.; Thompson, A.; Hartung, H.P. Multiple sclerosis: Time for early treatment with high-efficacy drugs. J. Neurol. 2024, 271, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Smoot, K.; Chen, C.; Stuchiner, T.; Lucas, L.; Grote, L.; Cohan, S. Clinical outcomes of patients with multiple sclerosis treated with ocrelizumab in a US community MS center: An observational study. BMJ Neurol. Open 2021, 3, e000108. [Google Scholar] [CrossRef] [PubMed]
- Barkhof, F.; Kappos, L.; Wolinsky, J.S.; Li, D.K.B.; Bar-Or, A.; Hartung, H.P.; Belachew, S.; Han, J.; Julian, L.; Sauter, A.; et al. Onset of clinical and MRI efficacy of ocrelizumab in relapsing multiple sclerosis. Neurology 2019, 93, e1778–e1786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abuaf, A.F.; Javed, A.; Bunting, S.R.; Carroll, T.J.; Reder, A.T.; Cipriani, V.P. Effectiveness of ocrelizumab on clinical and MRI outcome measures in multiple sclerosis across black and white cohorts: A single-center retrospective study. Mult. Scler. Relat. Disord. 2023, 71, 104523. [Google Scholar] [CrossRef] [PubMed]
- Sabanagic-Hajric, S.; Suljic, E.; Memic-Serdarevic, A.; Sulejmanpasic, G.; Mahmutbegovic, N. Quality of Life in Multiple Sclerosis Patients: Influence of Gender, Age and Marital Status. Mater. Sociomed. 2022, 34, 19–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bass, A.D.; Van Wijmeersch, B.; Mayer, L.; Mäurer, M.; Boster, A.; Mandel, M.; Mitchell, C.; Sharrock, K.; Singer, B. Effect of Multiple Sclerosis on Daily Activities, Emotional Well-Being, and Relationships: The Global vsMS Survey. Int. J. MS Care 2020, 22, 158–164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salehpoor, G.; Rezaei, S.; Hosseininezhad, M. Quality of life in multiple sclerosis (MS) and role of fatigue, depression, anxiety, and stress: A bicenter study from north of Iran. Iran. J. Nurs. Midwifery Res. 2014, 19, 593–599. [Google Scholar] [PubMed] [PubMed Central]
- Newsome, S.D.; Binns, C.; Kaunzner, U.W.; Morgan, S.; Halper, J. No Evidence of Disease Activity (NEDA) as a Clinical Assessment Tool for Multiple Sclerosis: Clinician and Patient Perspectives [Narrative Review]. Neurol. Ther. 2023, 12, 1909–1935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fox, E.J.; Markowitz, C.; Applebee, A.; Montalban, X.; Wolinsky, J.S.; Belachew, S.; Fiore, D.; Pei, J.; Musch, B.; Giovannoni, G. Ocrelizumab reduces progression of upper extremity impairment in patients with primary progressive multiple sclerosis: Findings from the phase III randomized ORATORIO trial. Mult. Scler. 2018, 24, 1862–1870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortese, R.; Testa, G.; Assogna, F.; De Stefano, N. Magnetic Resonance Imaging Evidence Supporting the Efficacy of Cladribine Tablets in the Treatment of Relapsing-Remitting Multiple Sclerosis. CNS Drugs 2024, 38, 267–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Baker, S.; Nashatizadeh, M.; Thuringer, A.; Thelen, J.; Bruce, J. Disability measurement in Multiple Sclerosis patients 55 years and older: What is the Expanded Disability Status Scale really telling clinicians? Mult. Scler. Relat. Disord. 2021, 49, 102724. [Google Scholar] [CrossRef] [PubMed]
- TW Group. The World Health Organization Quality of Life Assessment (WHOQOL): Development and general psychometric properties. Soc. Sci. Med. 1998, 46, 1569–1585. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Jaekal, E.; Yoon, S.; Lee, S.H.; Choi, K.H. Diagnostic Utility and Psychometric Properties of the Beck Depression Inventory-II Among Korean Adults. Front. Psychol. 2020, 10, 2934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, J.L.; Weintraub, S.; Coventry, C.; Xu, J.; Zhang, H.; Rogalski, E.; Mesulam, M.M.; Gefen, T. Montreal Cognitive Assessment (MoCA) Performance and Domain-Specific Index Scores in Amnestic Versus Aphasic Dementia. J. Int. Neuropsychol. Soc. 2020, 26, 927–931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glanz, B.I.; Zurawski, J.; Casady, E.C.; Shamah, R.; Weiner, M.; Chitnis, T.; Weiner, H.L.; Healy, B.C. The impact of ocrelizumab on health-related quality of life in individuals with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2021, 7, 20552173211007523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hersh, C.M.; Pang, M.; Miller, D.M.; McGinley, M.P.; Hyland, M.; Ziemssen, T.; Avila, R.L. Comparison of time to clinically meaningful improvement in quality of life in neurological disorders in patients treated with natalizumab versus ocrelizumab. Neurodegener. Dis. Manag. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kister, I.; Oh, C.; Douglas, E.A.; Bacon, T.E.; O’Shea, I.L.; Parrotta, E.H.; Bouley, A.; Lathi, E.; Katz, J. No Increase in Symptoms Toward the End of the Ocrelizumab Infusion Cycle in Patients With Multiple Sclerosis: Symptom Burden on Ocrelizumab: A Longitudinal Study (SymBOLS). Neurol. Clin. Pract. 2023, 13, e200185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ingwersen, J.; Masanneck, L.; Pawlitzki, M.; Samadzadeh, S.; Weise, M.; Aktas, O.; Meuth, S.G.; Albrecht, P. Real-world evidence of ocrelizumab-treated relapsing multiple sclerosis cohort shows changes in progression independent of relapse activity mirroring phase 3 trials. Sci. Rep. 2023, 13, 15003. [Google Scholar] [CrossRef] [PubMed]
- Sempere, A.P.; Berenguer-Ruiz, L.; Borrego-Soriano, I.; Burgos-San Jose, A.; Concepcion-Aramendia, L.; Volar, L.; Aragones, M.; Palazón-Bru, A. Ocrelizumab in Multiple Sclerosis: A Real-World Study From Spain. Front. Neurol. 2021, 11, 592304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 93 | SD/% |
---|---|---|
Age (mean ± SD) | 37.8 | 9.23 |
Age range | 23–55 | – |
Gender | ||
Male | 36 | 38.71% |
Female | 57 | 61.29% |
Age at MS diagnosis (mean ± SD) | 29.3 | 7.45 |
Disease duration (mean ± SD) | 8.2 | 4.56 |
Previous JC virus infection | 21 | 22.58% |
Ocrelizumab side effects * | 17 | 18.27% |
Previous treatment | ||
Glatiramer acetate (Copaxone) | 20 | 21.51% |
Interferon beta-1a (Rebif/Avonex/Betaferon) | 25 | 26.88% |
Teriflunomide (Aubagio) | 22 | 23.66% |
Natalizumab (Tysabri) | 24 | 25.81% |
Daclizumab | 2 | 2.15% |
Dimethyl fumarate (Tecfidera) | 4 | 4.30% |
Ozanimod | 1 | 1.08% |
Fingolimod (Gilenya) | 1 | 1.08% |
Cladribine (Mavenclad) | 1 | 1.08% |
Variables | At Treatment Onset (n = 93) | At 1 Year (n = 93) | p-Value |
---|---|---|---|
EDSS (mean ± SD) | 4.61 ± 1.80 | 4.08 ± 1.66 | 0.038 |
MRI disease features | <0.001 | ||
1 (stationary lesions) | 30 (32.26 %) | 68 (73.12%) | |
2 (expansive lesions) * | 63 (67.74%) | 25 (26.88%) | |
Clinical criteria | <0.001 | ||
1 (stable) | 17 (18.28%) | 67 (72.04%) | |
2 (after acute episode) | 56 (60.22%) | 13 (13.98%) | |
3 (progression) | 20 (21.51%) | 13 (13.98%) | |
Lymphocytes (103/mm3) | 3472.5 ± 278.6 | 2613.6 ± 287.4 | <0.001 |
WHOQOL | At Treatment Onset (n = 93) | At 1 Year (n = 93) | p-Value |
---|---|---|---|
Physical domain | 58.42 ± 14.79 | 64.84 ± 16.05 | 0.005 |
Psychological domain | 60.88 ± 16.29 | 65.11 ± 17.16 | 0.086 |
Social domain | 57.63 ± 22.91 | 62.48 ± 24.85 | 0.168 |
Environmental domain | 63.21 ± 15.83 | 68.44 ± 17.34 | 0.033 |
Scales | At Treatment Onset (n = 93) | At 1 Year (n = 93) | p-Value |
---|---|---|---|
BDI total score | 14.35 ± 6.87 | 11.62 ± 5.64 | 0.003 |
MOCA | |||
Execution | 2.76 ± 0.52 | 2.98 ± 0.49 | 0.003 |
Naming | 2.47 ± 0.68 | 2.79 ± 0.57 | <0.001 |
Attention | 4.21 ± 1.04 | 4.48 ± 0.82 | 0.051 |
Language | 1.69 ± 0.82 | 1.97 ± 0.63 | 0.011 |
Abstraction | 1.23 ± 0.46 | 1.41 ± 0.45 | 0.007 |
Recall | 2.34 ± 0.92 | 2.76 ± 0.74 | <0.001 |
Orientation | 5.68 ± 0.62 | 5.91 ± 0.55 | 0.008 |
Total | 20.38 ± 2.95 | 22.30 ± 2.54 | <0.001 |
Variable | Subgroups | Outcome | Change/Effect | p-Value | Confounders Adjustment |
---|---|---|---|---|---|
Gender | Male vs. Female | EDSS score reduction | Males: −0.48, Females: −0.75 | 0.037 | Age, disease duration |
Age at MS diagnosis | ≤25 years vs. >25 years | MOCA score improvement | ≤25: +2.5 points, >25: +1.8 points | 0.045 | Gender, previous treatment |
WHOQOL Improvement | Improvement scores: ≤25: +6.1 points, >25: +4.2 points | 0.086 | Gender, disease duration | ||
Previous treatment | Natalizumab vs. First-line | MRI lesion progression | Reduction in new lesions: Natalizumab users: −29.6%, First-line: −11.3% | 0.015 | Age, gender |
Multivariate interaction | Gender * Natalizumab | WHOQOL improvement | Improvement scores: Females with Natalizumab: +6.9 points, Others: +3.2 points | 0.032 | Full model (all confounders) |
Age at Diagnosis * MOCA | Cognitive outcomes | Improvement scores: Early-diagnosed: +3.3 points, Late-diagnosed: +1.4 points | 0.018 | Full model (all confounders) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuldesz, A.C.; Maganti, R.K.; Tudor, R.; Cornea, A.; Prodan, M.; Toma, A.-O.; Fericean, R.M.; Simu, M. Impact of Ocrelizumab on Disease Progression, Memory Improvement, and Quality of Life in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal MRI and Clinical Criteria Analysis. Diseases 2024, 12, 127. https://doi.org/10.3390/diseases12060127
Schuldesz AC, Maganti RK, Tudor R, Cornea A, Prodan M, Toma A-O, Fericean RM, Simu M. Impact of Ocrelizumab on Disease Progression, Memory Improvement, and Quality of Life in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal MRI and Clinical Criteria Analysis. Diseases. 2024; 12(6):127. https://doi.org/10.3390/diseases12060127
Chicago/Turabian StyleSchuldesz, Amanda Claudia, Ram Kiram Maganti, Raluca Tudor, Amalia Cornea, Mihaela Prodan, Ana-Olivia Toma, Roxana Manuela Fericean, and Mihaela Simu. 2024. "Impact of Ocrelizumab on Disease Progression, Memory Improvement, and Quality of Life in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal MRI and Clinical Criteria Analysis" Diseases 12, no. 6: 127. https://doi.org/10.3390/diseases12060127
APA StyleSchuldesz, A. C., Maganti, R. K., Tudor, R., Cornea, A., Prodan, M., Toma, A. -O., Fericean, R. M., & Simu, M. (2024). Impact of Ocrelizumab on Disease Progression, Memory Improvement, and Quality of Life in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal MRI and Clinical Criteria Analysis. Diseases, 12(6), 127. https://doi.org/10.3390/diseases12060127