Utility of Lean Body Mass Equations and Body Mass Index for Predicting Outcomes in Critically Ill Adults with Sepsis: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. JIPAD
2.3. Patients
2.4. BMI
2.5. Lean Body Mass Calculation
Females: lean body mass (kg) = −15.034 − (0.018 × age [y]) + (0.165 × height [cm]) + (0.409 × weight [kg])
Females: lean body mass (kg) = (9.27 × 103 × weight [kg])/(8.78 × 103 + 244 × BMI [kg/m2])
2.6. Outcome
2.7. Variables
2.8. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar] [CrossRef]
- Wojtara, T.; Alnajjar, F.; Shimoda, S.; Kimura, H. Muscle synergy stability and human balance maintenance. J. NeuroEngineering Rehabil. 2014, 11, 129. [Google Scholar] [CrossRef]
- Rai, M.; Demontis, F. Muscle-to-brain signaling via myokines and myometabolites. Brain Plast. 2022, 8, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef]
- Au, P.C.; Li, H.L.; Lee, G.K.; Li, G.H.; Chan, M.; Cheung, B.M.; Wong, I.C.; Lee, V.H.; Mok, J.; Yip, B.H.; et al. Sarcopenia and mortality in cancer: A meta-analysis. Osteoporos. Sarcopenia 2021, 7, S28–S33. [Google Scholar] [CrossRef]
- Jogiat, U.M.; Sasewich, H.; Turner, S.R.; Baracos, V.; Eurich, D.T.; Filafilo, H.; Bédard, E.L.R. Sarcopenia determined by skeletal muscle index predicts overall survival, disease-free survival, and postoperative complications in resectable esophageal cancer: A systematic review and meta-analysis. Ann. Surg. 2022, 276, e311–e318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Chen, Y.; Shen, X.; Pan, H.; Yu, W. Impact of muscle mass on survival in patients with sepsis: A systematic review and meta-analysis. Ann. Nutr. Metab. 2021, 77, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Looijaard, W.; Molinger, J.; Weijs, P.J.M. Measuring and monitoring lean body mass in critical illness. Curr. Opin. Crit. Care 2018, 24, 241–247. [Google Scholar] [CrossRef]
- Jaitovich, A.; Dumas, C.L.; Itty, R.; Chieng, H.C.; Khan, M.M.H.S.; Naqvi, A.; Fantauzzi, J.; Hall, J.B.; Feustel, P.J.; Judson, M.A. ICU admission body composition: Skeletal muscle, bone, and fat effects on mortality and disability at hospital discharge—A prospective, cohort study. Crit. Care 2020, 24, 566. [Google Scholar] [CrossRef]
- Thackeray, M.; Mohebbi, M.; Orford, N.; Kotowicz, M.A.; Pasco, J.A. Lean mass as a risk factor for intensive care unit admission: An observational study. Crit. Care 2021, 25, 364. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The underappreciated role of low muscle mass in the management of malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Cederholm, T.; Correia, M.; Gonzalez, M.C.; Higashiguch, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition diagnosis of malnutrition. JPEN J. Parenter. Enteral Nutr. 2022, 46, 1232–1242. [Google Scholar] [CrossRef]
- Narayan, S.K.; Gudivada, K.K.; Krishna, B. Assessment of nutritional status in the critically ill. Indian. J. Crit. Care Med. 2020, 24, S152–S156. [Google Scholar] [CrossRef]
- Mueller, C.; Compher, C.; Ellen, D.M.; American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors. A.S.P.E.N. Clinical guidelines: Nutrition screening, assessment, and intervention in adults. JPEN J. Parenter. Enteral Nutr. 2011, 35, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Tsutsumi, R.; Okayama, Y.; Takashima, T.; Ueno, Y.; Itagaki, T.; Tsutsumi, Y.; Sakaue, H.; Oto, J. Monitoring of muscle mass in critically ill patients: Comparison of ultrasound and two bioelectrical impedance analysis devices. J. Intensive Care 2019, 7, 61. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Gu, Q.; Gu, Y.; Zhao, Y.; Ge, X.; Sun, X.; Lian, J.; Zeng, Q. Changes in muscle ultrasound for the diagnosis of intensive care unit acquired weakness in critically ill patients. Sci. Rep. 2021, 11, 18280. [Google Scholar] [CrossRef]
- Sánchez Romero, E.A.; Alonso Pérez, J.L.; Muñoz Fernández, A.C.; Battaglino, A.; Castaldo, M.; Cleland, J.A.; Villafañe, J.H. Reliability of sonography measures of the lumbar multifidus and transversus abdominis during static and dynamic activities in subjects with non-specific chronic low back pain. Diagnostics 2021, 11, 632. [Google Scholar] [CrossRef]
- Nawata, K.; Nakanishi, N.; Inoue, S.; Liu, K.; Nozoe, M.; Ono, Y.; Yamada, I.; Katsukawa, H.; Kotani, J. Current practice and barriers in the implementation of ultrasound-based assessment of muscle mass in Japan: A nationwide, web-based cross-sectional study. PLoS ONE 2022, 17, e0276855. [Google Scholar] [CrossRef]
- Kulkarni, B.; Kuper, H.; Taylor, A.; Wells, J.C.; Radhakrishna, K.V.; Kinra, S.; Ben-Shlomo, Y.; Smith, G.D.; Ebrahim, S.; Byrne, N.M.; et al. Development and validation of anthropometric prediction equations for estimation of lean body mass and appendicular lean soft tissue in Indian men and women. J. Appl. Physiol. 2013, 115, 1156–1162. [Google Scholar] [CrossRef]
- Weijs, P.J.; Sauerwein, H.P.; Kondrup, J. Protein recommendations in the ICU: G protein/kg body weight—Which body weight for underweight and obese patients? Clin. Nutr. 2012, 31, 774–775. [Google Scholar] [CrossRef]
- Janmahasatian, S.; Duffull, S.B.; Ash, S.; Ward, L.C.; Byrne, N.M.; Green, B. Quantification of lean bodyweight. Clin. Pharmacokinet. 2005, 44, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef]
- Moisey, L.L.; Mourtzakis, M.; Kozar, R.A.; Compher, C.; Heyland, D.K. Existing equations to estimate lean body mass are not accurate in the critically ill: Results of a multicenter observational study. Clin. Nutr. 2017, 36, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Irie, H.; Okamoto, H.; Uchino, S.; Endo, H.; Uchida, M.; Kawasaki, T.; Kumasawa, J.; Tagami, T.; Shigemitsu, H.; Hashiba, E.; et al. The Japanese Intensive care PAtient Database (JIPAD): A national intensive care unit registry in Japan. J. Crit. Care 2020, 55, 86–94. [Google Scholar] [CrossRef]
- Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch. Intern. Med. 1998, 158, 1855–1867. [CrossRef]
- Hutagalung, R.; Marques, J.; Kobylka, K.; Zeidan, M.; Kabisch, B.; Brunkhorst, F.; Reinhart, K.; Sakr, Y. The obesity paradox in surgical intensive care unit patients. Intensive Care Med. 2011, 37, 1793–1799. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.J.; Kim, T.H.; Jang, J.H.; Jeon, K.; Oh, D.K.; Park, M.H.; Lim, C.-M.; Kim, K.; Cho, W.H.; Korean Sepsis Alliance (KSA) Investigators. Obesity paradox and functional outcomes in sepsis: A multicenter prospective study. Crit. Care Med. 2023, 51, 742–752. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Chen, Q.; Liu, C.; Huang, C.; Fang, X. The role of increased body mass index in outcomes of sepsis: A systematic review and meta-analysis. BMC Anesthesiol. 2017, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kudo, D.; Kushimoto, S.; Hasegawa, M.; Ito, F.; Yamanouchi, S.; Honda, H.; Andoh, K.; Furukawa, H.; Yamada, Y.; et al. Associations between low body mass index and mortality in patients with sepsis: A retrospective analysis of a cohort study in Japan. PLoS ONE 2021, 16, e0252955. [Google Scholar] [CrossRef] [PubMed]
- Lew, C.C.H.; Yandell, R.; Fraser, R.J.L.; Chua, A.P.; Chong, M.F.F.; Miller, M. Association between malnutrition and clinical outcomes in the intensive care unit: A systematic review. JPEN J. Parenter. Enteral Nutr. 2017, 41, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Soloff, M.A.; Vargas, M.V.; Wei, C.; Ohnona, A.; Tyan, P.; Gu, A.; Georgakopoulos, B.; Thomas, C.A.; Quan, T.; Barishansky, S.; et al. Malnutrition is associated with poor postoperative outcomes following laparoscopic hysterectomy. Jsls 2021, 25, e2020.00084. [Google Scholar] [CrossRef]
- Lew, C.C.H.; Wong, G.J.Y.; Cheung, K.P.; Chua, A.P.; Chong, M.F.F.; Miller, M. Association between malnutrition and 28-Day mortality and intensive care length-of-stay in the critically ill: A prospective cohort study. Nutrients 2017, 10, 10. [Google Scholar] [CrossRef]
- Nakanishi, N.; Okura, K.; Okamura, M.; Nawata, K.; Shinohara, A.; Tanaka, K.; Katayama, S. Measuring and monitoring skeletal muscle mass after stroke: A review of current methods and clinical applications. J. Stroke Cerebrovasc. Dis. 2021, 30, 105736. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The utility of body composition assessment in nutrition and clinical practice: An overview of current methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Nakanishi, N.; Inoue, S.; Tsutsumi, R.; Akimoto, Y.; Ono, Y.; Kotani, J.; Sakaue, H.; Oto, J. Rectus femoris mimicking ultrasound phantom for muscle mass assessment: Design, research, and training application. J. Clin. Med. 2021, 10, 2721. [Google Scholar] [CrossRef]
- Nakanishi, N.; Inoue, S.; Ono, Y.; Sugiyama, J.; Takayama, K.; Arai, Y.; Nakamura, K.; Oto, J.; Kotani, J. Ultrasound-based upper limb muscle thickness is useful for screening low muscularity during intensive care unit admission: A retrospective study. Clin. Nutr. ESPEN 2023, 57, 569–574. [Google Scholar] [CrossRef]
- Arai, Y.; Nakanishi, N.; Ono, Y.; Inoue, S.; Kotani, J.; Harada, M.; Oto, J. Ultrasound assessment of muscle mass has potential to identify patients with low muscularity at intensive care unit admission: A retrospective study. Clin. Nutr. ESPEN 2021, 45, 177–183. [Google Scholar] [CrossRef]
Variables | Overall (n = 3916) |
---|---|
Age, mean ± SD, y | 70.5 ± 14.1 |
Male, n (%) | 2399 (61.3%) |
Weight | 55.0 (46.8–64.2) |
Height | 160.0 (152.0–167.0) |
Comorbidities, n (%) | |
Chronic heart failure | 58 (1.5%) |
Chronic respiratory failure | 105 (2.7%) |
Chronic liver failure | 36 (0.9%) |
Immunocompromised | 547 (14.0%) |
Sepsis classifications, n (%) | |
Sepsis | 968 (24.7%) |
Sepsis with urinary tract infection | 166 (4.2%) |
Septic shock | 2307 (58.9%) |
Septic shock with urinary tract infection | 475 (12.1%) |
Mechanical ventilation, n (%) | 1222 (31.2%) |
APACHE II score | 23 (18–30) |
APACHE III score | 89 (71–114) |
SAPS II score | 51 (39–66) |
SOFA score | 8 (6–12) |
ICU admission route, n (%) | |
Transfer from the ward | 1459 (37.3%) |
Through the emergency room | 1447 (37.0%) |
Following elective surgery | 747 (19.1%) |
Following urgent surgery | 69 (1.8%) |
Length of ICU stay | 7 (3–19) |
Mortality, n (%) | 1203 (30.7%) |
Body mass index (kg/m2) | 21.6 (19.0–24.5) |
Underweight (<18.5 kg/m2), n (%) | 838 (21.4%) |
Normal (≥18.5 to <25 kg/m2), n (%) | 2229 (56.9%) |
Overweight (≥25 to <30 kg/m2), n (%) | 652 (16.6%) |
Obese (≥30 kg/m2), n (%) | 197 (5.0%) |
Lean body mass by Kulkarni et al. [22], kg | 38.3 (30.1–45.1) |
Lean body mass by Weijs et al. [23], kg | 42.5 (35.3–48.8) |
Lean body mass by Janmahasatian et al. [24], kg | 42.6 (33.8–49.5) |
Lean body mass by Hume et al. [25], kg | 42.9 (38.2–47.4) |
BMI | Underweight | Normal | Overweight | Obese |
---|---|---|---|---|
Age, mean ± SD, y | 70.8 ± 15.8 | 71.4 ± 13.2 | 69.6 ± 13.4 | 62.5 ± 14.8 |
Male, n (%) | 471 (56.2%) | 1422 (63.8%) | 409 (62.7%) | 97 (49.2%) |
APACHE II score | 24 (19–31) | 23 (18–30) | 22 (17–29) | 23 (18–32) |
SOFA score | 8 (5–11) | 8 (6–11) | 9 (6–12) | 10 (7–13) |
Lean body mass by Kulkarni et al. | Q1 | Q2 | Q3 | Q4 |
Age, mean ± SD, y | 74.3 ± 14.7 | 72.1 ± 13.5 | 70.4 ± 12.9 | 65.3 ± 13.5 |
Male, n (%) | 47 (4.8%) | 487 (49.7%) | 910 (93.0%) | 955 (97.5%) |
APACHE II score | 24 (18–30) | 24 (18–30) | 23 (18–30) | 23 (17–30) |
SOFA score | 8 (5–11) | 9 (6–12) | 8 (5–11) | 9 (6–12) |
Lean body mass by Weijs et al. | Q1 | Q2 | Q3 | Q4 |
Age, mean ± SD, y | 75.7 ± 13.6 | 71.7 ± 13.9 | 70.5 ± 12.5 | 64.1 ± 13.7 |
Male, n (%) | 58 (5.9%) | 474 (48.4%) | 906 (92.5%) | 961 (98.2%) |
APACHE II score | 24 (19–30) | 23 (18–30) | 23 (18–30) | 23 (17–29) |
SOFA score | 8 (5–12) | 9 (6–11) | 8 (5–11) | 9 (6–12) |
Lean body mass by Janmahasatian et al. | Q1 | Q2 | Q3 | Q4 |
Age, mean ± SD, y | 73.8 ± 15.1 | 71.6 ± 13.6 | 70.6 ± 13.0 | 66.1 ± 13.3 |
Male, n (%) | 41 (4.2%) | 457 (46.7%) | 927 (94.7%) | 974 (99.5%) |
APACHE II score | 24 (18–30) | 23 (18–30) | 24 (18–30) | 22 (17–30) |
SOFA score | 8 (5–11) | 9 (6–11) | 8 (5–11) | 9 (6–12) |
Lean body mass by Hume et al. | Q1 | Q2 | Q3 | Q4 |
Age, mean ± SD, y | 75.7 ± 13.7 | 71.8 ± 13.5 | 70.1 ± 12.7 | 64.4 ± 13.9 |
Male, n (%) | 169 (17.3%) | 524 (53.5%) | 805 (82.2%) | 901 (92.0%) |
APACHE II score | 24 (19–30) | 23 (18–30) | 23 (17–30) | 23 (17–30) |
SOFA score | 8 (5–11) | 9 (6–11) | 8 (5–11) | 9 (6–12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, R.; Nakanishi, N.; Ishihara, M.; Oto, J.; Kotani, J. Utility of Lean Body Mass Equations and Body Mass Index for Predicting Outcomes in Critically Ill Adults with Sepsis: A Retrospective Study. Diseases 2024, 12, 30. https://doi.org/10.3390/diseases12020030
Shimizu R, Nakanishi N, Ishihara M, Oto J, Kotani J. Utility of Lean Body Mass Equations and Body Mass Index for Predicting Outcomes in Critically Ill Adults with Sepsis: A Retrospective Study. Diseases. 2024; 12(2):30. https://doi.org/10.3390/diseases12020030
Chicago/Turabian StyleShimizu, Rumiko, Nobuto Nakanishi, Manabu Ishihara, Jun Oto, and Joji Kotani. 2024. "Utility of Lean Body Mass Equations and Body Mass Index for Predicting Outcomes in Critically Ill Adults with Sepsis: A Retrospective Study" Diseases 12, no. 2: 30. https://doi.org/10.3390/diseases12020030
APA StyleShimizu, R., Nakanishi, N., Ishihara, M., Oto, J., & Kotani, J. (2024). Utility of Lean Body Mass Equations and Body Mass Index for Predicting Outcomes in Critically Ill Adults with Sepsis: A Retrospective Study. Diseases, 12(2), 30. https://doi.org/10.3390/diseases12020030