Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Analyses
2.3. Biochemical Investigations and CKD Stage
2.4. Endothelial Function Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [PubMed]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, F.H.; Pannier, B.; Guérin, A.P.; Boutouyrie, P.; Laurent, S.; London, G.M. Flow-mediated vasodilation in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2009–2015. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Saglam, M.; Caglar, K.; Cakir, E.; Sonmez, A.; Ozgurtas, T.; Aydin, A.; Eyileten, T.; Ozcan, O.; Acikel, C.; et al. The determinants of endothelial dysfunction in CKD: Oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis. 2006, 47, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular disease in chronic kidney disease: Pathophysiological insights and therapeutic options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Baaten, C.C.F.M.J.; Vondenhoff, S.; Noels, H. Endothelial cell dysfunction and increased cardiovascular risk in patients with chronic kidney disease. Circ. Res. 2023, 132, 970–992. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: A 2020 update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef]
- Vila Cuenca, M.; Hordijk, P.L.; Vervloet, M.G. Most exposed: The endothelium in chronic kidney disease. Nephrol. Dial. Transplant. 2020, 35, 1478–1487. [Google Scholar] [CrossRef]
- Verzola, D.; Barisione, C.; Picciotto, D.; Garibotto, G.; Koppe, L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019, 95, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Han, H.Q.; Zhou, X.; Mitch, W.E.; Goldberg, A.L. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol. 2013, 45, 2333–2347. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wong, S.; Bhasin, S. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS ONE 2013, 8, e71017. [Google Scholar] [CrossRef] [PubMed]
- Verzola, D.; Milanesi, S.; Bertolotto, M.; Garibaldi, S.; Villaggio, B.; Brunelli, C.; Balbi, M.; Ameri, P.; Montecucco, F.; Palombo, D.; et al. Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular smooth muscle cell dysfunction and monocyte recruitment. Sci. Rep. 2017, 7, 46362. [Google Scholar] [CrossRef]
- Enoki, Y.; Watanabe, H.; Arake, R.; Fujimura, R.; Ishiodori, K.; Imafuku, T.; Nishida, K.; Sugimoto, R.; Nagao, S.; Miyamura, S.; et al. Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J. Cachexia Sarcopenia Muscle 2017, 8, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lu, L.; Hua, Y.; Huang, K.; Wang, I.; Huang, L.; Fu, Q.; Chen, A.; Chan, P.; Fan, H.; et al. Vasculopathy in the setting of cardiorenal syndrome: Roles of protein-bound uremic toxins. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H1–H13. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Huang, P.Y.; Tsai, J.P.; Chen, Y.C.; Lee, M.C.; Hsu, B.G. The correlation of serum myostatin levels with gait speed in kidney transplantation recipients. Int. J. Environ. Res. Public Health 2022, 19, 465. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Lee, C.J.; Lin, Y.L.; Wang, C.H.; Hsu, B.G. The association between serum adiponectin levels and endothelial function in non-dialysis-dependent chronic kidney disease patients. Biomedicines 2023, 11, 2174. [Google Scholar] [CrossRef]
- Naghavi, M.; Yen, A.A.; Lin, A.W.; Tanaka, H.; Kleis, S. New Indices of endothelial function measured by digital thermal monitoring of vascular reactivity: Data from 6084 patients registry. Int. J. Vasc. Med. 2016, 2016, 1348028. [Google Scholar] [CrossRef]
- Lerman, A.; Zeiher, A.M. Endothelial function: Cardiac events. Circulation 2005, 111, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, E.; Flammer, A.J.; Lerman, L.O.; Elízaga, J.; Lerman, A.; Fernández-Avilés, F. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 2013, 34, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Sugiyama, S.; Yamamoto, E.; Matsuzawa, Y.; Akiyama, E.; Kusaka, H.; Fujisue, K.; Kurokawa, H.; Matsubara, J.; Sugamura, K.; et al. Endothelial function and cardiovascular events in chronic kidney disease. Int. J. Cardiol. 2014, 173, 481–486. [Google Scholar] [CrossRef]
- Cerqueira, A.; Quelhas-Santos, J.; Sampaio, S.; Ferreira, I.; Relvas, M.; Marques, N.; Dias, C.C.; Pestana, M. Endothelial dysfunction is associated with cerebrovascular events in pre-dialysis CKD patients: A prospective study. Life 2021, 11, 128. [Google Scholar] [CrossRef]
- Seals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. 2011, 120, 357–375. [Google Scholar] [CrossRef]
- Higashi, Y.; Kihara, Y.; Noma, K. Endothelial dysfunction and hypertension in aging. Hypertens. Res. 2012, 35, 1039–1047. [Google Scholar] [CrossRef]
- Linden, E.; Cai, W.; He, J.C.; Xue, C.; Li, Z.; Winston, J.; Vlassara, H.; Uribarri, J. Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin. J. Am. Soc. Nephrol. 2008, 3, 691–698. [Google Scholar] [CrossRef]
- Annuk, M.; Lind, L.; Linde, T.; Fellström, B. Impaired endothelium-dependent vasodilatation in renal failure in humans. Nephrol. Dial. Transplant. 2001, 16, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Stehouwer, C.D.; Gall, M.A.; Twisk, J.W.; Knudsen, E.; Emeis, J.J.; Parving, H.H. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: Progressive, interrelated, and independently associated with risk of death. Diabetes 2002, 51, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, D.; Zhang, K.; Yu, B.; Chen, X.; Meng, J. Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signal 2007, 19, 2286–2295. [Google Scholar] [CrossRef]
- Yano, S.; Nagai, A.; Isomura, M.; Yamasaki, M.; Kijima, T.; Takeda, M.; Hamano, T.; Nabika, T. Relationship between blood myostatin levels and kidney function: Shimane CoHRE Study. PLoS ONE 2015, 10, e0141035. [Google Scholar] [CrossRef]
- Gallo, G.; Volpe, M.; Savoia, C. Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front. Med. 2022, 8, 798958. [Google Scholar] [CrossRef]
- Bataille, S.; Chauveau, P.; Fouque, D.; Aparicio, M.; Koppe, L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 1986–1993. [Google Scholar] [CrossRef]
- Baczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a biomarker of muscle wasting and other pathologies-state of the art and knowledge Gaps. Nutrients 2020, 12, 2401. [Google Scholar] [CrossRef] [PubMed]
- Bataille, S.; Dou, L.; Bartoli, M.; Sallée, M.; Aniort, J.; Ferkak, B.; Chermiti, R.; McKay, N.; Da Silva, N.; Burtey, S.; et al. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol. Dial. Transplant. 2022, 37, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Hong, J.; Edwards-Glenn, J.; Krukovets, I.; Tkachenko, S.; Adelus, M.L.; Romanoski, C.E.; Rajagopalan, S.; Podrez, E.; Byzova, T.V.; et al. Unraveling the role of sex in endothelial cell dysfunction: Evidence from lineage tracing mice and cultured cells. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Smoking cessation and vascular endothelial function. Hypertens. Res. 2023, 46, 2670–2678. [Google Scholar] [CrossRef]
- Kaneva, A.M.; Potolitsyna, N.N.; Bojko, E.R.; Odland, J.Ø. The apolipoprotein B/apolipoprotein A-I ratio as a potential marker of plasma atherogenicity. Dis. Markers 2015, 2015, 591454. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 136) | Good Vascular Reactivity (n = 48) | Intermediate Vascular Reactivity (n = 63) | Poor Vascular Reactivity (n = 25) | p-Value |
---|---|---|---|---|---|
Age (years) | 66.06 ± 11.77 | 63.60 ± 8.89 | 65.83 ± 13.83 | 71.36 ± 9.44 | 0.026 * |
Male, n (%) | 88 (64.7) | 31 (64.6) | 41 (65.1) | 16 (64.0) | 0.995 |
CKD etiologies | |||||
Diabetes mellitus, n (%) | 71 (52.2) | 24 (50.0) | 36 (57.1) | 11 (44.0) | 0.501 |
Chronic GN, n (%) | 45 (33.1) | 16 (33.3) | 19 (30.2) | 10 (40.0) | 0.675 |
Height (cm) | 161.22 ± 8.83 | 160.38 ± 8.66 | 161.03 ± 8.82 | 161.91 ± 9.06 | 0.762 |
Body weight (kg) | 69.93 ± 16.96 | 71.14 ± 16.20 | 69.71 ± 14.33 | 68.18 ± 23.83 | 0.773 |
Body mass index (kg/m2) | 26.49 ± 4.47 | 26.97 ± 4.58 | 26.74 ± 4.53 | 24.95 ± 3.90 | 0.157 |
Lean body mass (kg) a | 50.83 ± 11.27 | 50.81 ± 12.37 | 51.71 ± 9.70 | 47.85 ± 13.45 | 0.511 |
Fat mass (kg) a | 17.89 ± 7.19 | 18.90 ± 7.07 | 17.59 ± 7.60 | 16.36 ± 5.99 | 0.471 |
Vascular reactivity index | 1.65 ± 0.74 | 2.42 ± 0.34 | 1.50 ± 0.32 | 0.54 ± 0.22 | <0.001 * |
Systolic blood pressure (mmHg) | 144.81 ± 26.95 | 138.51 ± 27.76 | 148.37 ± 22.65 | 147.96 ± 33.56 | 0.130 |
Diastolic blood pressure (mmHg) | 82.10 ± 12.01 | 79.48 ± 11.28 | 82.63 ± 11.42 | 85.76 ± 14.01 | 0.093 |
Total cholesterol (mg/dL) | 150.00 (134.25–175.00) | 150.00 (136.25–181.00) | 152.00 (126.00–174.00) | 148.00 (134.50–170.50) | 0.988 |
Triglyceride (mg/dL) | 110.50 (99.00–164.50) | 110.00 (86.00–191.75) | 109.00 (78.00–161.00) | 112.00 (71.50–151.00) | 0.740 |
LDL-C (mg/dL) | 82.68 ± 35.94 | 80.50 ± 30.35 | 82.63 ± 30.00 | 86.96 ± 55.75 | 0.769 |
HDL-C (mg/dL) | 46.50 ± 21.12 | 45.02 ± 19.63 | 44.43 ± 19.05 | 54.54 ± 27.11 | 0.107 |
Fasting glucose (mg/dL) | 102.50 (93.00–129.25) | 100.50 (94.00–128.00) | 101.00 (90.00–127.00) | 110.00 (98.00–140.50) | 0.448 |
Albumin (g/dL) | 4.20 (4.00–4.40) | 4.30 (4.20–4.40) | 4.20 (4.00–4.40) | 4.10 (3.60–4.35) | 0.084 |
Blood urea nitrogen (mg/dL) | 52.32 ± 24.03 | 44.75 ± 24.14 | 55.49 ± 24.47 | 58.88 ± 19.36 | 0.020 * |
Creatinine (mg/dL) | 3.48 ± 1.88 | 2.91 ± 1.48 | 3.68 ± 1.99 | 4.08 ± 2.07 | 0.021 * |
eGFR (mL/min) | 18.11 (12.76–35.57) | 23.81 (14.82–46.30) | 17.43 (12.52–31.70) | 14.66 (11.95–26.60) | 0.015 * |
UPCR (mg/g) | 858.90 (306.26–2369.29) | 435.06 (180.46–2259.72) | 873.20 (356.40–2364.24) | 1992.09 (803.80–3440.55) | 0.013 * |
Total calcium (mg/dL) | 8.72 ± 0.53 | 8.71 ± 0.57 | 8.72 ± 0.44 | 8.73 ± 0.67 | 0.975 |
Phosphorus (mg/dL) | 4.25 ± 1.02 | 4.12 ± 0.81 | 4.19 ± 0.95 | 4.66 ± 1.42 | 0.078 |
Myostatin (ng/mL) | 2.84 (1.48–3.60) | 2.63 (1.24–3.29) | 2.66 (1.51–3.61) | 3.67 (2.79–5.04) | 0.003 * |
Myostatin—male (ng/mL) | 2.99 (1.89–3.78) | 2.75 (1.31–3.27) | 2.77 (1.83–3.91) | 3.75 (3.18–6.83) | 0.003 * |
Myostatin—female (ng/mL) | 2.61 (0.96–3.37) | 2.04 (0.73–3.35) | 2.32 (0.97–3.15) | 3.06 (1.66–3.99) | 0.412 |
Smoker, n (%) | 15 (11.0) | 8 (16.7) | 6 (9.5) | 1 (4.0) | 0.228 |
Hypertension, n (%) | 112 (82.4) | 40 (83.3) | 50 (79.4) | 22 (88.0) | 0.617 |
ARB use, n (%) | 69 (50.7) | 22 (45.8) | 31 (49.2) | 16 (64.0) | 0.320 |
β-blocker use, n (%) | 55 (40.4) | 16 (33.3) | 29 (46.0) | 10 (40.0) | 0.401 |
CCB use, n (%) | 61 (44.9) | 20 (41.7) | 28 (44.4) | 13 (52.0) | 0.699 |
Statin use, n (%) | 65 (47.8) | 20 (41.7) | 30 (47.6) | 15 (60.0) | 0.330 |
Fibrate use, n (%) | 30 (22.1) | 10 (20.8) | 17 (27.0) | 3 (12.0) | 0.301 |
CKD stage 3, n (%) | 45 (33.1) | 22 (45.8) | 18 (28.6) | 5 (20.0) | 0.059 |
CKD stage 4, n (%) | 36 (26.5) | 14 (29.2) | 16 (25.4) | 6 (24.0) | |
CKD stage 5, n (%) | 55 (40.4) | 12 (25.0) | 29 (46.0) | 14 (56.0) |
Model | Myostatin for Vascular Reactivity Dysfunction | Myostatin for Poor Vascular Reactivity | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Crude model | 1.372 (1.074–1.752) | 0.011 * | 1.436 (1.144–1.802) | 0.002 * |
Adjusted model | 1.438 (1.057–1.955) | 0.021 * | 1.576 (1.189–2.089) | 0.002 * |
Vascular Reactivity Dysfunction | |||||||
AUC (95% CI) | p-Value | Cut-Off | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | |
Myostatin (ng/mL) | 0.605 (0.508–0.702) | 0.034 * | 3.57 | 36.7 | 93.8 | 91.4 | 44.6 |
Poor vascular reactivity | |||||||
AUC (95% CI) | p-Value | Cut-off | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | |
Myostatin (ng/mL) | 0.712 (0.590–0.835) | 0.0007 * | 3.57 | 64.0 | 82.9 | 45.7 | 91.1 |
Variables | Vascular Reactivity Index | ||||
---|---|---|---|---|---|
Simple Regression | Multivariate Regression | ||||
r | p-Value | Beta | Adjusted R2 Change | p-Value | |
Male | −0.007 | 0.939 | |||
Female | 0.007 | 0.939 | – | – | – |
Diabetes mellitus | −0.013 | 0.878 | – | – | – |
Hypertension | −0010 | 0.912 | – | – | – |
Age (years) | −0.248 | 0.004 * | −0.331 | 0.081 | <0.001 * |
Height (cm) | 0.007 | 0.935 | – | – | – |
Body weight (kg) | 0.127 | 0.140 | – | – | – |
Body mass index (kg/m2) | 0.159 | 0.064 | – | – | – |
Lean body mass (kg) a | 0.029 | 0.774 | – | – | – |
Fat mass (kg) a | 0.131 | 0.185 | – | – | – |
Systolic blood pressure (mmHg) | −0.082 | 0.342 | – | – | – |
Diastolic blood pressure (mmHg) | −0.157 | 0.068 | – | – | – |
Log-TCH (mg/dL) | −0.023 | 0.788 | – | – | – |
Log-triglyceride (mg/dL) | 0.065 | 0.453 | – | – | – |
LDL-C (mg/dL) | −0.045 | 0.605 | – | – | – |
HDL-C (mg/dL) | −0.107 | 0.215 | |||
Log-glucose (mg/dL) | −0.087 | 0.312 | – | – | – |
Log-albumin (g/dL) | 0.137 | 0.111 | – | – | – |
BUN (mg/dL) | −0.262 | 0.002 * | – | – | – |
Creatinine (mg/dL) | −0.277 | 0.001 * | −0.273 | 0.070 | 0.001 * |
Log-eGFR (mL/min) | 0.271 | 0.001 * | – | – | – |
Log-UPCR (mg/g) | −0.244 | 0.004 * | – | – | – |
Total calcium (mg/dL) | −0.027 | 0.758 | – | – | – |
Phosphorus (mg/dL) | −0.152 | 0.077 | – | – | – |
Log-myostatin (ng/mL) | −0.263 | 0.002 * | −0.256 | 0.057 | 0.002 * |
Variables | Spearman’s Correlation Coefficient | p-Value |
---|---|---|
Age (years) | −0.158 | 0.067 |
Body mass index (kg/m2) | 0.066 | 0.446 |
Lean body mass (kg) a | 0.243 | 0.013 * |
Fat mass (kg) a | 0.062 | 0.533 |
Vascular reactivity index | −0.263 | 0.002 * |
Systolic blood pressure (mmHg) | 0.027 | 0.757 |
Diastolic blood pressure (mmHg) | 0.151 | 0.079 |
Log-TCH (mg/dL) | 0.062 | 0.472 |
Log-triglyceride (mg/dL) | −0.014 | 0.870 |
LDL-C (mg/dL) | 0.067 | 0.439 |
HDL-C (mg/dL) | 0.054 | 0.533 |
Log-glucose (mg/dL) | −0.147 | 0.087 |
Log-albumin (g/dL) | −0.090 | 0.300 |
Blood urea nitrogen (mg/dL) | 0.094 | 0.461 |
Creatinine (mg/dL) | −0.217 | 0.011 * |
Log-eGFR (mL/min) | −0.156 | 0.069 |
Log-UPCR (mg/g) | 0.230 | 0.007 * |
Total calcium (mg/dL) | 0.046 | 0.592 |
Phosphorus (mg/dL) | 0.109 | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-H.; Wang, C.-H.; Lin, Y.-L.; Kuo, C.-H.; Liou, H.-H.; Hsu, B.-G. Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease. Diseases 2024, 12, 328. https://doi.org/10.3390/diseases12120328
Chang H-H, Wang C-H, Lin Y-L, Kuo C-H, Liou H-H, Hsu B-G. Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease. Diseases. 2024; 12(12):328. https://doi.org/10.3390/diseases12120328
Chicago/Turabian StyleChang, Ho-Hsiang, Chih-Hsien Wang, Yu-Li Lin, Chiu-Huang Kuo, Hung-Hsiang Liou, and Bang-Gee Hsu. 2024. "Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease" Diseases 12, no. 12: 328. https://doi.org/10.3390/diseases12120328
APA StyleChang, H.-H., Wang, C.-H., Lin, Y.-L., Kuo, C.-H., Liou, H.-H., & Hsu, B.-G. (2024). Relationship Between Serum Myostatin and Endothelial Function in Non-Dialysis Patients with Chronic Kidney Disease. Diseases, 12(12), 328. https://doi.org/10.3390/diseases12120328