Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Treatment with Senolytics
2.3. Pathology and Immunohistochemistry
2.4. Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. P21, γH2AX, and LMNB1 Findings in Histology
3.2. Macroscopic Findings, Body Weight, and Liver-to-Weight Ratio
3.3. HE Stainings
3.4. qPCR Analysis of Fibrosis- and Lipid-Related Gene Expression
3.5. Ym1 and CD68 Expressions in Liver Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Zhou, F.; Wang, W.; Zhang, X.J.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhu, L.; Cai, J.; Li, H. Epidemiological Features of NAFLD From 1999 to 2018 in China. Hepatology 2020, 71, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, K.; Kon, K.; Lee-Okada, H.C.; Arai, K.; Uchiyama, A.; Yamashina, S.; Yokomizo, T.; Ikejima, K. Aging exacerbates high-fat diet-induced steatohepatitis through alteration in hepatic lipid metabolism in mice. J. Gastroenterol. Hepatol. 2020, 35, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Sasako, T.; Ohsugi, M.; Kubota, N.; Itoh, S.; Okazaki, Y.; Terai, A.; Kubota, T.; Yamashita, S.; Nakatsukasa, K.; Kamura, T.; et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat. Commun. 2019, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Hikita, H.; Tatsumi, T.; Sakamori, R.; Nozaki, Y.; Sakane, S.; Shiode, Y.; Nakabori, T.; Saito, Y.; Hiramatsu, N.; et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 2016, 64, 1994–2014. [Google Scholar] [CrossRef]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef]
- Aravinthan, A.; Scarpini, C.; Tachtatzis, P.; Verma, S.; Penrhyn-Lowe, S.; Harvey, R.; Davies, S.E.; Allison, M.; Coleman, N.; Alexander, G. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 2013, 58, 549–556. [Google Scholar] [CrossRef]
- Spina, J.S.; Carr, T.L.; Phillips, L.A.; Knight, H.; Crosbie, N.E.; Lloyd, S.M.; Jhala, M.A.; Lam, T.J.; Karman, J.; Clements, M.E.; et al. Modulating in vitro lung fibroblast activation via senolysis of senescent human alveolar epithelial cells. Aging 2024, 16, 10694–10723. [Google Scholar] [CrossRef]
- Suda, M.; Paul, K.H.; Minamino, T.; Miller, J.D.; Lerman, A.; Ellison-Hughes, G.M.; Tchkonia, T.; Kirkland, J.L. Senescent cells: A therapeutic target in cardiovascular diseases. Cells 2023, 12, 1296. [Google Scholar] [CrossRef]
- Mantadaki, A.E.; Baliou, S.; Linardakis, M.; Vakonaki, E.; Tzatzarakis, M.N.; Tsatsakis, A.; Symvoulakis, E.K. Quercetin intake and absolute telomere length in patients with type 2 diabetes mellitus: Novel findings from a randomized controlled before-and-after study. Pharmaceuticals 2024, 17, 1136. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Jiang, R.; Xiao, H.; Wang, Z.; He, S.; Wang, L.; Wang, Y. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sci. 2020, 254, 117776. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell 2015, 14, 644–658. [Google Scholar] [CrossRef]
- Ohkoshi-Yamada, M.; Kamimura, K.; Kimura, A.; Tanaka, Y.; Nagayama, I.; Yakubo, S.; Abe, H.; Yokoo, T.; Sakamaki, A.; Kamimura, H.; et al. Effects of a selective PPARα modulator, sodium-glucose cotransporter 2 inhibitor, and statin on the myocardial morphology of medaka nonalcoholic fatty liver disease model. Biochem. Biophys. Res. Commun. 2022, 625, 116–121. [Google Scholar] [CrossRef]
- Goto, R.; Kamimura, K.; Shinagawa-Kobayashi, Y.; Sakai, N.; Nagoya, T.; Niwa, Y.; Ko, M.; Ogawa, K.; Inoue, R.; Yokoo, T.; et al. Inhibition of sodium glucose cotransporter 2 (SGLT2) delays liver fibrosis in a medaka model of nonalcoholic steatohepatitis (NASH). FEBS Open Bio 2019, 9, 9–643. [Google Scholar] [CrossRef]
- Kimura, A.; Kamimura, K.; Ohkoshi-Yamada, M.; Shinagawa-Kobayashi, Y.; Goto, R.; Owaki, T.; Oda, C.; Shibata, O.; Morita, S.; Sakai, N.; et al. Effects of a novel selective PPARα modulator, statin, sodium-glucose cotransporter 2 inhibitor, and combinatorial therapy on the liver and vasculature of medaka nonalcoholic steatohepatitis model. Biochem. Biophys. Res. Commun. 2022, 596, 76–82. [Google Scholar] [CrossRef]
- Kuwashiro, S.; Terai, S.; Oishi, T.; Fujisawa, K.; Matsumoto, T.; Nishina, H.; Sakaida, I. Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation. Cell Tissue Res. 2011, 344, 125–134. [Google Scholar] [CrossRef]
- Weber, L.P.; Kiparissis, Y.; Hwang, G.S.; Niimi, A.J.; Janz, D.M. Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 131, 51–59. [Google Scholar] [CrossRef]
- Shinagawa-Kobayashi, Y.; Kamimura, K.; Goto, R.; Ogawa, K.; Inoue, R.; Yokoo, T.; Sakai, N.; Nagoya, T.; Sakamaki, A.; Abe, S.; et al. Effect of histidine on sorafenib-induced vascular damage: Analysis using novel medaka fish model. Biochem. Biophys. Res. Commun. 2018, 496, 556–561. [Google Scholar] [CrossRef]
- Fujisawa, K.; Takami, T.; Okubo, S.; Nishimura, Y.; Yamada, Y.; Kondo, K.; Matsumoto, T.; Yamamoto, N.; Sakaida, I. Establishment of an adult medaka fatty liver model by administration of a gubra-amylin-nonalcoholic steatohepatitis diet containing high levels of palmitic acid and fructose. Int. J. Mol. Sci. 2021, 22, 9931. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.; Richardson, D.R. Pharmacological Targeting of Senescence with Senolytics as a new therapeutic strategy for neurodegeneration. Mol. Pharmacol. 2024, 105, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Takaya, K.; Kishi, K. Combined dasatinib and quercetin treatment contributes to skin rejuvenation through selective elimination of senescent cells In Vitro and In Vivo. Biogerontology 2024, 25, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Masumoto, S.; Akimoto, Y.; Oike, H. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol. Nutr. Food Res. 2011, 55, 530–540. [Google Scholar] [CrossRef]
- Lagnado, A.; Leslie, J.; Ruchaud-Sparagano, M.H.; Victorelli, S.; Hirsova, P.; Ogrodnik, M.; Collins, A.L.; Vizioli, M.G.; Habiballa, L.; Saretzki, G.; et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021, 40, e106048. [Google Scholar] [CrossRef]
- Singh, B.K.; Tripathi, M.; Sandireddy, R.; Tikno, K.; Zhou, J.; Yen, P.M. Decreased autophagy and fuel switching occur in a senescent hepatic cell model system. Aging 2020, 12, 13958–13978. [Google Scholar] [CrossRef]
- Itoh, M.; Tamura, A.; Kanai, S.; Tanaka, M.; Kanamori, Y.; Shirakawa, I.; Ito, A.; Oka, Y.; Hidaka, I.; Takami, T.; et al. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J. Exp. Med. 2023, 220, e20220681. [Google Scholar] [CrossRef]
- Omori, S.; Wang, T.W.; Johmura, Y.; Kanai, T.; Nakano, Y.; Kido, T.; Susaki, E.A.; Nakajima, T.; Shichino, S.; Ueha, S.; et al. Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16(high) Cells In Vivo. Cell Metab. 2020, 32, 814–828.e816. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubo, S.; Abe, H.; Li, Y.; Kudo, M.; Kimura, A.; Wakabayashi, T.; Watanabe, Y.; Kimura, N.; Setsu, T.; Yokoo, T.; et al. Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases 2024, 12, 317. https://doi.org/10.3390/diseases12120317
Yakubo S, Abe H, Li Y, Kudo M, Kimura A, Wakabayashi T, Watanabe Y, Kimura N, Setsu T, Yokoo T, et al. Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases. 2024; 12(12):317. https://doi.org/10.3390/diseases12120317
Chicago/Turabian StyleYakubo, Shunta, Hiroyuki Abe, Yawen Li, Marina Kudo, Atsushi Kimura, Takuya Wakabayashi, Yusuke Watanabe, Naruhiro Kimura, Toru Setsu, Takeshi Yokoo, and et al. 2024. "Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model" Diseases 12, no. 12: 317. https://doi.org/10.3390/diseases12120317
APA StyleYakubo, S., Abe, H., Li, Y., Kudo, M., Kimura, A., Wakabayashi, T., Watanabe, Y., Kimura, N., Setsu, T., Yokoo, T., Sakamaki, A., Kamimura, H., Tsuchiya, A., Kamimura, K., & Terai, S. (2024). Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases, 12(12), 317. https://doi.org/10.3390/diseases12120317