Immune Checkpoint Inhibitor-Associated Celiac Disease: A Retrospective Analysis and Literature Review
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Demographic Characteristics
3.2. Pathology
3.3. Prior Therapy
3.4. Immunotherapy-Related Adverse Event (irAE)
3.5. Treatment
4. Discussion
5. Limitations of the Study
6. Conclusions
Funding
Conflicts of Interest
References
- Badran, Y.R.; Shih, A.; Leet, D.; Mooradian, M.J. Immune checkpoint inhibitor-associated celiac disease. J. Immunother. Cancer 2020, 8, e000958. [Google Scholar] [CrossRef] [PubMed]
- Del Sordo, R.; Volta, U.; Lougaris, V.; Parente, P. Histological Features of Celiac-Disease-like Conditions Related to Immune Checkpoint Inhibitors Therapy: A Signal to Keep in Mind for Pathologists. Diagnostics 2022, 12, 395. [Google Scholar] [CrossRef] [PubMed]
- Gentile, N.M.; D’Souza, A.; Fujii, L.L.; Wu, T.T.; Murray, J.A. Association between ipilimumab and celiac disease. Mayo Clin. Proc. 2013, 88, 414–417. [Google Scholar] [CrossRef]
- Walton, H.; Hopkins, S.; Shand, A.; Din, S. Immunotherapy-induced coeliac disease in curative lung cancer. BMJ Case Rep. 2021, 14, e243406. [Google Scholar] [CrossRef]
- Schoenfeld, S.R.; Aronow, M.E.; Leaf, R.K.; Dougan, M.; Reynolds, K.L. Diagnosis and Management of Rare Immune-Related Adverse Events. Oncologist 2020, 25, 6–14. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Shah, M.; Suarez-Almazor, M.E. Adverse Events Associated with Immune Checkpoint Blockade in Patients with Cancer: A Systematic Review of Case Reports. PLoS ONE 2016, 11, e0160221. [Google Scholar] [CrossRef]
- Brown, I.; Bettington, M.; Rosty, C. The role of histopathology in the diagnosis and management of coeliac disease and other malabsorptive conditions. Histopathology 2021, 78, 88–105. [Google Scholar] [CrossRef]
- Sollid, L.M.; Lundin, K.E. Coeliac disease. An inappropriate immune response. Lancet 2001, 358, S13. [Google Scholar] [CrossRef]
- Schuppan, D.; Dieterich, W. Epidemiology, pathogenesis, and clinical manifestations of celiac disease in adults. In UpToDate; Grover, S., Ed.; UptoDate: Waltham, MA, USA, 2024. [Google Scholar]
- Brown, N.K.; Guandalini, S.; Semrad, C.; Kupfer, S.S. A Clinician’s Guide to Celiac Disease HLA Genetics. Am. J. Gastroenterol. 2019, 114, 1587–1592. [Google Scholar] [CrossRef]
- Corrao, G.; Corazza, G.R.; Bagnardi, V.; Brusco, G.; Ciacci, C.; Cottone, M. Mortality in patients with coeliac disease and their relatives: A cohort study. Lancet 2001, 358, 356–361. [Google Scholar] [CrossRef]
- Biagi, F.; Corazza, G.R. Mortality in celiac disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Falade, A.S.; Reynolds, K.L.; Zubiri, L.; Deshpande, V. Case Report: Fulminant Celiac Disease with Combination Immune Checkpoint Therapy. Front. Immunol. 2022, 13, 871452. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Helfand, A.; Balikani, L.; Bunker, M.; Finley, G. Association of Celiac Disease with Pembrolizumab. Cureus 2021, 13, e15565. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, J.; Hoibian, S.; Boucraut, A.; Ratone, J.P.; Stoffaes, L.; Dano, D.; Louvel-Perrot, D.; Chanez, B.; Chretien, A.S.; Madroszyk, A.; et al. Celiac Disease After Administration of Immune Checkpoint Inhibitors: A Case Report. Front. Immunol. 2021, 12, 799666. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.S.; Patel, S.; Schwartz, A. Subclinical Celiac Disease Unmasked by Immune Checkpoint Inhibitor Therapy. J. Immunother. 2023, 46, 152–153. [Google Scholar] [CrossRef]
- Arnouk, J.; Mathew, D.; Nulton, E.; Rachakonda, V. A Celiac Disease Phenotype After Checkpoint Inhibitor Exposure: An Example of Immune Dysregulation After Immunotherapy. ACG Case Rep. J. 2019, 6, e00158. [Google Scholar] [CrossRef]
- Alsaadi, D.; Shah, N.J.; Charabaty, A.; Atkins, M.B. A case of checkpoint inhibitor-induced celiac disease. J. Immunother. Cancer 2019, 7, 203. [Google Scholar] [CrossRef]
- Khandakar, B.; Srivastava, A. Immune checkpoint inhibitor therapy associated enteritis mimicking celiac disease. Gastroenterol. Hepatol. Bed Bench 2023, 16, 240–244. [Google Scholar]
- Duval, L.; Habes, S.; Chatellier, T.; Guerzider, P.; Bossard, C.; Masliah, C.; Archambeaud, I.; Touchefeu, Y.; Matysiak-Budnik, T. Nivolumab-induced celiac-like enteropathy in patient with metastatic renal cell carcinoma: Case report and review of the literature. Clin. Case Rep. 2019, 7, 1689–1693. [Google Scholar] [CrossRef]
- Theodoraki, E.; Giannarakis, M.; Tzardi, M.; Koutroubakis, I.E. Pembrolizumab-induced antiTTG IgA-negative duodenitis treated with gluten withdrawal. Eur. J. Gastroenterol. Hepatol. 2021, 33, 1130–1131. [Google Scholar] [CrossRef]
- Jose, R.; Kaur, J.; Blanco, T.; Ehrlich, S.; Marcelin, M. Pembrolizumab-Induced Colitis and Diarrhea in the Treatment of Sporadic Colorectal Cancer: A Case Report. Cureus 2024, 16, e52636. [Google Scholar] [CrossRef] [PubMed]
- Messmer, M.; Upreti, S.; Tarabishy, Y.; Mazumder, N.; Chowdhury, R.; Yarchoan, M.; Holdhoff, M. Ipilimumab-Induced Enteritis without Colitis: A New Challenge. Case Rep. Oncol. 2016, 9, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Akel, R.; Anouti, B.; Tfayli, A. Late-Onset Inflammatory Bowel Disease-Like Syndrome after Ipilimumab Therapy: A Case Report. Case Rep. Oncol. 2017, 10, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Merrill, S.P.; Reynolds, P.; Kalra, A.; Biehl, J.; Vandivier, R.W.; Mueller, S.W. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically ill patient. Ann. Pharmacother. 2014, 48, 806–810. [Google Scholar] [CrossRef]
- Yang, J.; Lagana, S.M.; Saenger, Y.M.; Carvajal, R.D. Dual checkpoint inhibitor-associated eosinophilic enteritis. J. Immunother. Cancer 2019, 7, 310. [Google Scholar] [CrossRef]
- Omotehara, S.; Nishida, M.; Yamanashi, K.; Sakurai, K.; Katsurada, T.; Komatsu, Y.; Shimizu, A.; Shibuya, H.; Shinagawa, N.; Sugita, J.; et al. A case of immune checkpoint inhibitor-associated gastroenteritis detected by ultrasonography. J. Clin. Ultrasound 2021, 49, 605–609. [Google Scholar] [CrossRef]
- Pagan, A.; Arroyo-Martinez, Y.M.; Tandon, A.; Bertran-Rodriguez, C.; Gill, J. Immune Checkpoint Inhibitor-Induced Acute Pancreatitis and Colitis. Cureus 2020, 12, e8613. [Google Scholar] [CrossRef]
- Malik, A.; Yousaf, M.N.; Samiullah, S.; Tahan, V.; Mahdi, A. Overlapping Hepatotoxicity and Colitis Associated with Immune Checkpoint Inhibitors. J. Community Hosp. Intern. Med. Perspect. 2023, 13, 75–78. [Google Scholar] [CrossRef]
- Thalambedu, N.; Khan, Y.; Zhang, Q.; Khanal, S.; Ashfaq, A. Immune-mediated Colitis from Dual Checkpoint Inhibitors. Cureus 2019, 11, e6233. [Google Scholar] [CrossRef]
- Nassri, A.B.; Muenyi, V.; AlKhasawneh, A.; Ribeiro, B.S.; Scolapio, J.S.; Malespin, M.; de Melo, S.W., Jr. Ipilimumab and Nivolumab induced steroid-refractory colitis treated with infliximab: A case report. World J. Gastrointest. Pharmacol. Ther. 2019, 10, 29–34. [Google Scholar] [CrossRef]
- Fukumoto, T.; Fujiwara, S.; Tajima, S.; Tamesada, Y.; Sakaguchi, M.; Oka, M.; Nishigori, C. Infliximab for severe colitis associated with nivolumab followed by ipilimumab. J. Dermatol. 2018, 45, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Moein, H.R.; Rutledge, B.; Beydoun, R.; Ehrinpreis, M.N. Ipilimumab and Nivolumab-Induced Colitis in a Patient with Recurrent Metastatic Melanoma. Cureus 2021, 13, e14414. [Google Scholar] [CrossRef] [PubMed]
- Shepard, B.; Trower, C.; Hendrickson, S. Toxic Injury to the Gastrointestinal Tract After Ipilimumab Therapy for Advanced Melanoma. J. Am. Osteopath. Assoc. 2018, 118, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Kunogi, Y.; Tominaga, K.; Abe, K.; Kanazawa, M.; Tanaka, T.; Watanabe, S.; Kondo, M.; Kanamori, A.; Iijima, M.; Goda, K.; et al. Refractory Immune Checkpoint Inhibitor-Induced Colitis Improved by Tacrolimus: A Case Report. Healthcare 2021, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- Soma, K.; Nishida, T.; Osugi, N.; Morimura, O.; Adachi, S.; Fujii, Y.; Sugimoto, A.; Mukai, K.; Nakamatsu, D.; Matsumoto, K.; et al. Nivolumab dose escalation triggered immune checkpoint inhibitor-induced colitis after 147 weeks of prolonged stable use in a patient with lung cancer: A case report. Clin. J. Gastroenterol. 2022, 15, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Velamazan Sandalinas, R.; Laredo de la Torre, V.; García Mateo, S.; Abad Baroja, D.; Hijos Mallada, G.; Alfaro Almajano, E.; Cañamares Orbis, P.; Sostres Homedes, C.; Saura Blasco, N.; Hernández Ainsa, M.; et al. Enteritis secondary to nivolumab, a growing cause of diarrhoea. Gastroenterol. Hepatol. 2020, 43, 620–621. [Google Scholar] [CrossRef]
- Vlachos, I.; Karamanolis, G.; Vezakis, A.; Dellaportas, D.; Myoteri, D. Nivolumab-Induced Colitis in a Patient with Esophageal Adenocarcinoma: A Case Report. Cureus 2023, 15, e42315. [Google Scholar] [CrossRef]
- Beniwal-Patel, P.; Matkowskyj, K.; Caldera, F. Infliximab Therapy for Corticosteroid-Resistant Ipilimumab-Induced Colitis. J. Gastrointestin Liver Dis. 2015, 24, 274. [Google Scholar] [CrossRef]
- Hsieh, A.H.; Ferman, M.; Brown, M.P.; Andrews, J.M. Vedolizumab: A novel treatment for ipilimumab-induced colitis. BMJ Case Rep. 2016, 2016, bcr2016216641. [Google Scholar] [CrossRef]
- Anson, D.; Norton, J.; Chaucer, B.; Bansal, S. Ipilimumab- and Nivolumab-Induced Colitis Causing Severe Hypokalemia and QTc Prolongation. Case Rep. Oncol. Med. 2019, 2019, 7896749. [Google Scholar] [CrossRef]
- Kaneoka, A.; Okada, E.; Sugino, H.; Saito-Sasaki, N.; Omoto, D.; Nakamura, M. Vedolizumab Attenuates Immune-Checkpoint-Therapy-Induced Infliximab-Refractory Colitis. Diagnostics 2022, 12, 480. [Google Scholar] [CrossRef]
- Sollid, L.M.; McAdam, S.N.; Molberg, O.; Quarsten, H.; Arentz-Hansen, H.; Louka, A.S.; Lundin, K.E. Genes and environment in celiac disease. Acta Odontol. Scand. 2001, 59, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Clot, F.; Fulchignoni-Lataud, M.C.; Renoux, C.; Percopo, S.; Bouguerra, F.; Babron, M.C.; Djilali-Saiah, I.; Caillat-Zucman, S.; Clerget-Darpoux, F.; Greco, L.; et al. Linkage and association study of the CTLA-4 region in coeliac disease for Italian and Tunisian populations. Tissue Antigens 1999, 54, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Naluai, A.T.; Nilsson, S.; Samuelsson, L.; Gudjónsdóttir, A.H. The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens 2000, 56, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.; Hearle, N.; Wixey, J.; Hogberg, L.; Bevan, S.; Lim, W.; Stenhammar, L.; Houlston, R.S. Analysis of the CTLA4 gene in Swedish coeliac disease patients. Scand. J. Gastroenterol. 2002, 37, 28–31. [Google Scholar] [CrossRef]
- Djilali-Saiah, I.; Schmitz, J.; Harfouch-Hammoud, E.; Mougenot, J.F.; Bach, J.F.; Caillat-Zucman, S. CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut 1998, 43, 187–189. [Google Scholar] [CrossRef]
- Kristiansen, O.P.; Larsen, Z.M.; Pociot, F. CTLA-4 in autoimmune diseases—A general susceptibility gene to autoimmunity? Genes Immun. 2000, 1, 170–184. [Google Scholar] [CrossRef]
- King, A.L.; Yiannakou, J.Y.; Brett, P.M.; Curtis, D.; Morris, M.A.; Dearlove, A.M.; Rhodes, M.; Rosen-Bronson, S.; Mathew, C.; Ellis, H.J.; et al. A genome-wide family-based linkage study of coeliac disease. Ann. Hum. Genet. 2000, 64 Pt 6, 479–490. [Google Scholar] [CrossRef]
- Angum, F.; Khan, T.; Kaler, J.; Siddiqui, L.; Hussain, A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus 2020, 12, e8094. [Google Scholar] [CrossRef]
- Zhang, M.L.; Deshpande, V. Histopathology of Gastrointestinal Immune-related Adverse Events: A Practical Review for the Practicing Pathologist. Am. J. Surg. Pathol. 2022, 46, e15–e26. [Google Scholar] [CrossRef]
- Irshaid, L.; Robert, M.E.; Zhang, X. Immune Checkpoint Inhibitor-Induced Upper Gastrointestinal Tract Inflammation Shows Morphologic Similarities to, but Is Immunologically Distinct From, Helicobacter pylori Gastritis and Celiac Disease. Arch. Pathol. Lab. Med. 2021, 145, 191–200. [Google Scholar] [CrossRef]
- Marietta, E.V.; Cartee, A.; Rishi, A.; Murray, J.A. Drug-induced enteropathy. Dig. Dis. 2015, 33, 215–220. [Google Scholar] [CrossRef]
- Postow, M.; Johnson, D.B. Toxicities associated with immune checkpoint inhibitors. In UpToDate; Shah, S.M., Ed.; UptoDate: Waltham, MA, USA, 2024. [Google Scholar]
ICI-Induced Celiac Disease (Cases) | ICI-Induced Enterocolitis (Controls) | |
---|---|---|
No. of Subjects | 8 | 24 |
Age | 62–79 years | 22–83 years |
Median age | 70 years | 65 years |
<65 years (%) | 2 (25) | 12 (50) |
>65 years (%) | 6 (75) | 12 (50) |
Sex | ||
Male (%) | 5 (62.5) | 18 (75) |
Female (%) | 3 (37.5) | 6 (25) |
Race/Ethnicity | ||
Caucasian (%) | 4 (50) | 5 (20.83) |
Asian (%) | 0 | 1 (4.17) |
Not specified | 4 (50) | 18 (75) |
Preexisting Autoimmune Disease | ||
Yes (%) | 2 (25) | 1 (4.17) |
Thyroid | 1 (12.5) | 0 |
Diabetes Mellitus (Type 1) | 1 (12.5) | 1 (4.17) |
No (%) | 6 (75) | 23 (95.83) |
HLA-DQ2 Testing | ||
Positive | 3 (37.5) | 0 |
Negative | 0 | 0 |
Not performed | 5 (62.5) | 24 (100) |
Primary Malignancy | ||
Genitourinary (%) | 2 (25) | 4 (16.67) |
Clear Cell Renal Cell Carcinoma (%) | 1 (12.5) | 4 (16.67) |
Prostate Adenocarcinoma (%) | 1 (12.5) | 0 |
Lung (%) | 1 (12.5) | 5 (20.83) |
Non-small cell (%) | 1 (12.5) | 2 (8.33) |
Adenocarcinoma | 0 | 3 (12.5) |
Malignant Melanoma (%) | 3 (37.5) | 12 (50) |
Gastrointestinal (%) | 0 | 2 (8.33) |
Colon (%) | 0 | 1 (4.17) |
Esophageal (%) | 0 | 1 (4.17) |
Other (%) | 2 (25) | 1 (4.17) |
Lobular Breast Adenocarcinoma (%) | 1 (12.5) | 0 |
Mesothelioma (%) | 1 (12.5) | 0 |
Head and Neck Squamous Cell Carcinoma (%) | 0 | 1 (4.17) |
Stage of primary malignancy at the time of starting ICI therapy | ||
1 (%) | 1 (12.5) | 1 (4.17) |
2 (%) | 1 (12.5) | 0 |
3 (%) | 1 (12.5) | 4 (16.67) |
4: Distant Metastasis (%) | 4 (50) | 18 (75) |
Not specified (%) | 1 (12.5) | 1 (4.17) |
Treatment of malignancy before initiating ICI therapy | ||
Resection (%) | 3 (37.5) | 9 (37.5) |
Chemotherapy (%) | 3 (37.5) | 7 (29.17) |
Radiation (%) | 3 (37.5) | 4 (16.67) |
Immunotherapy (%) | 1 (12.5) | 5 (20.83) |
Non-ICI agent (%) | 0 | 1 (4.17) |
ICI (%) | 0 | 3 (12.5) |
Combination of both (%) | 1 (12.5) | 1 (4.17) |
ICI used | ||
Ipilimumab (%) | 2 (25) | 6 (25) |
Pembrolizumab (%) | 2 (25) | 7 (29.17) |
Combination of Ipilimumab and Nivolumab (%) | 2 (25) | 7 (29.17) |
Nivolumab (%) | 1 (12.5) | 4 (16.67) |
Durvalumab (%) | 1 (12.5) | 0 (0) |
Type of ICI used | ||
CTLA-4 Inhibitor (%) | 2 (25) | 6 (25) |
PD-1/PDL-1 Inhibitor (%) | 4 (50) | 11 (45.83) |
Combination of CTLA-4 and PD-1 Inhibitors (%) | 2 (25) | 7 (29.17) |
No. of cycles of ICI therapy prior to onset of diarrhea | 1–5 | 1–13 |
1 (%) | 2 (25) | 6 (25) |
2 (%) | 4 (50) | 5 (20.83) |
3 (%) | 0 | 6 (25) |
4 (%) | 1 (12.5) | 2 (8.33) |
≥5 (%) | 1 (12.5) | 2 (8.33) |
Not specified (%) | 0 | 3 (12.5) |
>2 cycles (%) | 2 (25) | 10 (41.66) |
Median time between first dose of ICI and onset of diarrhea (weeks) | 3 (1–15) | 6 (1–40) |
ICI therapy continued despite onset of diarrhea (%) | 4 (50) | 3 (12.5) |
Grade of Diarrhea | ||
1 (%) | 2 (25) | 0 |
2 (%) | 0 | 4 (16.67) |
3 (%) | 3 (37.5) | 11 (45.83) |
4 (%) | 3 (37.5) | 5 (20.83) |
Not specified (%) | 0 | 4 (16.67) |
Other Clinical Manifestations | ||
Abdominal Pain | 1 (12.5) | 15 (62.5) |
Nausea/Vomiting (%) | 2 (25) | 4 (16.67) |
Weight Loss (%) | 5 (62.5) | 5 (20.83) |
Nutritional/Electrolyte Deficiency (%) | 6 (75) | 7 (29.17) |
Other ICI-related adverse effect | ||
Yes (%) | 2 (25) | 9 (37.5) |
Thyroiditis (%) | 1 (12.5) | 3 (12.5) |
Transaminitis (%) | 1 (12.5) | 2 (8.33) |
Pancreatitis (%) | 1 (12.5) | 1 (4.17) |
Involvement of skin (%) | 0 | 1 (4.17) |
Adrenal Insufficiency (%) | 0 | 1 (4.17) |
Interstitial Pneumonitis (%) | 0 | 1 (4.17) |
No (%) | 6 (75) | 15 (62.5) |
Duodenal Microscopy | ||
Villous Atrophy (%) | 8 (100) | 4 (16.67) |
Crypt Hyperplasia (%) | 3 (37.5) | 2 (8.33) |
Expansion of Lamina Propria (%) | 2 (25) | 1 (4.17) |
Immunostaining positive for CD3 (%) | 2 (25) | 1 (4.17) |
Endoscopy not performed (%) | 0 | 18 (75) |
Colonic Microscopy | ||
Crypt Abscess/Cryptitis (%) | 0 | 13 (54.16) |
Lamina Propria Inflammatory Infiltrates (%) | 0 | 13 (54.16) |
Epithelial apoptotic bodies (%) | 1 (12.5) | 5 (20.83) |
Colonoscopy not performed (%) | 2 (25) | 6 (25) |
Treatment | ICI-Induced Celiac Disease (Cases) | ICI-Induced Enterocolitis (Controls) | p Value of Chi Square |
---|---|---|---|
No. of subjects | 8 | 23 | |
First-Line Treatment | 0.007 0.116 | ||
Systemic Glucocorticoids (%) | 5 (62.5) | 21 (91.3) | |
Budesonide (%) | 0 | 1 (4.34) | |
Gluten-Free Diet (%) | 3 (37.5) | 0 | |
Loperamide (%) | 0 | 1 (4.34) | |
5-Aminosalicylate (%) | 0 | 1 (4.34) | |
Failure of First-Line Treatment | |||
Systemic Glucocorticoids (%) | 3 (60) | 9 (42.85) | 0.261 |
Gluten-Free Diet (%) | 0 | N/A | N/A |
Others (%) | N/A | 1 (50) | N/A |
Second-Line Treatment | |||
Systemic Steroids (%) | 2 (12.5) | 4 (17.39) | |
Budesonide (%) | 1 (12.5) | 1 (4.34) | |
Gluten-Free Diet (%) | 5 (62.5) | 0 | |
Infliximab (%) | 0 | 6 (26.09) | |
Others (%) | 0 | 1 (4.34) | |
Mesalamine (%) | 0 | 1 (4.34) | |
Octreotide (%) | 0 | 1 (4.34) | |
Not required (%) | 1 (12.5) | 13 (56.52) | |
Failure of Second-Line Treatment | |||
Systemic Steroids (%) | 0 | 1 (25) | |
Gluten-Free Diet (%) | 0 | N/A | |
Infliximab (%) | N/A | 1 (16.67) | |
Others (%) | N/A | 1 (100) | |
Dose of Systemic Steroids given (mg/day in prednisone units) | 50 (3.8–150) | 65 (30–160) | |
Biologicals | |||
Required (%) | 0 | 9 (39.13) | |
Infliximab (%) | 0 | 8 (34.78) | |
Vedolizumab (%) | 0 | 3 (13.04) | |
Tacrolimus (%) | 0 | 1 (4.34) | |
Did not require (%) | 8 (100) | 14 (60.87) | |
Median time required for symptomatic improvement after starting treatment (days) | 14 (0–21) | 4 (1–42) | |
Restarted ICI after improvement of diarrhea (%) | 2 (25) | 3 (13.04) | |
Relapse of diarrhea with reinitiating ICI despite adhering to treatment (%) * | 1 (50) | 0 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, M.; Graham, C.; Gupta, S. Immune Checkpoint Inhibitor-Associated Celiac Disease: A Retrospective Analysis and Literature Review. Diseases 2024, 12, 315. https://doi.org/10.3390/diseases12120315
Gupta M, Graham C, Gupta S. Immune Checkpoint Inhibitor-Associated Celiac Disease: A Retrospective Analysis and Literature Review. Diseases. 2024; 12(12):315. https://doi.org/10.3390/diseases12120315
Chicago/Turabian StyleGupta, Malvika, Christopher Graham, and Supriya Gupta. 2024. "Immune Checkpoint Inhibitor-Associated Celiac Disease: A Retrospective Analysis and Literature Review" Diseases 12, no. 12: 315. https://doi.org/10.3390/diseases12120315
APA StyleGupta, M., Graham, C., & Gupta, S. (2024). Immune Checkpoint Inhibitor-Associated Celiac Disease: A Retrospective Analysis and Literature Review. Diseases, 12(12), 315. https://doi.org/10.3390/diseases12120315