Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients, Samples Preparation, and Methanol Fixation
2.2. Single-Cell RNA-Seq Processing and Data Analysis
2.2.1. Cell Labeling with Cell Hashing Antibodies
2.2.2. Single-Cell Library Generation and Sequencing
2.2.3. Single-Cell RNA-Seq Data Processing
2.2.4. Dimension Reduction, Clustering, and Data Visualization
2.3. Gene Ontology Analysis for Molecular Function
2.4. Code Availability
3. Results
3.1. Quality Control before Sequencing the Fixed and Cryopreserved Samples
3.2. Comparison of the Number of Transcripts and Genes Detected in Leukemia Cells in Methanol Fixation Compared with the Cryopreservation Method
3.3. Gene Expression Correlation between Methanol Fixation and Cryopreservation
3.4. Methanol Fixation Cellular Heterogeneity after Single-Cell RNA Sequencing Compared with Cryopreservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Duso, B.A.; Curigliano, G. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv. Exp. Med. Biol. 2019, 1168, 9–30. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, M. The journey from next-generation sequencing to personalized medicine? Biochemist. 2021, 43, 4–8. [Google Scholar] [CrossRef]
- Madaci, L.; Colle, J.; Venton, G.; Farnault, L.; Loriod, B.; Costello, R. The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark. Res. 2021, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Lee, J.H.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.I.; Zaravinos, A. Single-Cell Analysis in Immuno-Oncology. Int. J. Mol. Sci. 2023, 24, 8422. [Google Scholar] [CrossRef]
- Sun, G.; Li, Z.; Rong, D.; Zhang, H.; Shi, X.; Yang, W.; Zheng, W.; Sun, G.; Wu, F.; Cao, H.; et al. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol. Ther. Oncol. 2021, 21, 183–206. [Google Scholar] [CrossRef]
- Wen, L.; Li, G.; Huang, T.; Geng, W.; Pei, H.; Yang, J.; Zhu, M.; Zhang, P.; Hou, R.; Tian, G.; et al. Single-cell technologies: From research to application. Innovation 2022, 3, 100342. [Google Scholar] [CrossRef]
- Angel, S.; von Briesen, H.; Oh, Y.J.; Baller, M.K.; Zimmermann, H.; Germann, A. Toward Optimal Cryopreservation and Storage for Achievement of High Cell Recovery and Maintenance of Cell Viability and T Cell Functionality. Biopreserv. Biobanking 2016, 14, 539–547. [Google Scholar] [CrossRef]
- Berz, D.; McCormack, E.M.; Winer, E.S.; Colvin, G.A.; Quesenberry, P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007, 82, 463–472. [Google Scholar] [CrossRef]
- Pi, C.H.; Hornberger, K.; Dosa, P.; Hubel, A. Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy 2020, 22, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Channathodiyil, P.; Houseley, J. Glyoxal fixation facilitates transcriptome analysis after antigen staining and cell sorting by flow cytometry. PLoS ONE 2021, 16, e0240769. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheung, F.; Shi, R.; Zhou, H.; Lu, W.; CHI Consortium. PBMC fixation and processing for Chromium single-cell RNA sequencing. J. Transl. Med. 2018, 16, 198. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sedmak, D.; Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 2002, 161, 1961–1971. [Google Scholar] [CrossRef]
- Alles, J.; Karaiskos, N.; Praktiknjo, S.D.; Grosswendt, S.; Wahle, P.; Ruffault, P.L.; Ayoub, S.; Schreyer, L.; Boltengagen, A.; Birchmeier, C.; et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 2017, 15, 44. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.; Wu, A.R. The effect of methanol fixation on single-cell RNA sequencing data. BMC Genom. 2021, 22, 420. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef]
- English, D.; Andersen, B.R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J. Immunol. Methods 1974, 5, 249–252. [Google Scholar] [CrossRef]
- Madaci, L.; Gard, C.; Nin, S.; Venton, G.; Rihet, P.; Puthier, D.; Loriod, B.; Costello, R. The Contribution of Multiplexing Single Cell RNA Sequencing in Acute Myeloid Leukemia. Diseases 2023, 11, 96. [Google Scholar] [CrossRef]
- Zheng, G.X.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.; et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [Google Scholar] [CrossRef]
- Chan, J.W.; Taylor, D.S.; Thompson, D.L. The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers 2009, 91, 132–139. [Google Scholar] [CrossRef] [PubMed]
Sample | UPN78 | UPN73 |
---|---|---|
Sex | M | M |
Age | 23 | 50 |
Nature of samples | Blood | Blood |
% of blasts in blood | 79% | 86% |
Cytology | AML4 | AML2 |
Prognostic group | Favorable | Intermediate |
Phenotype | CD117, CD34, CD33, CD13 (myeloid blasts 20%), CD64, CD33 (monocytic blasts 70%) | CD117, CD33, CD13, CD7, CD64, CD4. |
Cytogenetic | 46XY, inv (16) | Normal karyotype |
Genetic abnormalities | FLT3-TKD, WT1 | DNMT3A, FLT3-ITD, FLT3-TKD, KIT, NPM1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madaci, L.; Gard, C.; Nin, S.; Sarrabay, A.; Baier, C.; Venton, G.; Rihet, P.; Puthier, D.; Loriod, B.; Costello, R. Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation. Diseases 2024, 12, 1. https://doi.org/10.3390/diseases12010001
Madaci L, Gard C, Nin S, Sarrabay A, Baier C, Venton G, Rihet P, Puthier D, Loriod B, Costello R. Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation. Diseases. 2024; 12(1):1. https://doi.org/10.3390/diseases12010001
Chicago/Turabian StyleMadaci, Lamia, Charlyne Gard, Sébastien Nin, Alexandre Sarrabay, Céline Baier, Geoffroy Venton, Pascal Rihet, Denis Puthier, Béatrice Loriod, and Régis Costello. 2024. "Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation" Diseases 12, no. 1: 1. https://doi.org/10.3390/diseases12010001
APA StyleMadaci, L., Gard, C., Nin, S., Sarrabay, A., Baier, C., Venton, G., Rihet, P., Puthier, D., Loriod, B., & Costello, R. (2024). Single-Cell Transcriptome Analysis of Acute Myeloid Leukemia Cells Using Methanol Fixation and Cryopreservation. Diseases, 12(1), 1. https://doi.org/10.3390/diseases12010001