Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Sample Size
2.5. Study Variables
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Socio-Demographic Characteristics of T2DM Patients
3.2. Biochemical Parameters of T2DM Patients
3.3. Multiple Linear Regression Model—Associated Factors of Total Cholesterol Level
3.4. Multiple Linear Regression Model—Associated Factors of Triglyceride Level
3.5. Multiple Linear Regression Model—Associated Factors of LDL-c Level
3.6. Multiple Linear Regression Model—Associated Factors of HDL-c Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinar, N.M.A.A.A.; Al, G.A.A.L.M.; Eltahir, M.A.; Ahmed, A.A.F.; Alghamdi, H.J.A.; Alghamdi, A.A.; Ahmed, W.A.M. Effect of diabetes educational program on self-care and diabetes control among type 2 diabetic patients in Al-Baha-Saudi Arabia. AIMS Med. Sci. 2019, 6, 239–250. [Google Scholar]
- Naeem, Z. Burden of diabetes mellitus in Saudi Arabia. Int. J. Health Sci. 2015, 9, V–VI. [Google Scholar] [CrossRef] [PubMed]
- WHO. Prevention of Diabetes Mellitus: Report of a WHO Study Group; [meeting held in geneva from 16 to 20 november 1992]; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Kaushal, S.; Singh, H.; Thangaraju, P.; Singh, J. Canagliflozin: A novel SGLT2 inhibitor for type 2 diabetes mellitus. N. Am. J. Med. Sci. 2014, 6, 107. [Google Scholar]
- Islam, R.M.; Magliano, D.J.; Khan, M.N.; Hossain, M.B.; Rana, J.; Oldroyd, J.C. Prevalence of undiagnosed diabetes and the relative importance of its risk factors among adults in Bangladesh: Findings from a nationwide survey. Diabetes Res. Clin. Pract. 2022, 185, 109228. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.-D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef]
- Abdulaziz Al Dawish, M.; Alwin, R.A.; Braham, R.; Abdallah Al Hayek, A.; Al Saeed, A.; Ahmed Ahmed, R.; Sulaiman Al Sabaan, F. Diabetes mellitus in Saudi Arabia: A review of the recent literature. Curr. Diabetes Rev. 2016, 12, 359–368. [Google Scholar] [CrossRef]
- Bradley, P. Refined carbohydrates, phenotypic plasticity and the obesity epidemic. Med. Hypotheses 2019, 131, 109317. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2019. Diabetes Care 2019, 42 (Suppl. 1), S13–S28. [Google Scholar] [CrossRef]
- Weng, J. Evolution in the Chinese diabetes society standards of care for type 2 diabetes. Diabetes Metab. Res. Rev. 2016, 32, 440–441. [Google Scholar] [CrossRef]
- Kundu, D.; Saikia, M.; Paul, T. Study of the correlation between total lipid profile and glycosylated hemoglobin among the indigenous population of Guwahati. Int. J. Life Sci. Sci. Res. 2017, 3, 1175–1180. [Google Scholar] [CrossRef]
- Naqvi, S.; Naveed, S.; Ali, Z.; Ahmad, S.M.; Khan, R.A.; Raj, H.; Shariff, S.; Rupareliya, C.; Zahra, F.; Khan, S. Correlation between glycated hemoglobin and triglyceride level in type 2 diabetes mellitus. Cureus 2017, 9, e1347. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Khattak, R.M.; Ur Rehman, M.; Khattak, M.N.K. The role of glycated hemoglobin (HbA1c) and serum lipid profile measurements to detect cardiovascular diseases in type 2 diabetic patients. South East Asia J. Public Health 2015, 5, 30–34. [Google Scholar] [CrossRef]
- Baranwal, J.K.; Maskey, R.; Majhi, S.; Lamsal, M.; Baral, N. Association between level of HbA1c and lipid profile in T2DM patients attending diabetic OPD at BPKIHS. Health Renaiss. 2017, 13, 16–23. [Google Scholar] [CrossRef]
- Gharib, A.F.; Saber, T.; EL Askary, A.; Alharthi, A.; Alsalmi, N.A.; Alhashmi, S.T.; Al-Asiri, R.F.; Shafie, A. Relation of Hypoxia Inducible Factor, Dyslipidemia and CAD Saudi Patients with Type 2 Diabetes. In Vivo 2022, 36, 2481–2489. [Google Scholar] [CrossRef]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017, 54, 219–232. [Google Scholar] [CrossRef]
- Ståhlman, M.; Fagerberg, B.; Adiels, M.; Ekroos, K.; Chapman, J.M.; Kontush, A.; Borén, J. Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: Impact on small HDL particles. Mol. Cell Biol. Lipids 2013, 1831, 1609–1617. [Google Scholar] [CrossRef]
- Giuffrida, F.; Guedes, A.D.; Rocco, E.R.; Mory, D.B.; Dualib, P.; Matos, O.S.; Chaves-Fonseca, R.M.; A Cobas, R.; Negrato, C.A.; Gomes, M.B.; et al. Heterogeneous behavior of lipids according to HbA1c levels undermines the plausibility of metabolic syndrome in type 1 diabetes: Data from a nationwide multicenter survey. Cardiovasc. Diabetol. 2012, 11, 156. [Google Scholar] [CrossRef]
- Al Ghadeer, H.A.; Al Barqi, M.; Almaqhawi, A.; Alsultan, A.S.; Alghafli, J.A.; AlOmaish, M.A.; AlGhanem, Z.A.; Alsaqar, A.H.; Alatiyyah, A.T.; Alburayh, Y.A.; et al. Prevalence of Dyslipidemia in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. Cureus 2021, 13, e20222. [Google Scholar] [CrossRef]
- Sarkar, S.; Meshram, A. HbA1c and lipid profile levels in the known type 2 diabetic group in the rural region of Vidarbha, Maharashtra, India. J. Evid. Based Med. Health 2017, 4, 1915–1920. [Google Scholar] [CrossRef]
- Samdani, T.S.; Mitra, P.; Rahim, M.A. Relationship of glycated haemoglobin with lipid profile among patients with type 2 diabetes mellitus. Birdem Med. J. 2017, 7, 43–47. [Google Scholar] [CrossRef]
- Verma, A.K. To determine the correlation between HbA1c and AIP in patients diagnosed with type 2 diabetes mellitus. Int. J. Adv. Res. Med. 2020, 2, 63–66. [Google Scholar] [CrossRef]
- Alzahrani, S.H.; Baig, M.; Aashi, M.M.; Al-Shaibi, F.K.; Alqarni, D.A.; Bakhamees, W.H. Association between glycated hemoglobin (HbA1c) and the lipid profile in patients with type 2 diabetes mellitus at a tertiary care hospital: A retrospective study. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1639. [Google Scholar] [CrossRef] [PubMed]
- Somadi, B.; Bangar, S.; Bhalwar, R. American diabetes association criteria for diabetes diagnosis. Diabetes Care 1999, 22, 366. [Google Scholar]
- Hulley, S.B. Designing Clinical Research; Lippincott Williams & Wilkins: Philadelphia, PE, USA, 2007. [Google Scholar]
- Menard, S. Applied Logistic Regression Analysis; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Myers, R. Classical and Modern Regression with Applications; Duxbury Press: Boston, MA, USA, 1990. [Google Scholar]
- Savelieff, M.G.; Callaghan, B.C.; Feldman, E.L. The emerging role of dyslipidemia in diabetic microvascular complications. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, S.K.; Singh, N.; Agrawal, N.; Gopal, K. Obesity and dyslipidemia. Int. J. Biol. Med. Res. 2011, 2, 824–828. [Google Scholar]
- Alam, R.; Verma, M.K.; Verma, P. GlycatedHaemoglobin as a Dual Biomarker in Type 2 Diabetes Mellitus Predicting Glycaemic Control and Dyslipidaemia Risk. Int. J. Life-Sci. Sci. Res. 2015, 1, 62–65. [Google Scholar]
- Bekele, S.; Yohannes, T.; Mohammed, A.E. Dyslipidemia and associated factors among diabetic patients attending Durame General Hospital in Southern Nations, Nationalities, and People’s Region. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 265. [Google Scholar] [CrossRef]
- Sheth, J.; Shah, A.; Sheth, F.; Trivedi, S.; Nabar, N.; Shah, N.; Thakor, P.; Vaidya, R. The association of dyslipidaemia and obesity with glycatedhaemoglobin. Clin. Diabetes Endocrinol. 2015, 1, 6. [Google Scholar] [CrossRef]
- Bodhe, C.; Jankar, D.; Bhutada, T.; Patwardhan, M.; Patwardhan, V. HbA1c: Predictor of Dyslipidaemia and Atherogenicity in Diabetes Mellitus. Int. J. Basic Med. Sci. Pharm. 2012, 2, 25–27. [Google Scholar]
- Hussain, A.; Ali, I.; Ijaz, M.; Rahim, A. Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: Hemoglobin A1c prognosticates dyslipidemia. Ther. Adv. Endocrinol. Metab. 2017, 8, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.J. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 1996, 37, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pletcher, M.J.; Vittinghoff, E.; Clemons, A.M.; Jacobs, D.R.; Allen, N.B.; Alonso, A.; Bellows, B.K.; Oelsner, E.C.; Al Hazzouri, A.Z.; et al. Association between cumulative low-density lipoprotein cholesterol exposure during young adulthood and middle age and risk of cardiovascular events. JAMA Cardiol. 2021, 6, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, D.R.; Khadka, D.; Sigdel, M.; Yadav, N.K.; Acharya, S.; Kafle, R.; Sapkota, R.M.; Sigdel, T. Prevalence and pattern of dyslipidemia in Nepalese individuals with type 2 diabetes. BMC Res. Notes 2017, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Haile, K.; Timerga, A. Dyslipidemia and its associated risk factors among adult type-2 diabetic patients at Jimma University Medical Center, Jimma, Southwest Ethiopia. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 4589. [Google Scholar] [CrossRef]
- Henock, A.; Techalew, S.; Kinfe, L. Dyslipidemia among diabetic patients in Southern Ethiopia: Cross-sectional study. J. Diabetes Endocrinol. 2015, 6, 19–24. [Google Scholar] [CrossRef]
- Qi, L.; Ding, X.; Tang, W.; Li, Q.; Mao, D.; Wang, Y. Prevalence and risk factors associated with dyslipidemia in Chongqing, China. Int. J. Environ. Res. Public Health 2015, 12, 13455–13465. [Google Scholar] [CrossRef]
- Alzaheb, R.A.; Altemani, A.H. Prevalence and Associated Factors of Dyslipidemia among Adults with Type 2 Diabetes Mellitus in Saudi Arabia. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 4033. [Google Scholar] [CrossRef]
- Sami, W.; Ab Hamid, M. (Eds.) Lipid profile of type 2 diabetics in Almajmaah, Saudi Arabia. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Ahmad Khan, H. Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007, 44, 193–200. [Google Scholar] [CrossRef]
- Diaf, M.; Khaled, B.M. Metabolic profile, nutritional status and determinants of gly-caemic control in Algerian type 2 diabetic patients. Kuwait Med. J. 2017, 49, 135–141. [Google Scholar]
- Sibley, C.; Blumenthal, R.S.; Merz, C.N.B.; Mosca, L. Commentary: Limitations of current cardiovascular disease risk assessment strategies in women. J. Women’s Health 2006, 15, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, S.; Barakatun-Nisak, M.Y.; Azmi, K.N. Nutritional status, glycemic control and its associated risk factors among a sample of type 2 diabetic individuals, a pilot study. J. Res. Med. Sci. 2015, 20, 40–46. [Google Scholar] [PubMed]
- World Health Organization. Raised Cholesterol; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Turk-Adawi, K.; Sarrafzadegan, N.; Fadhil, I.; Taubert, K.; Sadeghi, M.; Wenger, N.K.; Tan, N.S.; Grace, S.L. Cardiovascular disease in the Eastern Mediterranean region: Epidemiology and risk factor burden. Nat. Rev. Cardiol. 2018, 15, 106–119. [Google Scholar] [CrossRef]
- Al-Kaabba, A.F.; Al-Hamdan, N.A.; El Tahir, A.; Abdalla, A.M.; Saeed, A.A.; Hamza, M.A. Prevalence and correlates of dyslipidemia among adults in Saudi Arabia: Results from a national survey. Open J. Endo Metab. Dis. 2012, 2, 89–97. [Google Scholar] [CrossRef]
Characteristics | Frequency | Percentage (%) |
---|---|---|
Gender | ||
Female | 461 | 46.7 |
Male | 527 | 53.3 |
Age | ||
45–54 years | 289 | 29.3 |
55–64 years | 424 | 42.9 |
65–74 years | 190 | 19.2 |
75 years and above | 85 | 8.6 |
Smoking | ||
Smoker | 135 | 13.7 |
Non-Smoker | 853 | 86.3 |
Marital status | ||
Single/Divorced/Widowed | 204 | 20.6 |
Married | 784 | 79.4 |
Employment | ||
Employed | 341 | 34.5 |
Unemployed | 393 | 39.8 |
Retired | 254 | 25.7 |
Educational level | ||
Primary education | 296 | 30.0 |
Secondary education | 437 | 44.2 |
University or post-graduate education | 209 | 21.2 |
Illiterate | 46 | 4.7 |
Clinical/Biochemical Parameters | Frequency (Percentage) | Minimum | Maximum | Mean | SD |
---|---|---|---|---|---|
BMI | 17.40 | 83.30 | 30.84 | 5.78 | |
BMI categories: | |||||
Underweight | 2 (0.2) | ||||
Normal | 147 (14.9) | ||||
Overweight | 318 (32.2) | ||||
Obese grade I | 301 (30.5) | ||||
Obese grade II | 159 (16.1) | ||||
Obese grade III | 61 (6.2) | ||||
HbA1c | 5.8 | 15.9 | 8.36 | 1.77 | |
Normal | 29 (2.9) | ||||
High | 959 (97.1) | ||||
(normal = less than 6.5%) | |||||
Fasting Blood Glucose | 117 | 427.00 | 185.48 | 45.82 | |
Normal | 7 (0.7) | ||||
High | 981 (99.3) | ||||
(Normal ≥ 126 mg/dL) | |||||
Total Cholesterol | 69.0 | 376.0 | 187.50 | 47.41 | |
Normal | 644 (65.2) | ||||
High | 344 (34.8) | ||||
(normal = less than 200 mg/dL) | |||||
Triglycerides | 27.0 | 751.0 | 144.74 | 81.11 | |
Normal | 643 (65.1) | ||||
High | 345 (34.9) | ||||
(normal = Less than 150 mg/dL) | |||||
HDL-c | 4.5 | 389.0 | 44.42 | 16.94 | |
Normal | 595 (39.8) | ||||
Low | 393 (39.8) | ||||
(normal = greater than 40 mg/dL) | |||||
LDL-c | 9.2 | 296.0 | 114.28 | 39.87 | |
Normal | 392 (39.7) | ||||
High | 596 (60.3) | ||||
normal = less than 100 mg/dL) |
Clinical/Biochemical Parameter | Gender | Mean | Std. Deviation | Minimum | Maximum | t-Statistics | p |
---|---|---|---|---|---|---|---|
BMI | Female | 31.58 | 5.47 | 19.67 | 52.68 | 3.792 | <0.001 |
Male | 30.19 | 5.97 | 17.40 | 83.30 | |||
SysBP | Female | 136.53 | 19.47 | 91.00 | 280.00 | −1.423 | 0.155 |
Male | 138.23 | 18.11 | 98.00 | 209.00 | |||
DiaBP | Female | 70.47 | 9.74 | 47.00 | 114.00 | −5.41 | <0.001 |
Male | 73.80 | 9.56 | 47.00 | 100.00 | |||
Glucose | Female | 185.86 | 48.30 | 117.00 | 427.00 | 0.244 | 0.807 |
Male | 185.15 | 43.59 | 124.00 | 421.00 | |||
HBA1C | Female | 8.53 | 1.90 | 5.80 | 15.60 | 2.817 | 0.005 |
Male | 8.22 | 1.63 | 6.20 | 15.90 | |||
Total Cholesterol | Female | 193.63 | 48.04 | 69.00 | 353.00 | 3.826 | <0.001 |
Male | 182.14 | 46.25 | 95.00 | 376.00 | |||
Triglycerides | Female | 142.14 | 72.75 | 30.00 | 604.00 | −0.942 | 0.346 |
Male | 147.02 | 87.77 | 27.00 | 751.00 | |||
HDL-c | Female | 48.40 | 21.21 | 5.50 | 389.00 | 7.085 | <0.001 |
Male | 40.93 | 10.89 | 4.50 | 148.00 | |||
LDL-c | Female | 117.26 | 39.48 | 9.20 | 233.60 | 2.207 | 0.028 |
Male | 111.66 | 40.07 | 25.40 | 296.00 |
Independent Variable | Beta Coefficient | Robust Standard Error # | T Values # | p-Values # | Model Unadjusted R2; Adjusted R2; p-Value |
---|---|---|---|---|---|
BMI | −0.595 | 0.265 | −2.243 | 0.025 | 0.096; 0.081; <0.05 |
Systolic blood pressure | −0.035 | 0.085 | −0.417 | 0.677 | |
Diastolic blood pressure | 0.394 | 0.169 | 2.333 | 0.020 | |
Glucose | 0.107 | 0.046 | 2.294 | 0.022 | |
HbA1C | 2.544 | 1.240 | 2.051 | 0.040 | |
Marital Status Single/divorced | 8.330 | 3.838 | 2.171 | 0.030 | |
Married | Ref | ||||
Age (In years) 45–54 | 15.149 | 7.470 | 2.028 | 0.043 | |
55–64 | 12.708 | 6.392 | 1.988 | 0.047 | |
65–74 | 9.683 | 6.408 | 1.511 | 0.131 | |
75 and above | Ref | ||||
Gender Female | 10.439 | 4.048 | 2.579 | 0.010 | |
Male | Ref | ||||
Habits Smoker | −2.023 | 4.519 | -0.448 | 0.654 | |
Non-smoker | Ref | ||||
Occupation Employed | 5.146 | 4.585 | 1.122 | 0.262 | |
Unemployed | 5.610 | 4.876 | 1.151 | 0.250 | |
Retired | Ref | ||||
Education Primary education | 7.257 | 7.768 | 0.934 | 0.350 | |
Secondary education | 10.308 | 8.320 | 1.239 | 0.216 | |
Tertiary education | 19.984 | 9.197 | 2.173 | 0.030 | |
Illiteracy | Ref | ||||
Intercept | 108.132 | 17.903 | 6.040 | 0.000 |
Independent Variable | Beta Coefficient | Robust Standard Error # | T Values # | p-Values # | Model Unadjusted R2; Adjusted R2; p-Value |
---|---|---|---|---|---|
BMI | −0.255 | 0.414 | −0.617 | 0.537 | 0.057; 0.041 |
Systolic blood pressure | −0.137 | 0.148 | −0.922 | 0.357 | |
Diastolic blood pressure | 0.665 | 0.315 | 2.114 | 0.035 | |
Glucose | 0.060 | 0.072 | 0.827 | 0.408 | |
HbA1C | 7.927 | 1.995 | 3.974 | 0.000 | |
Marital Status Single/divorced | 7.477 | 7.522 | 0.994 | 0.320 | |
Married | Ref | ||||
Age (In years) 45–54 | 0.394 | 11.922 | 0.033 | 0.974 | |
55–64 | 14.020 | 10.345 | 1.355 | 0.176 | |
65–74 | 3.208 | 9.219 | 0.348 | 0.728 | |
75 and above | Ref | ||||
Gender Female | −9.680 | 6.928 | −1.397 | 0.163 | |
Male | Ref | ||||
Habits Smoker | 1.029 | 8.983 | 0.115 | 0.909 | |
Non-smoker | Ref | ||||
Occupation Employed | 8.554 | 7.920 | 1.080 | 0.280 | |
Unemployed | 9.640 | 8.206 | 1.175 | 0.240 | |
Retired | Ref | ||||
Education Primary education | −10.502 | 13.959 | −0.752 | 0.452 | |
Secondary education | −7.030 | 15.030 | −0.468 | 0.640 | |
Tertiary education | −3.610 | 16.408 | −0.220 | 0.826 | |
Illiteracy | Ref | ||||
Intercept | 42.326 | 33.820 | 1.251 | 0.211 |
Independent Variable | Beta Coefficient | Robust Standard Error # | T Values # | p-Values # | Model Unadjusted R2; Adjusted R2; p-Value |
---|---|---|---|---|---|
BMI | −0.394 | 0.225 | −1.750 | 0.080 | 0.052; 0.036 |
Systolic blood pressure | 0.025 | 0.074 | 0.338 | 0.736 | |
Diastolic blood pressure | 0.094 | 0.145 | 0.647 | 0.518 | |
Glucose | 0.077 | 0.040 | 1.932 | 0.054 | |
HbA1C | 1.510 | 1.011 | 1.493 | 0.136 | |
Marital Status Single/divorced | 6.094 | 3.278 | 1.859 | 0.063 | |
Married | Ref | ||||
Age (In years) 45–54 | 10.853 | 6.073 | 1.787 | 0.074 | |
55–64 | 10.246 | 5.093 | 2.012 | 0.045 | |
65–74 | 9.147 | 5.296 | 1.727 | 0.084 | |
75 and above | Ref | ||||
Gender Female | 4.522 | 3.385 | 1.336 | 0.182 | |
Male | Ref | ||||
Habits Smoker | −5.131 | 3.830 | −1.340 | 0.181 | |
Non-smoker | Ref | ||||
Occupation Employed | 4.981 | 4.142 | 1.202 | 0.229 | |
Unemployed | 2.648 | 4.139 | 0.640 | 0.522 | |
Retired | Ref | ||||
Education Primary education | −0.500 | 5.957 | −0.084 | 0.933 | |
Secondary education | 1.171 | 6.159 | 0.190 | 0.849 | |
Tertiary education | 8.377 | 6.888 | 1.216 | 0.224 | |
Illiteracy | Ref | ||||
Intercept | 72.323 | 15.164 | 4.769 | 0.000 |
Independent Variable | Beta Coefficient | Robust Standard Error # | T Values # | p-Values # | Model Unadjusted R2; Adjusted R2; p-Value |
---|---|---|---|---|---|
BMI | −0.029 | 0.068 | −0.424 | 0.672 | 0.063; 0.048 |
Systolic blood pressure | 0.011 | 0.027 | 0.412 | 0.680 | |
Diastolic blood pressure | 0.099 | 0.049 | 2.023 | 0.043 | |
Glucose | −0.021 | 0.014 | −1.426 | 0.154 | |
HbA1C | 0.462 | 0.381 | 1.212 | 0.226 | |
Marital Status Single/divorced | 0.266 | 1.512 | 0.176 | 0.861 | |
Married | Ref | ||||
Age (In years) 45–54 | 4.067 | 2.198 | 1.850 | 0.065 | |
55–64 | 1.744 | 1.653 | 1.055 | 0.292 | |
65–74 | 2.905 | 2.179 | 1.333 | 0.183 | |
75 and above | Ref | ||||
Gender Female | 6.658 | 1.343 | 4.956 | <0.001 | |
Male | Ref | ||||
Habits Smoker | −0.575 | 1.063 | −0.541 | 0.588 | |
Non-smoker | Ref | ||||
Occupation Employed | −1.241 | 1.217 | −1.020 | 0.308 | |
Unemployed | 1.077 | 1.587 | 0.678 | 0.498 | |
Retired | Ref | ||||
Education Primary education | 4.415 | 2.325 | 1.899 | 0.058 | |
Secondary education | 2.830 | 2.314 | 1.223 | 0.222 | |
Tertiary education | 3.179 | 2.403 | 1.323 | 0.186 | |
Illiteracy | Ref | ||||
Intercept | 27.732 | 5.110 | 5.427 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharahili, A.Y.; Mir, S.A.; ALDosari, S.; Manzar, M.D.; Alshehri, B.; Al Othaim, A.; Alghofaili, F.; Madkhali, Y.; Albenasy, K.S.; Alotaibi, J.S. Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study. Diseases 2023, 11, 154. https://doi.org/10.3390/diseases11040154
Sharahili AY, Mir SA, ALDosari S, Manzar MD, Alshehri B, Al Othaim A, Alghofaili F, Madkhali Y, Albenasy KS, Alotaibi JS. Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study. Diseases. 2023; 11(4):154. https://doi.org/10.3390/diseases11040154
Chicago/Turabian StyleSharahili, Abdulaziz Yahya, Shabir Ahmad Mir, Sahar ALDosari, Md Dilshad Manzar, Bader Alshehri, Ayoub Al Othaim, Fayez Alghofaili, Yahya Madkhali, Kamal Shaker Albenasy, and Jazi S. Alotaibi. 2023. "Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study" Diseases 11, no. 4: 154. https://doi.org/10.3390/diseases11040154
APA StyleSharahili, A. Y., Mir, S. A., ALDosari, S., Manzar, M. D., Alshehri, B., Al Othaim, A., Alghofaili, F., Madkhali, Y., Albenasy, K. S., & Alotaibi, J. S. (2023). Correlation of HbA1c Level with Lipid Profile in Type 2 Diabetes Mellitus Patients Visiting a Primary Healthcare Center in Jeddah City, Saudi Arabia: A Retrospective Cross-Sectional Study. Diseases, 11(4), 154. https://doi.org/10.3390/diseases11040154