The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Data
2.2. Study Variables
2.3. Data Analysis Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef]
- Parise, M.; Di Molfetta, S.; Graziano, R.T.; Fiorentino, R.; Cutruzzolà, A.; Gnasso, A.; Irace, C. A Head-to-Head Comparison of Two Algorithms for Adjusting Mealtime Insulin Doses Based on CGM Trend Arrows in Adult Patients with Type 1 Diabetes: Results from an Exploratory Study. Int. J. Environ. Res. Public Health 2023, 20, 3945. [Google Scholar] [CrossRef]
- Ferraz, R.S.; Silva, C.S.; Cavalcante, G.C.; de Queiroz, N.N.M.; Felício, K.M.; Felício, J.S.; Ribeiro-Dos-Santos, Â. Variants in the VDR Gene May Influence 25(OH)D Levels in Type 1 Diabetes Mellitus in a Brazilian Population. Nutrients 2022, 14, 1010. [Google Scholar] [CrossRef]
- Frielitz, F.S.; Eisemann, N.; Werner, K.; Hiort, O.; Katalinic, A.; Lange, K.; von Sengbusch, S. Direct Costs of Healthcare for Children with Type 1 Diabetes Using a CGM System: A Health Economic Analysis of the VIDIKI Telemedicine Study in a German Setting. Exp. Clin. Endocrinol. Diabetes 2022, 130, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.M.C.; Alves, T.C.H.S. Caracterização da vivência familiar de crianças e adolescentes portadores de Diabetes mellitus tipo 1: Uma revisão narrativa. Res. Soc. Dev. 2022, 11, e6011225313. [Google Scholar] [CrossRef]
- Cano-Cano, F.; Gómez-Jaramillo, L.; Ramos-García, P.; Arroba, A.I.; Aguilar-Diosdado, M. IL-1β Implications in Type 1 Diabetes Mellitus Progression: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1303. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.S.; Ismail, E.A.R.; Ghallab, M.A. Effect of metformin as an add-on therapy on neuregulin-4 levels and vascular-related complications in adolescents with type 1 diabetes: A randomized controlled trial. Diabetes Res. Clin. Pract. 2022, 186, 109857. [Google Scholar] [CrossRef]
- Guo, L.; Li, Y.; Zhang, M.; Xiao, X.; Kuang, H.; Yang, T.; Jia, X.; Zhang, X. Efficacy of unblinded and blinded intermittently scanned continuous glucose monitoring for glycemic control in adults with type 1 diabetes. Front. Endocrinol. 2023, 14, 1110845. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Katsilambros, N. Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence. Int. J. Mol. Sci. 2022, 23, 3225. [Google Scholar] [CrossRef]
- Levran, N.; Levek, N.; Sher, B.; Gruber, N.; Afek, A.; Monsonego-Ornan, E.; Pinhas-Hamiel, O. The Impact of a Low-Carbohydrate Diet on Micronutrient Intake and Status in Adolescents with Type 1 Diabetes. Nutrients 2023, 15, 1418. [Google Scholar] [CrossRef]
- Lucier, J.; Weinstock, R.S. Diabetes Mellitus Type 1. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Igudesman, D.; Crandell, J.L.; Corbin, K.D.; Hooper, J.; Thomas, J.M.; Bulik, C.M.; Pence, B.W.; Pratley, R.E.; Kosorok, M.R.; Maahs, D.M.; et al. Associations of Dietary Intake with the Intestinal Microbiota and Short-Chain Fatty Acids Among Young Adults with Type 1 Diabetes and Overweight or Obesity. J. Nutr. 2022, 153, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Esdaile, H.; Hill, N.; Mayet, J.; Oliver, N. Glycaemic control in people with diabetes following acute myocardial infarction. Diabetes Res. Clin. Pract. 2023, 199, 110644. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Haber, J.F.; Barbalho, S.M.; Sgarbi, J.A.; de Argollo Haber, R.S.; de Labio, R.W.; Laurindo, L.F.; Chagas, E.F.B.; Payão, S.L.M. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023, 11, 1120. [Google Scholar] [CrossRef]
- Parente, E.B.; Ahola, A.J.; Kumar, A.; Lehto, M.; Groop, P.H. The relationship between FGF23 and body composition according to albuminuria stage in type 1 diabetes. Diabetes Res. Clin. Pract. 2023, 198, 110620. [Google Scholar] [CrossRef]
- Dos Santos Haber, J.F.; Chagas, E.F.B.; Barbalho, S.M.; Sgarbi, J.A.; Haber, R.S.A.; de Labio, R.W.; Payão, S.L.M. Level of physical activity and gene expression of IL-10 and TNF-α in children and adolescents with Type 1 diabetes. J. Diabetes Complicat. 2022, 36, 108104. [Google Scholar] [CrossRef] [PubMed]
- Hinault, C.; Caroli-Bosc, P.; Bost, F.; Chevalier, N. Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 4537. [Google Scholar] [CrossRef]
- Kahkoska, A.R.; Sarteau, A.C.; Igudesman, D.; Reboussin, B.A.; Dabelea, D.; Dolan, L.M.; Jensen, E.; Wadwa, R.P.; Pihoker, C.; Mayer-Davis, E.J. Association of Insulin Regimen and Estimated Body Fat Over Time among Youths and Young Adults with Type 1 Diabetes: The SEARCH for Diabetes in Youth Study. J. Diabetes Res. 2022, 2022, 1054042. [Google Scholar] [CrossRef]
- Gomez-Peralta, F.; Choudhary, P.; Cosson, E.; Irace, C.; Rami-Merhar, B.; Seibold, A. Understanding the clinical implications of differences between glucose management indicator and glycated haemoglobin. Diabetes Obes. Metab. 2022, 24, 599–608. [Google Scholar] [CrossRef]
- López-Prieto, R.S.; Reza-Albarrán, A.A.; Clark, P.; Gómez Díaz, R.A.; Aguilera-Ruvalcaba, M.S.; Güereca-Olguín, D.C.; Jalife-Velázquez, G.Q.; Soto-Mota, A.; Viveros-Ruiz, T.L.; Juárez-Martínez, L.; et al. Albuminuria, Disease Duration and Glycated Hemoglobin Are Related with Bone Mineral Density in Type 1 Diabetes: A Cross-Sectional Study. Endocr. Pract. 2023, 29, 362–367. [Google Scholar] [CrossRef]
- Quigley, M.; Earnest, A.; Szwarcbard, N.; Wischer, N.; Andrikopoulos, S.; Green, S.; Zoungas, S. Exploring HbA1c variation between Australian diabetes centres: The impact of centre-level and patient-level factors. PLoS ONE 2022, 17, e0263511. [Google Scholar] [CrossRef]
- Safi, M.; Borup, A.; Stevns Hansen, C.; Rossing, P.; Thorsten Jensen, M.; Christoffersen, C. Association between plasma apolipoprotein M and cardiac autonomic neuropathy in type 1 diabetes. Diabetes Res. Clin. Pract. 2022, 189, 109943. [Google Scholar] [CrossRef] [PubMed]
- Inácio, I.; Azevedo, T.; Martins, J.L.; Balsa, A.M.M.; Dantas, R.; Alves, M.; Albuquerque, I.; Guimarães, J. Cardiovascular Risk Prediction by the American Diabetes Association Risk-Assessment Tool and Novel and Traditional Cardiovascular Risk Factors in Young Adults With Type 1 Diabetes. Cureus 2022, 14, e22574. [Google Scholar] [CrossRef] [PubMed]
- Ferré, R.; Aragonès, G.; Plana, N.; Merino, J.; Heras, M.; Buixadera, C.; Masana, L. High-density lipoprotein cholesterol and apolipoprotein A1 levels strongly influence the reactivity of small peripheral arteries. Atherosclerosis 2011, 216, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ni, W.; Bai, Y.; Yuan, X.; Zhang, Y.; Zhang, H.; Sun, Y.; Xu, J. Cross-sectional and longitudinal associations of apolipoprotein A1 and B with glycosylated hemoglobin in Chinese adults. Sci. Rep. 2022, 12, 2751. [Google Scholar] [CrossRef]
- Guan, Y.; Zuo, F.; Zhao, J.; Nian, X.; Shi, L.; Xu, Y.; Huang, J.; Kazumi, T.; Wu, B. Relationships of adiponectin to regional adiposity, insulin sensitivity, serum lipids, and inflammatory markers in sedentary and endurance-trained Japanese young women. Front. Endocrinol. 2023, 14, 1097034. [Google Scholar] [CrossRef]
- Van Eyck, A.; Ledeganck, K.J.; Vermeiren, E.; De Lamper, A.; Eysackers, M.; Mortier, J.; Van Vliet, M.P.; Broere, P.; Roebersen, M.; France, A.; et al. Body composition helps to elucidate the different origins of low serum magnesium in children with obesity compared to children with type 1 diabetes. Eur. J. Pediatr. 2023, 182, 3743–3753. [Google Scholar] [CrossRef]
- Webb, R.J.; Mazidi, M.; Lip, G.Y.H.; Kengne, A.P.; Banach, M.; Davies, I.G. The role of adiposity, diet and inflammation on the discordance between LDL-C and apolipoprotein B. Nutr. Metab. Cardiovasc. Dis. NMCD 2022, 32, 605–615. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Health-Related Physical Fitness Assessment Manual; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Calcaterra, V.; Biganzoli, G.; Ferraro, S.; Verduci, E.; Rossi, V.; Vizzuso, S.; Bosetti, A.; Borsani, B.; Biganzoli, E.; Zuccotti, G. A multivariate analysis of “metabolic phenotype” patterns in children and adolescents with obesity for the early stratification of patients at risk of metabolic syndrome. J. Clin. Med. 2022, 11, 1856. [Google Scholar] [CrossRef]
- Onis, M.D.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Frisancho, A.R.; Tracer, D.P. Standards of arm muscle by stature for the assessment of nutritional status of children. Am. J. Phys. Anthropol. 1987, 73, 459–465. [Google Scholar] [CrossRef]
- Housh, D.J.; Housh, T.J.; Weir, J.P.; Weir, L.L.; Johnson, G.O.; Stout, J.R. Anthropometric estimation of thigh muscle cross-sectional area. Med. Sci. Sports Exerc. 1995, 27, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Mundstock, E.; Vendrusculo, F.M.; Filho, A.D.; Mattiello, R. Consuming a low-calorie amount of routine food and drink does not affect bioimpedance body fat percentage in healthy individuals. Nutrition 2021, 91–92, 111426. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. Apolipoprotein B and apolipoprotein A-I: Risk indicators of coronary heart disease and targets for lipid-modifying therapy. J. Intern. Med. 2004, 255, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Carvalho, M.d.G.; Sousa, M.O. Índice apo B/apo AI e predição de risco cardiovascular. Arq. Bras. Cardiol. 2007, 88, e187–e190. [Google Scholar] [CrossRef]
- Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M. Anthropometric markers as a paradigm for obesity risk assessment. J. Biosci. Med. 2020, 8, 1–16. [Google Scholar] [CrossRef]
- Houtkooper, L.B.; Lohman, T.G.; Going, S.B.; Howell, W.H. Why bioelectrical impedance analysis should be used for estimating adiposity. Am. J. Clin. Nutr. 1996, 64, 436s–448s. [Google Scholar] [CrossRef]
- Kyle, U.G.; Genton, L.; Karsegard, L.; Slosman, D.O.; Pichard, C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 2001, 17, 248–253. [Google Scholar] [CrossRef]
- Muñoz Esparza, N.C.; Vasquez-Garibay, E.M.; Larrosa Haro, A.; Romero Velarde, E. Relationship of anthropometric indexes and indicators of body composition by arm anthropometry on hospitalized pediatric patients. Nutr. Hosp. 2019, 36, 611–617. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; McManus, C.; Smith, J.; Stevens, V.; Nixon, D.W. Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. Am. J. Clin. Nutr. 1982, 36, 680–690. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Chen, J.; Li, K.; Shao, J.; Lai, Z.; Feng, Y.; Liu, B. The Correlation of Apolipoprotein B with Alterations in Specific Fat Depots Content in Adults. Int. J. Mol. Sci. 2023, 24, 6310. [Google Scholar] [CrossRef]
- Silverio, R.N.C.; de Aquino Lacerda, E.M.; Fortins, R.F.; de Lima, G.C.F.; Scancetti, L.B.; do Carmo, C.N.; da Cunha, L.V.S.; Luescher, J.L.; de Carvalho Padilha, P. Predictive factors of non-HDL cholesterol in children and adolescents with type 1 diabetes mellitius: A cross-sectional study. Diabetes Res. Clin. Pract. 2019, 154, 9–16. [Google Scholar] [CrossRef]
- Mostofizadeh, N.; Hashemipour, M.; Roostazadeh, M.; Hashemi-Dehkordi, E.; Shahsanai, A.; Reisi, M. The impact of poor glycemic control on lipid profile variables in children with type 1 diabetes mellitus. J. Educ. Health Promot. 2019, 8, 6. [Google Scholar] [CrossRef]
- Hussein, S.A.; Ibrahim, B.A.; Abdullah, W.H. Nutritional status of children and adolescents with Type 1 Diabetes Mellitus in Baghdad: A case-control study. J. Med. Life 2023, 16, 254–260. [Google Scholar] [CrossRef]
- Minniti, G.; Pescinini-Salzedas, L.M.; Minniti, G.; Laurindo, L.F.; Barbalho, S.M.; Vargas Sinatora, R.; Sloan, L.A.; Haber, R.S.A.; Araújo, A.C.; Quesada, K.; et al. Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise. Int. J. Mol. Sci. 2022, 23, 13452. [Google Scholar] [CrossRef]
- de Oliveira dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, myokines, and hepatokines: Crosstalk and metabolic repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Laurindo, L.F.; Tofano, R.J.; Flato, U.A.P.; Mendes, C.G.; de Alvares Goulart, R.; Briguezi, A.M.G.M.; Bechara, M.D. Dysmetabolic Iron Overload Syndrome: Going beyond the Traditional Risk Factors Associated with Metabolic Syndrome. Endocrines 2023, 4, 18–37. [Google Scholar] [CrossRef]
- Guy, J.; Ogden, L.; Wadwa, R.P.; Hamman, R.F.; Mayer-Davis, E.J.; Liese, A.D.; D’Agostino, R., Jr.; Marcovina, S.; Dabelea, D. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: The SEARCH for Diabetes in Youth case-control study. Diabetes Care 2009, 32, 416–420. [Google Scholar] [CrossRef]
- Maahs, D.M.; Dabelea, D.; D’Agostino, R.B., Jr.; Andrews, J.S.; Shah, A.S.; Crimmins, N.; Mayer-Davis, E.J.; Marcovina, S.; Imperatore, G.; Wadwa, R.P. Glucose control predicts 2-year change in lipid profile in youth with type 1 diabetes. J. Pediatr. 2013, 162, 101–107.e1. [Google Scholar] [CrossRef]
- Vaid, S.; Hanks, L.; Griffin, R.; Ashraf, A.P. Body mass index and glycemic control influence lipoproteins in children with type 1 diabetes. J. Clin. Lipidol. 2016, 10, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.P.; Fesmire, J.D.; Endres, R.K.; Blackett, P.R. Increased levels of HDL-cholesterol and apolipoprotein A-I after intensified insulin therapy for diabetes. South. Med. J. 1985, 78, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Cieluch, A.; Uruska, A.; Grzelka, A.; Zozulińska-Ziółkiewicz, D. An increase in high-density lipoprotein cholesterol concentration after initiation of insulin treatment is dose-dependent in newly diagnosed type 1 diabetes. The results of the InLipoDiab1 study. Pol. Arch. Intern. Med. 2018, 128, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R.; Kahri, J.; Koivisto, V.; Shepherd, J.; Packard, C.J. Metabolism of HDL apolipoprotein A-I and A-II in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1992, 35, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Bebu, I.; Jenkins, A.J.; Stoner, J.A.; Zhang, Y.; Klein, R.L.; Lopes-Virella, M.F.; Garvey, W.T.; Budoff, M.J.; Alaupovic, P.; et al. Serum apolipoproteins and apolipoprotein-defined lipoprotein subclasses: A hypothesis-generating prospective study of cardiovascular events in T1D. J. Lipid Res. 2019, 60, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Li, P. Cardiovascular risk factors in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. JPEM 2019, 32, 699–705. [Google Scholar] [CrossRef] [PubMed]
Average | SD | Minimum | Maximum | |
---|---|---|---|---|
Age (years) | 12.60 | 3.58 | 4.00 | 19.00 |
Diagnostic time (years) | 4.32 | 2.99 | 1.00 | 14.00 |
Glycemia (mg/dL) | 178.19 | 69.14 | 73.00 | 429.00 |
Total cholesterol (mg/dL) | 165.27 | 33.80 | 87.00 | 246.00 |
Triglycerides (mg/dL) | 82.55 | 52.52 | 21.72 | 343.00 |
LDL-c (mg/dL) | 89.37 | 27.41 | 24.00 | 171.00 |
HDL-c (mg/dL) | 55.07 | 10.66 | 23.00 | 76.00 |
Non-HDL-c | 110.20 | 34.43 | 37.00 | 201.00 |
HbA1c (%) | 8.57 | 2.27 | 4.91 | 15.30 |
ApoA-I | 149.00 | 17.89 | 95.00 | 213.00 |
ApoB | 77.20 | 18.61 | 31.00 | 126.00 |
Apolipoprotein B/Apolipoprotein A-I coefficient | 0.28 | 0.85 | 0.52 | 0.12 |
Conicity index | 1.14 | 0.08 | 0.79 | 1.36 |
BMI z-score | 0.25 | 1.23 | −3.01 | 3.30 |
Arm muscle area (cm2) | 20.93 | 3.15 | 15.37 | 28.72 |
Arm area (cm2) | 59.75 | 11.09 | 40.75 | 95.00 |
Arm fat area (cm2) | 12.36 | 2.84 | 7.87 | 22.98 |
Arm fat (%) | 20.55 | 1.12 | 19.16 | 24.44 |
Thigh muscle area (cm2) | 106.21 | 38.58 | 43.53 | 208.58 |
Thigh area (cm2) | 157.18 | 58.38 | 66.96 | 336.39 |
Thigh fat area (cm2) | 50.97 | 27.79 | 7.60 | 132.58 |
Thigh fat area (cm2) (%) | 31.65 | 9.82 | 4.14 | 55.37 |
Fat bioimpedance (%) | 21.73 | 7.63 | 9.60 | 40.00 |
Fat (kg) bioimpedance | 10.93 | 6.01 | 2.42 | 28.20 |
f | % | p-Value | ||
---|---|---|---|---|
Gender | Male | 48 | 59.3 | 0.119 |
Female | 33 | 40.7 | ||
Diagnostic time class | <5 years | 46 | 56.8 | 0.226 |
>5 years | 35 | 43.2 | ||
Insulin administration | Bomb | 22 | 27.2 | <0.001 * |
Pen | 59 | 72.8 | ||
Associated morbidities | Yes | 5 | 6.2 | <0.001 * |
No | 76 | 93.8 | ||
Level of physical activity | Sedentary | 47 | 58.0 | 0.182 |
Little active | 34 | 42.0 | ||
HbA1c | <7% | 20 | 24.7 | <0.001 * |
7–8% | 17 | 21.0 | ||
>8% | 44 | 54.3 | ||
ApoA-I | Desirable | 79 | 97.5 | <0.001 * |
Undesirable | 2 | 2.5 | ||
ApoB | Desirable | 65 | 80.2 | <0.001 * |
Undesirable | 16 | 19.8 | ||
Cardiovascular risk ApoB/ApoA-I coefficient | Low | 71 | 87.7 | <0.001 * |
Moderate | 9 | 11.1 | ||
High | 1 | 1.2 | ||
Body Mass Index | Thinness/skinny | 9 | 11.1 | <0.001 * |
Eutrophic | 52 | 64.2 | ||
Overweight | 18 | 22.2 | ||
Obese | 2 | 2.5 |
HbA1c (%) | ApoA-I | ApoB | ApoB/ApoA-I Coefficient | |||||
---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Conicity index | −0.086 | 0.447 | 0.039 | 0.730 | 0.227 | 0.042 * | 0.119 | 0.289 |
z-score BMI | 0.041 | 0.717 | 0.083 | 0.461 | 0.018 | 0.874 | −0.085 | 0.449 |
Arm muscle area (cm2) | 0.034 | 0.765 | −0.172 | 0.126 | −0.298 | 0.007 * | −0.269 | 0.015 * |
Arm area (cm2) | 0.034 | 0.761 | −0.087 | 0.440 | −0.148 | 0.186 | −0.177 | 0.113 |
Arm fat area (cm2) | 0.059 | 0.603 | −0.066 | 0.561 | −0.113 | 0.316 | −0.152 | 0.175 |
arm fat (%) | 0.116 | 0.303 | 0.059 | 0.602 | 0.140 | 0.213 | 0.071 | 0.531 |
Thigh muscle area (cm2) | 0.098 | 0.383 | −0.069 | 0.540 | −0.195 | 0.081 | −0.210 | 0.060 |
Thigh area (cm2) | 0.137 | 0.224 | −0.032 | 0.774 | −0.118 | 0.296 | −0.155 | 0.167 |
Thigh fat area (cm2) | 0.170 | 0.129 | 0.010 | 0.928 | 0.071 | 0.527 | 0.010 | 0.926 |
Thigh fat area (cm2) | 0.111 | 0.325 | 0.033 | 0.770 | 0.199 | 0.075 | 0.182 | 0.104 |
Fat bioimpedance (%) | 0.252 | 0.023 * | 0.141 | 0.210 | 0.181 | 0.106 | 0.076 | 0.499 |
Fat bioimpedance (kg) | 0.272 | 0.014 * | 0.088 | 0.435 | 0.091 | 0.417 | −0.003 | 0.979 |
Lean mass bioimpedance (kg) | 0.134 | 0.235 | −0.105 | 0.351 | −0.201 | 0.073 | −0.190 | 0.090 |
Lean mass bioimpedance (%) | −0.275 | 0.013 * | −0.167 | 0.135 | −0.211 | 0.059 | −0.104 | 0.357 |
Variables | B | CI 95% | p-Value | Model | |||
---|---|---|---|---|---|---|---|
Dependent | Independent | LL | UL | p-Value | R2 | ||
HbA1c (%) | (Constant) | 7.636 | 5.687 | 9.586 | <0.001 * | 0.274 | 0.064 |
Gender | −0.539 | −1.718 | 0.639 | 0.365 | |||
Diagnostic time (years) | −0.099 | −0.297 | 0.098 | 0.321 | |||
Pubertal stage | 0.072 | −0.647 | 0.791 | 0.842 | |||
fat bioimpedance (%) | 0.090 | 0.008 | 0.172 | 0.031 * | |||
HbA1c (%) | (Constant) | 18.297 | 10.234 | 26.360 | 0.000 | 0.150 | 0.084 |
Gender | −0.690 | −1.878 | 0.498 | 0.251 | |||
Diagnostic time (years) | −0.107 | −0.303 | 0.088 | 0.278 | |||
Pubertal stage | 0.068 | −0.641 | 0.778 | 0.849 | |||
Lean mass bioimpedance (%) | −0.108 | −0.192 | −0.024 | 0.013 * | |||
ApoB | (Constant) | 124.241 | 86.233 | 162.250 | 0.000 | 0.030 ** | 0.130 |
Gender | −1.783 | −11.201 | 7.636 | 0.707 | |||
Diagnostic time (years) | −0.394 | −1.976 | 1.188 | 0.621 | |||
Pubertal stage | 7.926 | 0.578 | 15.274 | 0.035 | |||
Arm muscle area (cm2) | −2.855 | −4.796 | −0.913 | 0.004 * | |||
ApoB/ApoA-I | (Constant) | 0.839 | 0.583 | 1.095 | 0.000 | 0.088 | 0.100 |
Gender | −0.047 | −0.111 | 0.016 | 0.141 | |||
Diagnostic time (years) | −0.004 | −0.014 | 0.007 | 0.495 | |||
Pubertal stage | 0.047 | −0.003 | 0.096 | 0.065 | |||
Arm muscle area (cm2) | −0.016 | −0.029 | −0.003 | 0.017 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegucci, T.; Chagas, E.F.B.; de Oliveira Zanuso, B.; Quesada, K.; dos Santos Haber, J.F.; Menegucci Zutin, T.L.; Felipe Pimenta, L.; Cressoni Araújo, A.; Landgraf Guiguer, E.; Rucco P. Detregiachi, C.; et al. The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus. Diseases 2023, 11, 125. https://doi.org/10.3390/diseases11040125
Menegucci T, Chagas EFB, de Oliveira Zanuso B, Quesada K, dos Santos Haber JF, Menegucci Zutin TL, Felipe Pimenta L, Cressoni Araújo A, Landgraf Guiguer E, Rucco P. Detregiachi C, et al. The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus. Diseases. 2023; 11(4):125. https://doi.org/10.3390/diseases11040125
Chicago/Turabian StyleMenegucci, Thais, Eduardo Federighi Baisi Chagas, Barbara de Oliveira Zanuso, Karina Quesada, Jesselina Francisco dos Santos Haber, Tereza Laís Menegucci Zutin, Luis Felipe Pimenta, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Claudia Rucco P. Detregiachi, and et al. 2023. "The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus" Diseases 11, no. 4: 125. https://doi.org/10.3390/diseases11040125