MicroRNAs’ Role in Diagnosis and Treatment of Subarachnoid Hemorrhage
Abstract
:1. Subarachnoid Hemorrhage
2. MicroRNA
3. Methods
4. microRNA and SAH Diagnosis
5. microRNA-Based Therapies for SAH
6. Exosomes
7. microRNA and SAH Prognosis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Yan, J.; Rolland, W.B.; Soejima, Y.; Caner, B.; Zhang, J.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl. Stroke Res. 2013, 4, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Eagles, M.E.; Tso, M.K.; Macdonald, R.L. Cognitive Impairment, Functional Outcome, and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2019, 124, e558–e562. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, N.W.; King, M.T. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I: Incidence and effects. J. Clin. Neurosci. 1994, 1, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Grote, A. Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. Int. J. Mol. Sci. 2021, 22, 4133. [Google Scholar] [CrossRef] [PubMed]
- Horvitz, H.R.; Sulston, J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 1980, 96, 435–454. [Google Scholar] [CrossRef]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef]
- Bernstein, E.; Kim, S.Y.; Carmell, M.A.; Murchison, E.P.; Alcorn, H.; Li, M.Z.; Mills, A.A.; Elledge, S.J.; Anderson, K.V.; Hannon, G.J. Dicer is essential for mouse development. Nat. Genet. 2003, 35, 215–217. [Google Scholar] [CrossRef]
- Wang, Y.; Medvid, R.; Melton, C.; Jaenisch, R.; Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007, 39, 380–385. [Google Scholar] [CrossRef]
- Park, C.Y.; Choi, Y.S.; McManus, M.T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 2010, 19, R169–R175. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.; Wang, J.; Yang, Q. Microarray analysis of infectious bronchitis virus infection of chicken primary dendritic cells. BMC Genom. 2019, 20, 557. [Google Scholar] [CrossRef] [PubMed]
- Isik, M.; Korswagen, H.C.; Berezikov, E. Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 2010, 1, 5. [Google Scholar] [CrossRef]
- Shomron, N.; Levy, C. MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J. Biomed. Biotechnol. 2009, 2009, 594678. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Jiang, J.; Kokkinaki, M.; Tang, L.; Zeng, W.; Gallicano, I.; Dobrinski, I.; Dym, M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells 2013, 31, 2205–2217. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, L.; Long, Z.; Chen, Z.; Hou, X.; Wang, C.; Peng, H.; Wang, J.; Li, J.; Duan, R.; et al. miR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3. FEBS Lett. 2014, 588, 4791–4798. [Google Scholar] [CrossRef]
- Aw, S.; Cohen, S.M. Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Res. 2012, 22, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
- Kole, A.J.; Swahari, V.; Hammond, S.M.; Deshmukh, M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011, 25, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Somel, M.; Liu, X.; Tang, L.; Yan, Z.; Hu, H.; Guo, S.; Jiang, X.; Zhang, X.; Xu, G.; Xie, G.; et al. MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol. 2011, 9, e1001214. [Google Scholar] [CrossRef]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439, 283–289. [Google Scholar] [CrossRef]
- Griggs, E.M.; Young, E.J.; Rumbaugh, G.; Miller, C.A. MicroRNA-182 regulates amygdala-dependent memory formation. J. Neurosci. 2013, 33, 1734–1740. [Google Scholar] [CrossRef]
- Wang, C.; Ji, B.; Cheng, B.; Chen, J.; Bai, B. Neuroprotection of microRNA in neurological disorders (Review). Biomed. Rep. 2014, 2, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Bhimani, A.D.; Kalagara, R.; Chennareddy, S.; Kellner, C.P. Exosomes in subarachnoid hemorrhage: A scoping review. J. Clin. Neurosci. 2022, 105, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Gareev, I.; Beylerli, O.; Yang, G.; Izmailov, A.; Shi, H.; Sun, J.; Zhao, B.; Liu, B.; Zhao, S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg. Rev. 2021, 44, 2025–2039. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Creemers, E.E.; Tijsen, A.J.; Pinto, Y.M. Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 2012, 110, 483–495. [Google Scholar] [CrossRef]
- Allegra, A.; Alonci, A.; Campo, S.; Penna, G.; Petrungaro, A.; Gerace, D.; Musolino, C. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (review). Int. J. Oncol. 2012, 41, 1897–1912. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Wu, X.; Yang, X.; Zhang, Y.; Li, Y.; Jiang, F. Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J. Am. Heart Assoc. 2014, 3, e000972. [Google Scholar] [CrossRef]
- Makowska, M.; Smolarz, B.; Romanowicz, H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J. Clin. Med. 2022, 11, 4630. [Google Scholar] [CrossRef]
- Sheng, B.; Lai, N.S.; Yao, Y.; Dong, J.; Li, Z.B.; Zhao, X.T.; Liu, J.Q.; Li, X.Q.; Fang, X.G. Early serum miR-1297 is an indicator of poor neurological outcome in patients with aSAH. Biosci. Rep. 2018, 38, BSR20180646. [Google Scholar] [CrossRef]
- Sheng, B.; Fang, X.; Liu, C.; Wu, D.; Xia, D.; Xu, S.; Lai, N. Persistent High Levels of miR-502-5p Are Associated with Poor Neurologic Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2018, 116, e92–e99. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.S.; Zhang, J.Q.; Qin, F.Y.; Sheng, B.; Fang, X.G.; Li, Z.B. Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage. Biosci. Rep. 2017, 37, BSR20160480. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Peng, F.; Zhang, B.; Wang, L.; Guo, E.; Li, Y.; Jiang, C.; Wu, Z.; Liu, A. Lower miR-143/145 and higher matrix metalloproteinase-9 levels in circulation may be associated with intracranial aneurysm formation and rupture: A pilot study. Clin. Neurol. Neurosurg. 2018, 173, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Peng, J.; Pang, J.; Wan, W.; Chen, L. A functional polymorphism in the promoter region of miR-155 predicts the risk of intracranial hemorrhage caused by rupture intracranial aneurysm. J. Cell Biochem. 2019, 120, 18618–18628. [Google Scholar] [CrossRef]
- Wang, W.H.; Wang, Y.H.; Zheng, L.L.; Li, X.W.; Hao, F.; Guo, D. MicroRNA-29a: A potential biomarker in the development of intracranial aneurysm. J. Neurol. Sci. 2016, 364, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Meeuwsen, J.A.L.; van ’t Hof, F.N.G.; van Rheenen, W.; Rinkel, G.J.E.; Veldink, J.H.; Ruigrok, Y.M. Circulating microRNAs in patients with intracranial aneurysms. PLoS ONE 2017, 12, e0176558. [Google Scholar] [CrossRef]
- Supriya, M.; Christopher, R.; Indira Devi, B.; Bhat, D.I.; Shukla, D. Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture. Mol. Diagn. Ther. 2020, 24, 351–364. [Google Scholar] [CrossRef]
- Yang, F.; Xing, W.W.; Shen, D.W.; Tong, M.F.; Xie, F.M. Effect of miR-126 on intracranial aneurysms and its predictive value for rupture of aneurysms. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3245–3253. [Google Scholar] [CrossRef]
- Su, X.W.; Chan, A.H.; Lu, G.; Lin, M.; Sze, J.; Zhou, J.Y.; Poon, W.S.; Liu, Q.; Zheng, V.Z.; Wong, G.K. Circulating microRNA 132-3p and 324-3p Profiles in Patients after Acute Aneurysmal Subarachnoid Hemorrhage. PLoS ONE 2015, 10, e0144724. [Google Scholar] [CrossRef]
- Stylli, S.S.; Adamides, A.A.; Koldej, R.M.; Luwor, R.B.; Ritchie, D.S.; Ziogas, J.; Kaye, A.H. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2017, 126, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Bache, S.; Rasmussen, R.; Rossing, M.; Laigaard, F.P.; Nielsen, F.C.; Møller, K. MicroRNA Changes in Cerebrospinal Fluid after Subarachnoid Hemorrhage. Stroke 2017, 48, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Huang, X.; Deng, A.; Yao, H.; Wu, G.; Wang, N.; Gui, H.; Ren, M.; Guo, S. miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage. Neurocrit. Care 2022, 37, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.; Wu, D.; Liang, T.; Pan, P.; Yuan, G.; Li, X.; Li, H.; Shen, H.; Wang, Z.; Chen, G. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J. Neuroinflamm. 2020, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Yang, L.; Liu, Y.; Wang, Z.F.; Zhuang, K. HDAC Inhibitor SAHA Alleviates Pyroptosis by up-regulating miR-340 to Inhibit NEK7 Signaling in Subarachnoid Hemorrhage. Neurochem. Res. 2023, 48, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Y.; Gang, S.; Geng, T.; Li, M.; Xu, L.; Zhang, X.; Liu, L.; Xie, Y.; Ye, R.; et al. Inhibition of miR-103-3p Preserves Neurovascular Integrity Through Caveolin-1 in Experimental Subarachnoid Hemorrhage. Neuroscience 2021, 461, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, M.; Li, H.; Wang, Y.; Shen, H.; Li, X.; Zhang, Y.; Wu, J.; Yu, Z.; Chen, G. CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J. Neuroinflamm. 2020, 17, 209. [Google Scholar] [CrossRef]
- Li, H.T.; Wang, J.; Li, S.F.; Cheng, L.; Tang, W.Z.; Feng, Y.G. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol. Med. Rep. 2018, 18, 1181–1187. [Google Scholar] [CrossRef]
- Deng, X.; Liang, C.; Qian, L.; Zhang, Q. miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage. Am. J. Transl. Res. 2021, 13, 1064–1074. [Google Scholar]
- Zhao, H.; Li, Y.; Chen, L.; Shen, C.; Xiao, Z.; Xu, R.; Wang, J.; Luo, Y. HucMSCs-Derived miR-206-Knockdown Exosomes Contribute to Neuroprotection in Subarachnoid Hemorrhage Induced Early Brain Injury by Targeting BDNF. Neuroscience 2019, 417, 11–23. [Google Scholar] [CrossRef]
- Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010, 185, 6413–6419. [Google Scholar] [CrossRef] [PubMed]
- Pigazzi, M.; Manara, E.; Baron, E.; Basso, G. miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 2009, 69, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, Y.; Xu, J.; Gao, H. miR-140-5p Attenuates Neuroinflammation and Brain Injury in Rats Following Intracerebral Hemorrhage by Targeting TLR4. Inflammation 2019, 42, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Dong, S.; Liu, F.; Liu, A.; Wang, Z. MicroRNA-140-5p shuttled by microglia-derived extracellular vesicles attenuates subarachnoid hemorrhage-induced microglia activation and inflammatory response via MMD downregulation. Exp. Neurol. 2023, 359, 114265. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Q.; Chen, L.; Sun, J.; Cao, K.; Mei, Z.; Lu, X. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate M1 Microglial Activation in Brain Injury of Mice With Subarachnoid Hemorrhage via microRNA-140-5p Delivery. Int. J. Neuropsychopharmacol. 2022, 25, 328–338. [Google Scholar] [CrossRef]
- Makino, H.; Tada, Y.; Wada, K.; Liang, E.I.; Chang, M.; Mobashery, S.; Kanematsu, Y.; Kurihara, C.; Palova, E.; Kanematsu, M.; et al. Pharmacological stabilization of intracranial aneurysms in mice: A feasibility study. Stroke 2012, 43, 2450–2456. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Z.; Hua, Y.; Xiao, G. Minocycline Promotes BDNF Expression of N2a Cells via Inhibition of miR-155-Mediated Repression After Oxygen-Glucose Deprivation and Reoxygenation. Cell Mol. Neurobiol. 2018, 38, 1305–1313. [Google Scholar] [CrossRef]
- Zaccagnini, G.; Maimone, B.; Fuschi, P.; Maselli, D.; Spinetti, G.; Gaetano, C.; Martelli, F. Overexpression of miR-210 and its significance in ischemic tissue damage. Sci. Rep. 2017, 7, 9563. [Google Scholar] [CrossRef]
- Yu, S.; Zeng, Y.J.; Sun, X.C. Neuroprotective effects of p53/microRNA-22 regulate inflammation and apoptosis in subarachnoid hemorrhage. Int. J. Mol. Med. 2018, 41, 2406–2412. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef]
- Jiang, L.; Dong, H.; Cao, H.; Ji, X.; Luan, S.; Liu, J. Exosomes in Pathogenesis, Diagnosis, and Treatment of Alzheimer’s Disease. Med. Sci. Monit. 2019, 25, 3329–3335. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, J.; Li, D.F.; Wu, W.; Xie, Z.W.; Liu, Q. Physiological and pathological insights into exosomes in the brain. Zool. Res. 2020, 41, 365–372. [Google Scholar] [CrossRef]
- Barmada, S.J.; Skibinski, G.; Korb, E.; Rao, E.J.; Wu, J.Y.; Finkbeiner, S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 2010, 30, 639–649. [Google Scholar] [CrossRef]
- He, T.; Zuo, Y.; Ai-Zakwani, K.; Luo, J.; Zhu, H.; Yan, X.X.; Liu, F. Subarachnoid hemorrhage enhances the expression of TDP-43 in the brain of experimental rats and human subjects. Exp. Ther. Med. 2018, 16, 3363–3368. [Google Scholar] [CrossRef]
- Wang, P.; Xue, Y.; Zuo, Y.; Xue, Y.; Zhang, J.H.; Duan, J.; Liu, F.; Liu, A. Exosome-Encapsulated microRNA-140-5p Alleviates Neuronal Injury Following Subarachnoid Hemorrhage by Regulating IGFBP5-Mediated PI3K/AKT Signaling Pathway. Mol. Neurobiol. 2022, 59, 7212–7228. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Sun, L.; Zhang, Y.; Peng, J.; Yan, J.; Liu, X. Exosomes from Bone Marrow Mesenchymal Stem Cells Can Alleviate Early Brain Injury After Subarachnoid Hemorrhage Through miRNA129-5p-HMGB1 Pathway. Stem Cells Dev. 2020, 29, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xiong, Y.; Li, Q.; Han, M.; Shan, D.; Yang, G.; Zhang, S.; Xin, D.; Zhao, R.; Wang, Z.; et al. Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death Dis. 2020, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, B.; Guo, Q. MiR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway. Brain Res. Bull. 2021, 175, 107–115. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, L.; Zhang, T.; Chen, Y.; Wang, Q.; Wu, Y. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp. Neurol. 2022, 356, 114151. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, B.; Pang, L.; Che, Y.; Qi, X. Suppression of MALAT1 alleviates neurocyte apoptosis and reactive oxygen species production through the miR-499-5p/SOX6 axis in subarachnoid hemorrhage. J. Mol. Histol. 2022, 53, 85–96. [Google Scholar] [CrossRef]
- Cai, L.; Ge, B.; Xu, S.; Chen, X.; Yang, H. Up-regulation of circARF3 reduces blood-brain barrier damage in rat subarachnoid hemorrhage model via miR-31-5p/MyD88/NF-κB axis. Aging 2021, 13, 21345–21363. [Google Scholar] [CrossRef] [PubMed]
- Ru, X.; Qu, J.; Li, Q.; Zhou, J.; Huang, S.; Li, W.; Zuo, S.; Chen, Y.; Liu, Z.; Feng, H. MiR-706 alleviates white matter injury via downregulating PKCα/MST1/NF-κB pathway after subarachnoid hemorrhage in mice. Exp. Neurol. 2021, 341, 113688. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tang, W.; He, Y.; Wen, L.; Sun, B.; Li, S. Long non-coding RNA and microRNA-675/let-7a mediates the protective effect of melatonin against early brain injury after subarachnoid hemorrhage via targeting TP53 and neural growth factor. Cell Death Dis. 2018, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Springer, J.E.; Hatton, K.W. MicroRNAs as Biomarkers for Predicting Complications following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2021, 22, 9492. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Zhou, X.; Lai, R. Poor expression of miR-195-5p can assist the diagnosis of cerebral vasospasm after subarachnoid hemorrhage and predict adverse outcomes. Brain Behav. 2022, 12, e2766. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, W.; Li, Z.; Li, M.; Guo, J.; Wang, H.; Wang, X. The expression of cerebrospinal fluid exosomal miR-630 plays an important role in the dysfunction of endothelial cells after subarachnoid hemorrhage. Sci. Rep. 2019, 9, 11510. [Google Scholar] [CrossRef]
- Powers, C.J.; Dickerson, R.; Zhang, S.W.; Rink, C.; Roy, S.; Sen, C.K. Human cerebrospinal fluid microRNA: Temporal changes following subarachnoid hemorrhage. Physiol. Genom. 2016, 48, 361–366. [Google Scholar] [CrossRef]
- Bache, S.; Rasmussen, R.; Wolcott, Z.; Rossing, M.; Møgelvang, R.; Tolnai, D.; Hassager, C.; Forman, J.L.; Køber, L.; Nielsen, F.C.; et al. Elevated miR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome After Subarachnoid Hemorrhage. Transl. Stroke Res. 2020, 11, 1243–1252. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Wang, L.; Chen, L.; Ren, W.; Zhou, W. Differential expression of microRNAs contributed to the health efficacy of EGCG in in vitro subarachnoid hemorrhage model. Food Funct. 2017, 8, 4675–4683. [Google Scholar] [CrossRef]
First Author | Year | miRNA(s) Evaluated | Subjects Evaluated | Specimen Evaluated | Main Findings |
---|---|---|---|---|---|
Su XW | 2015 | miR-132-3p, miR-324-3p | Human | CSF | Circulating miR-132-3p and miR-324-3p may be potential biomarkers for acute aneurysmal SAH. |
Wang WH | 2016 | miR-29a | Human | Blood | miR-29a may be a potential biomarker in the development of intracranial aneurysm. |
Zaccagnini G | 2017 | miR-210 | Mouse | Ischemic tissue | Overexpression and significance in ischemic tissue damage. |
Sheng B | 2018 | miR-1297 | Human | Serum | Early serum miR-1297 is an indicator of poor neurological outcome in patients with aSAH. |
Sheng B | 2018 | miR-502-5p | Human | Serum | Persistent high levels of miR-502-5p are associated with poor neurologic outcome in patients with aneurysmal subarachnoid hemorrhage. |
Feng X | 2018 | miR-143, miR-145 | Human | Serum | Lower miR-143/145 levels and higher MMP-9 levels may be associated with intracranial aneurysm formation and rupture. |
Li | 2018 | miR-24 | Rat | Brain tissue | Upregulation of miR-24 expression led to vasospasm by suppressing endothelial nitric oxide synthase expression after SAH. |
Yu S | 2018 | miR-22 | Rat | Brain tissue | Neuroprotective effects in regulating inflammation and apoptosis. |
Yang X | 2019 | miR-155 | Human | Blood | A functional polymorphism in the promoter region of miR-155 predicts the risk of intracranial hemorrhage caused by ruptured intracranial aneurysm. |
Zhao | 2019 | miR-206 | Rat | Used as a therapeutic target | HucMSCs-derived miR-206-knockdown exosomes targeted BDNF, contributing to neuroprotection after SAH. |
Wang S | 2019 | miR-140-5p | Rat | Used as a therapeutic target | Attenuated neuroinflammation and brain injury by targeting TLR4. |
Geng W | 2019 | miRNA-126 | Rat | Used as a therapeutic target | Exosomes from miRNA-126-modified ADSCs promote functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. |
Yang F | 2020 | miR-126 | Human umbilical vein endothelial cell | Human umbilical vein endothelial cell | miR-126 may be involved in the development and rupture of intracranial aneurysms. |
Lai | 2020 | miR-193b-3p | Mouse | Used as a therapeutic target | Systemic exosomal delivery of miR-193b-3p attenuated neuroinflammation and improved neurological function after SAH. |
Chen | 2020 | miR-124 | Rat | Used as a therapeutic target | CX3CL1/CX3CR1 axis promoted exosomal delivery of miR-124 from neuron to microglia, attenuating early brain injury after SAH. |
Xiong L | 2020 | miRNA-129-5p | Rat | Used as a therapeutic target | Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury after subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. |
Gao X | 2020 | miRNA-21-5p | Rat | Used as a therapeutic target | Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage. |
Wang | 2021 | miR-103-3p | Rat | Used as a therapeutic target | Inhibition of miR-103-3p preserved neurovascular integrity by upregulating caveolin-1 expression after SAH. |
Deng | 2021 | miR-24 | Rat | Used as a therapeutic target | miR-24 regulated inflammation and neurofunction by targeting HMOX1 expression in rats with cerebral vasospasm after SAH. |
Liu Z | 2021 | miRNA-26b-5p | Rat | Used as a therapeutic target | MiR-26b-5p-modified hUB-MSCs-derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated p38 MAPK/STAT3 signaling pathway. |
Cai L | 2021 | circARF3 | Rat | Used as a therapeutic target | Up-regulation of circARF3 reduces blood-brain barrier damage in rat subarachnoid hemorrhage model via miR-31-5p/MyD88/NF-κB axis. |
Ru X | 2021 | miRNA-706 | Mouse | Used as a therapeutic target | MiR-706 alleviates white matter injury via downregulating PKCα/MST1/NF-κB pathway after subarachnoid hemorrhage in mice. |
Lu | 2022 | miR-452-3p | Rat | Used as a therapeutic target | miR-452-3p inhibited HDAC3 expression, leading to activation of NF-κB signaling and exacerbation of early brain injury after SAH. |
Qian Y | 2022 | miR-140-5p | Mouse | Used as a therapeutic target | Alleviated M1 microglial activation in brain injury via miR-140-5p delivery. |
Wang P | 2022 | miRNA-140-5p | Rat | Used as a therapeutic target | Exosome-encapsulated microRNA-140-5p alleviates neuronal injury following subarachnoid hemorrhage by regulating IGFBP5-mediated PI3K/AKT signaling pathway. |
Cheng M | 2022 | miRNA-83-5p | Rat | Used as a therapeutic target | Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. |
Zhou X | 2022 | miRNA-499-5p | Rat | Used as a therapeutic target | Suppression of MALAT1 alleviates neurocyte apoptosis and reactive oxygen species production through the miR-499-5p/SOX6 axis in subarachnoid hemorrhage. |
Luo | 2023 | miR-340 | Rat | Used as a therapeutic target | HDAC inhibitor SAHA upregulated miR-340 expression, which inhibited NEK7 signaling and attenuated pyroptosis after SAH. |
Wang P | 2023 | miR-140-5p | Rat | Used as a therapeutic target | Attenuated microglia activation and inflammatory response via MMD downregulation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segherlou, Z.H.; Saldarriaga, L.; Azizi, E.; Vo, K.-A.; Reddy, R.; Siyanaki, M.R.H.; Lucke-Wold, B. MicroRNAs’ Role in Diagnosis and Treatment of Subarachnoid Hemorrhage. Diseases 2023, 11, 77. https://doi.org/10.3390/diseases11020077
Segherlou ZH, Saldarriaga L, Azizi E, Vo K-A, Reddy R, Siyanaki MRH, Lucke-Wold B. MicroRNAs’ Role in Diagnosis and Treatment of Subarachnoid Hemorrhage. Diseases. 2023; 11(2):77. https://doi.org/10.3390/diseases11020077
Chicago/Turabian StyleSegherlou, Zahra Hasanpour, Lennon Saldarriaga, Esaan Azizi, Kim-Anh Vo, Ramya Reddy, Mohammad Reza Hosseini Siyanaki, and Brandon Lucke-Wold. 2023. "MicroRNAs’ Role in Diagnosis and Treatment of Subarachnoid Hemorrhage" Diseases 11, no. 2: 77. https://doi.org/10.3390/diseases11020077
APA StyleSegherlou, Z. H., Saldarriaga, L., Azizi, E., Vo, K. -A., Reddy, R., Siyanaki, M. R. H., & Lucke-Wold, B. (2023). MicroRNAs’ Role in Diagnosis and Treatment of Subarachnoid Hemorrhage. Diseases, 11(2), 77. https://doi.org/10.3390/diseases11020077