A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio
Abstract
:1. Introduction
2. Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tütüncü, N.B.; Erbaş, T. Factors Associated with Bone Metabolism in Acromegalic Patients: Hypogonadism and Female Gender. Exp. Clin. Endocrinol. Diabetes 2004, 112, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Ozsu, E.; Mutlu, R.; Çizmeci, F.; Hatun, S. Characteristics of our patients with Hashimoto thyroiditis. Turk. Arch. Pediatr. 2011, 46, 252–255. [Google Scholar]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Al-Shaikh, S.; Akhtar, M. Hashimoto Thyroiditis. Adv. Anat. Pathol. 2012, 19, 181–186. [Google Scholar] [CrossRef]
- Fountoulakis, S.; Philippou, G.; Tsatsoulis, A. The role of iodine in the evolution of thyroid disease in Greece: From endemic goiter to thyroid autoimmunity. Hormones 2007, 6, 25–35. [Google Scholar] [PubMed]
- Tunbridge, W.M.G.; Vanderpump, M.P. Population screening for autoimmune thyroid disease. Endocrinol. Metab. Clin. N. Am. 2000, 29, 239–253. [Google Scholar] [CrossRef]
- Manji, N.; Carr-Smith, J.D.; Boelaert, K.; Allahabadia, A.; Armitage, M.; Chatterjee, V.K.; Lazarus, J.; Pearce, S.H.S.; Vaidya, B.; Gough, S.C.; et al. Influences of Age, Gender, Smoking, and Family History on Autoimmune Thyroid Disease Phenotype. J. Clin. Endocrinol. Metab. 2006, 91, 4873–4880. [Google Scholar] [CrossRef] [Green Version]
- Barbesino, G.; Chiovato, L. The Genetics of hashimoto’s DISEASE. Endocrinol. Metab. Clin. North Am. 2000, 29, 357–374. [Google Scholar] [CrossRef]
- A Chistiakov, D. Immunogenetics of Hashimoto’s thyroiditis. J. Autoimmune Dis. 2005, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, M.J.; Gough, S.C. The search for the genetic contribution to autoimmune thyroid disease: The never ending story? Brief. Funct. Genom. 2011, 10, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, A.K. Cytokine actions on the thyroid gland. Dan. Med. Bull. 2000, 47, 94–114. [Google Scholar] [PubMed]
- Ostrov, D.A.; Shi, W.; Schwartz, J.-C.D.; Almo, S.C.; Nathenson, S.G. Structure of Murine CTLA-4 and Its Role in Modulating T Cell Responsiveness. Science 2000, 290, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-D. The role of apoptosis in autoimmune thyroid disorders and thyroid cancer. BMJ 2001, 322, 1525–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumachi, F.; Basso, S. Apoptosis: Life Through Planned Cellular Death Regulating Mechanisms, Control Systems, and Relations with Thyroid Diseases. Thyroid 2002, 12, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, B.B.; Bhattacharya, P.; Gopisetty, A.; Prabhakar, B.S. Role of Cytokines in the Pathogenesis and Suppression of Thyroid Autoimmunity. J. Interf. Cytokine Res. 2011, 31, 721–731. [Google Scholar] [CrossRef]
- Camporeale, A. IL-6, IL-17 and STAT3: A holy trinity in auto-immunity? Front. Biosci. 2012, 17, 2306–2326. [Google Scholar] [CrossRef] [Green Version]
- Horie, I.; Abiru, N.; Nagayama, Y.; Kuriya, G.; Saitoh, O.; Ichikawa, T.; Iwakura, Y.; Eguchi, K. T Helper Type 17 Immune Response Plays an Indispensable Role for Development of Iodine-Induced Autoimmune Thyroiditis in Nonobese Diabetic-H2h4 Mice. Endocrinology 2009, 150, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Pearce, E.N.; Farwell, A.P.; Braverman, L.E. Thyroiditis. N. Engl. J. Med. 2003, 348, 2646–2655. [Google Scholar] [CrossRef]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 5, 2. [Google Scholar] [CrossRef]
- Oflazoglu, U.; Alacacioglu, A.; Somali, I.K.; Yuce, M.; Buyruk, M.; Varol, U.; Salman, T.; Taskaynatan, H.; Yildiz, Y.; Kucukzeybek, Y.; et al. Prognostic value of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and mean platelet volume (MPV) in patients with colorectal carcinoma [Izmir Oncology Group (IZOG) study]. Ann. Oncol. 2016, 27, vi149–vi206. [Google Scholar] [CrossRef]
- Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Kizilarslanoglu, M.C.; Etgül, S.; Halil, M.; Ulger, Z.; Cankurtaran, M.; Ariogul, S. The Evaluation of Neutrophil-Lymphocyte Ratio in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2012, 34, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Tulgar, Y.K.; Cakar, S.; Tulgar, S.; Dalkilic, O.; Cakiroglu, B.; Uyanik, B.S. The effect of smoking on neutrophil/lymphocyte and platelet/lymphocyte ratio and platelet ındices: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3112–3118. [Google Scholar] [PubMed]
- Koh, C.-H.; Bhoopathy, N.; Ng, K.-L.; Jabir, R.S.; Tan, G.-H.; See, M.H.; Jamaris, S.; A Taib, N. Utility of pre-treatment neutrophil–lymphocyte ratio and platelet–lymphocyte ratio as prognostic factors in breast cancer. Br. J. Cancer 2015, 113, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Akdag, S.; Akyol, A.; Asker, M.; Duz, R.; Gumrukcuoglu, H.A. Platelet-to-Lymphocyte Ratio May Predict the Severity of Calcific Aortic Stenosis. Experiment 2015, 21, 3395–3400. [Google Scholar] [CrossRef] [Green Version]
- Gasparyan, A.Y.; Ayvazyan, L.; Mikhailidis, D.P.; Kitas, G. Mean Platelet Volume: A Link Between Thrombosis and Inflammation? Curr. Pharm. Des. 2011, 17, 47–58. [Google Scholar] [CrossRef]
- Turkmen, K.; Erdur, F.M.; Ozcicek, F.; Ozcicek, A.; Akbas, E.M.; Ozbicer, A.; Demirtas, L.; Turk, S.; Tonbul, H.Z. Platelet-to-lymphocyte ratio better predicts inflammation than neutrophil-to-lymphocyte ratio in end-stage renal disease patients. Hemodial. Int. 2013, 17, 391–396. [Google Scholar] [CrossRef]
- Setian, N.S. Hypothyroidism in children: Diagnosis and treatment. J. Pediatr. 2007, 83, S209–S216. [Google Scholar] [CrossRef]
- Demirbilek, H.; Kandemir, N.; Gonc, E.; Ozon, A.; Alikasifoglu, A.; Yordam, N. Hashimoto’s Thyroiditis in Children and Adolescents: A Retrospective Study on Clinical, Epidemiological and Laboratory Properties of the Disease. J. Pediatr. Endocrinol. Metab. 2007, 20, 1199–1206. [Google Scholar] [CrossRef]
- Duntas, L.H. Environmental factors and autoimmune thyroiditis. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 454–460. [Google Scholar] [CrossRef]
- Atak, B.; Aktas, G.; Duman, T.T.; Erkus, E.; Kocak, M.Z.; Savli, H. Diabetes control could through platelet-to-lymphocyte ratio in hemograms. Rev. Da Assoc. Med. Bras. 2019, 65, 38–42. [Google Scholar] [CrossRef]
- Aktas, G.; Duman, T.; Atak, B.; Kurtkulagi, O.; Bilgin, S.; Basaran, E.; Demirkol, M.; Kosekli, M. Irritable bowel syndrome is associated with novel inflammatory markers derived from hemogram parameters. Fam. Med. Prim. Care Rev. 2020, 22, 107–110. [Google Scholar] [CrossRef]
- Aktas, G.; Duman, T.T.; Kurtkulagi, O.; Atak Tel, B.M.; Bilgin, S.; Kahveci, G.; Oku, A.; Kosekli, M.A. Liver steatosis is associated both with platelet distribution width, neutrophil/lymphocyte and monocyte/lymphocyte ratios. Prim. Health Care Open Access 2020, 10, 1–4. [Google Scholar]
- Aktas, G. Hematological predictors of novel Coronavirus infection. Rev. Da Assoc. Med. Bras. 2021, 67, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Atak, B.M.; Kahveci, G.B.; Bilgin, S.; Kurtkulagi, O.; Kosekli, M.A. Platelet to lymphocyte ratio in differentiation of benign and malignant thyroid nodules. Exp. Biomed. Res. 2021, 4, 148–153. [Google Scholar] [CrossRef]
- Feng, J.; Huang, Y.; Chen, Q. Preoperative platelet lymphocyte ratio (PLR) is a predictive factor for neutrophil lymphocyte ratio (NLR) in patients with esophageal squamous cell carcinoma. World J. Surg. Oncol. 2014, 12, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilge, M.; Yesilova, A.; Adas, M.; Helvaci, A. Neutrophil- and Platelet- to Lymphocyte Ratio in Patients with Euthyroid Hashimoto’s Thyroiditis. Exp. Clin. Endocrinol. Diabetes 2019, 127, 545–549. [Google Scholar] [CrossRef]
- Mishra, D.; Das, A.K.; Chapagain, R.H.; Jha, N.K.; Rai, G.K. Thrombocytosis as a Predictor of Serious Bacterial Infection in Febrile Infants. J. Nepal Health Res. Counc. 2019, 16, 401–404. [Google Scholar] [CrossRef]
- Harris, B.N.; Patel, R.; Kejner, A.; Bs, B.R.; Ramadan, J.; Bewley, A. Thrombocytosis Predicts Surgical Site Infection in Head and Neck Microvascular Surgery- A Pilot Study. Laryngoscope 2021, 131, 1542–1547. [Google Scholar] [CrossRef]
- Kobune, M.; Kato, J.; Kuribayashi, K.; Iyama, S.; Fujimi, A.; Murase, K.; Ueno, A.; Kikuchi, S.; Satoh, T.; Okamoto, T.; et al. Essential thrombocythemia associated with incomplete type intestinal Behçet disease during hydroxyurea treatment. Rinsho Ketsueki 2005, 46, 1136–1140. [Google Scholar]
- Hutchinson, R.M.; Davis, P.; I Jayson, M. Thrombocytosis in rheumatoid arthritis. Ann. Rheum. Dis. 1976, 35, 138–142. [Google Scholar] [CrossRef]
- Nunez, J.; Minana, G.; Bodi, V.; Nunez, E.; Sanchis, J.; Husser, O.; Llacer, A. Low Lymphocyte Count and Cardiovascular Diseases. Curr. Med. Chem. 2011, 18, 3226–3233. [Google Scholar] [CrossRef] [PubMed]
- Acanfora, D.; Gheorghiade, M.; Trojano, L.; Furgi, G.; Pasini, E.; Picone, C.; Papa, A.; Iannuzzi, G.L.; Bonow, R.O.; Rengo, F. Relative lymphocyte count: A prognostic indicator of mortality in elderly patients with congestive heart failure. Am. Hear. J. 2001, 142, 167–173. [Google Scholar] [CrossRef]
- Shah, A.D.; Denaxas, S.; Nicholas, O.; Hingorani, A.D.; Hemingway, H. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: A CALIBER cohort study. Open Hear. 2016, 3, e000477. [Google Scholar] [CrossRef] [PubMed]
- Fathi, N.; Rezaei, N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol. Int. 2020, 44, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Iseki, Y.; Shibutani, M.; Maeda, K.; Nagahara, H.; Tamura, T.; Ohira, G.; Yamazoe, S.; Kimura, K.; Toyokawa, T.; Amano, R.; et al. The impact of the preoperative peripheral lymphocyte count and lymphocyte percentage in patients with colorectal cancer. Surg. Today 2017, 47, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Nishida, T.; Sakakibara, H. Association Between Underweight and Low Lymphocyte Count as an Indicator of Malnutrition in Japanese Women. J. Women’s Health 2010, 19, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Acanfora, D.; Scicchitano, P.; Carone, M.; Acanfora, C.; Piscosquito, G.; Maestri, R.; Zito, A.; Dentamaro, I.; Longobardi, M.; Casucci, G.; et al. Relative lymphocyte count as an indicator of 3-year mortality in elderly people with severe COPD. BMC Pulm. Med. 2018, 18, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powner, D.J.; Hoots, W.K. Thrombocytosis in the NICU. Neurocritical Care 2008, 8, 471–475. [Google Scholar] [CrossRef]
- Schattner, A.; Kadi, J.; Dubin, I. Reactive thrombocytosis in acute infectious diseases: Prevalence, characteristics and timing. Eur. J. Intern. Med. 2019, 63, 42–45. [Google Scholar] [CrossRef]
- Chevalier, N.; Thorburn, A.N.; Macia, L.; Tan, J.; Juglair, L.; Yagita, H.; Yu, D.; Hansbro, P.M.; Mackay, C.R. Inflammation and Lymphopenia Trigger Autoimmunity by Suppression of IL-2–Controlled Regulatory T Cell and Increase of IL-21–Mediated Effector T Cell Expansion. J. Immunol. 2014, 193, 4845–4858. [Google Scholar] [CrossRef] [Green Version]
- Bano, A.; Chaker, L.; Mattace-Raso, F.U.; Van Der Lugt, A.; Ikram, M.A.; Franco, O.; Peeters, R.P.; Kavousi, M. Thyroid Function and the Risk of Atherosclerotic Cardiovascular Morbidity and Mortality. Circ. Res. 2017, 121, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Hage, M.P.; Azar, S.T. The Link between Thyroid Function and Depression. J. Thyroid. Res. 2012, 2012, 590648. [Google Scholar] [CrossRef] [Green Version]
- Browne, M.L.; Rasmussen, S.A.; Hoyt, A.T.; Waller, D.; Druschel, C.M.; Caton, A.R.; Canfield, M.A.; Lin, A.E.; Carmichael, S.L.; Romitti, P.A.; et al. Maternal thyroid disease, thyroid medication use, and selected birth defects in the National Birth Defects Prevention Study. Birth Defects Res. Part A Clin. Mol. Teratol. 2009, 85, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Rizos, C. Effects of Thyroid Dysfunction on Lipid Profile. Open Cardiovasc. Med. J. 2011, 5, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Waliszewska-Prosół, M.; Ejma, M. Hashimoto Encephalopathy—Still More Questions than Answers. Cells 2022, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Onalan, E.; Dönder, E. Neutrophil and platelet to lymphocyte ratio in patients with hypothyroid Hashimoto’s thyroiditis. Acta Biomed. 2020, 91, 310–314. [Google Scholar] [CrossRef]
Euthyroid HT Group (n = 66) | Hypothyroid-Thyrotoxic HT Group (n = 62) | Control Group (n = 68) | p | |
---|---|---|---|---|
Age (years) | 45 (22–71) | 44 (26–77) | 36 (26–58) | <0.001 |
AST (U/L) | 18 (10–55) | 17 (11–36) | 17 (6–43) | 0.66 |
ALT (U/L) | 17 (6–54) | 15 (7–68) | 17 (7–45) | 0.42 |
WBC (k/mm3) | 6.8 (4.2–10.9) | 6.8 (4.3–10.2) | 7.4 (3.2–9.2) | 0.24 |
lym (k/mm3) | 1.9 (1–4.5) | 1.6 (0.6–3.6) | 2.1 (0.7–4.6) | <0.001 |
Hb (g/dL) | 13.6 (10.6–16.5) | 13.3 (9.5–15) | 13.7 (12.1–17) | 0.02 |
Htc (%) | 42 (33–50) | 41 (29–46) | 41 (36–53) | 0.02 |
Plt (k/mm3) | 282 (154–512) | 271 (141–409) | 205 (153–405) | <0.001 |
CRP (mg/L) | 1 (0.1–22) | 3.1 (0.1–18.1) | 0.2 (0.1–3.4) | <0.001 |
TSH (uIU/mL) | 1.7 (1–3.9) | 6.5 (4.2–58) | 1.4 (0.5–4.2) | <0.001 |
fT4 (ng/dL) | 1 (0.8–3.1) | 0.9 (0.6–1.1) | 0.9 (0.7–1.2) | <0.001 |
PLR (%) | 137 (69–272) | 177 (72–417) | 103 (44–243) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erge, E.; Kiziltunc, C.; Balci, S.B.; Atak Tel, B.M.; Bilgin, S.; Duman, T.T.; Aktas, G. A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio. Diseases 2023, 11, 15. https://doi.org/10.3390/diseases11010015
Erge E, Kiziltunc C, Balci SB, Atak Tel BM, Bilgin S, Duman TT, Aktas G. A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio. Diseases. 2023; 11(1):15. https://doi.org/10.3390/diseases11010015
Chicago/Turabian StyleErge, Eray, Cagri Kiziltunc, Sumeyye Buse Balci, Burcin Meryem Atak Tel, Satilmis Bilgin, Tuba Taslamacioglu Duman, and Gulali Aktas. 2023. "A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio" Diseases 11, no. 1: 15. https://doi.org/10.3390/diseases11010015
APA StyleErge, E., Kiziltunc, C., Balci, S. B., Atak Tel, B. M., Bilgin, S., Duman, T. T., & Aktas, G. (2023). A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio. Diseases, 11(1), 15. https://doi.org/10.3390/diseases11010015