Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. OMV Extraction
2.2. Adjuvants
Aluminium Hydroxide and DDA in Bilayer Fragments
2.3. Saponin and Hemolytic Analysis
2.4. Antigenic Preparations
2.5. Mice and Immunization
2.6. Sodium Dodecyl-Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Enzyme-Linked Immunosorbent Assay (ELISA) and Avidity Assay
2.8. Serum-Bactericidal Assay (SBA)
2.9. Immunoblot
2.10. Enzyme-Linked Immunosorbent Spot (ELISpot) Assay
2.11. Statistical Analysis
3. Results
3.1. Electrophoretic Profile of OMVs
3.2. Hemolytic Activity
3.3. Zeta-Potential Analysis of Antigenic Preparations
3.4. Antibody Levels Evaluation
3.5. Antibodies Functionality Evaluation
3.6. Antigenic Recognition Evaluation
3.7. Cytokine Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tommassen, J.; Arenas, J. Biological Functions of the Secretome of Neisseria meningitidis. Front. Cell. Infect. Microbiol. 2017, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Borrow, R.; Alarcón, P.; Carlos, J.; Caugant, D.A.; Christensen, H.; Debbag, R.; De Wals, P.; Echaniz-Aviles, G.; Findlow, J.; Head, C.; et al. The Global Meningococcal Initiative: Global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Rev. Vaccines 2016, 16, 313–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, P.C.; Sharyan, A.; Moghaddam, L.S. Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines 2018, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dretler, A.W.; Rouphael, N.G.; Stephens, D.S. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum. Vaccines Immunother. 2018, 14, 1146–1160. [Google Scholar] [CrossRef] [Green Version]
- Holst, J.; Oster, P.; Arnold, R.; Tatley, M.; Næss, L.; Aaberge, I.; Galloway, Y.; McNicholas, A.; O’Hallahan, J.; Rosenqvist, E.; et al. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): Lessons from past programs and implications for the future. Hum. Vaccines Immunother. 2013, 9, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, N.G.; Stephens, D.S. Neisseria meningitidis: Biology, microbiology, and epidemiology. In Neisseria meningitidis; Springer Nature: Berlin/Heidelberg, Germany, 2011; Volume 799, pp. 1–20. [Google Scholar]
- Pizza, M.; Scarlato, V.; Masignani, V.; Giuliani, M.M.; Aricò, B.; Comanducci, M.; Jennings, G.T.; Baldi, L.; Bartolini, E.; Capecchi, B.; et al. Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science 2000, 287, 1816–1820. [Google Scholar] [CrossRef]
- Lycke, N.; Bemark, M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 2010, 3, 556–566. [Google Scholar] [CrossRef] [Green Version]
- Criscuolo, E.; Caputo, V.; Diotti, R.A.; Sautto, G.A.; Kirchenbaum, G.A.; Clementi, N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J. Immunol. Res. 2019, 2019, 8303648. [Google Scholar] [CrossRef] [Green Version]
- Naili, I.; Vinot, J.; Baudner, B.C.; Bernalier-Donadille, A.; Pizza, M.; Desvaux, M.; Jubelin, G.; D’Oro, U.; Buonsanti, C. Mixed mucosal-parenteral immunizations with the broadly conserved pathogenic Escherichia coli antigen SslE induce a robust mucosal and systemic immunity without affecting the murine intestinal microbiota. Vaccine 2018, 37, 314–324. [Google Scholar] [CrossRef]
- Vajdy, M.; Singh, M.; Kazzaz, J. Mucosal and systemic anti-HIV responses in rhesus macaques following combinations of intranasal and parenteral immunizations. AIDS Res. Hum. Retrovir. 2004, 20, 1269–1281. [Google Scholar] [CrossRef]
- Reyes, L.M.; Lastre, M.; Cuello, M. Adjuvants Derived from Neisseria meningitidis Serogroup B Induce a Cross Reactive Response against Neisseria gonorrhoeae in Mice. Open J. Immunol. 2020, 10, 103241. [Google Scholar] [CrossRef]
- Huo, Z.; Sinha, R.; McNeela, E.A.; Borrow, R.; Giemza, R.; Cosgrove, C.; Heath, P.T.; Mills, K.H.G.; Rappuoli, R.; Griffin, G.E.; et al. Induction of Protective Serum Meningococcal Bactericidal and Diphtheria-Neutralizing Antibodies and Mucosal Immunoglobulin A in Volunteers by Nasal Insufflations of the Neisseria meningitidis Serogroup C Polysaccharide-CRM197 Conjugate Vaccine Mixed with Chitosan. Infect. Immun. 2005, 73, 8256–8265. [Google Scholar] [CrossRef] [Green Version]
- Corthésy, B.; Bioley, G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front. Immunol. 2018, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Henriksen-Lacey, M.; Devitt, A.; Perrie, Y. The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. J. Control. Release 2011, 154, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Juel, H.B.; Bang, P.; Cheeseman, H.; Dohn, R.B.; Cole, T.; Kristiansen, M.P.; Korsholm, K.S.; Lewis, D.; Olsen, A.W.; et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: A first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 2019, 19, 1091–1100. [Google Scholar] [CrossRef]
- Pandey, R.S.; Dixit, V.K. Evaluation of ISCOM vaccines for mucosal immunization against hepatitis B. J. Drug Target. 2009, 18, 282–291. [Google Scholar] [CrossRef]
- Miyaji, E.N.; Carvalho, E.; Oliveira, M.L.S.; Raw, I.; Ho, P.L. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz. J. Med. Biol. Res. 2011, 44, 500–513. [Google Scholar] [CrossRef]
- De Gaspari, E.N.; Zollinger, W.D. Expression of class 5 antigens by meningococcal strains obtained from patients in Brazil and evaluation of two new monoclonal antibodies. Braz. J. Infect. Dis. 2001, 5, 143–153. [Google Scholar] [CrossRef]
- de Oliveira Santos, F.A.; Lincopan, N.; De Gaspari, E. Evaluation of intranasal and subcutaneous route of immunization in neonatal mice using DODAB-BF as adjuvant with outer membrane vesicles of Neisseria meningitis B. Immunobiology 2018, 223, 750–760. [Google Scholar] [CrossRef]
- Singh, L.A.B.M. Acceptable levels of endotoxin in vaccine formulations during preclinical research. J. Pharm. Sci. 2011, 100, 34–37. [Google Scholar]
- Gaspar, E.B.; Rosetti, A.S.; Lincopan, N.; De Gaspari, E. Neisseria lactamica antigens complexed with a novel cationic adjuvant. Hum. Vaccines Immunother. 2013, 9, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, L.T.; Rinaldi, F.M.; Gaspar, E.B.; Correa, V.A.; Gonçalves, C.A.; Portilho, A.I.; de Lima, G.T.; De Gaspari, E. Study of different routes of immunization using outer membrane vesicles of Neisseria meningitidis B and comparison of two adjuvants. Vaccine 2020, 38, 7674–7682. [Google Scholar] [CrossRef] [PubMed]
- de Lima, G.T.; Rodrigues, T.S.; Portilho, A.I.; Correa, V.A.; Gaspar, E.B.; De Gaspari, E. Immune responses of meningococcal B outer membrane vesicles in middle-aged mice. Pathog. Dis. 2020, 78, flaa028. [Google Scholar]
- Pabreja, S.; Garg, T.; Rath, G.; Goyal, A.K. Mucosal vaccination against tuberculosis using Ag85A-loaded immunostimulating complexes. Artif. Cells Nanomed. Biotechnol. 2014, 44, 532–539. [Google Scholar] [CrossRef]
- Lincopan, N.; Espíndola, N.M.; Vaz, A.J.; da Costa, M.H.B.; Faquim-Mauro, E.; Carmona-Ribeiro, A.M. Novel immunoadjuvants based on cationic lipid: Preparation, characterization and activity in vivo. Vaccine 2009, 27, 5760–5771. [Google Scholar] [CrossRef]
- Sellers, R.S.; Clifford, C.B.; Treuting, P.M.; Brayton, C. Immunological variation between inbred laboratory mouse strains: Points to consider in phenotyping genetically immunomodified mice. Vet. Pathol. 2012, 49, 32–43. [Google Scholar] [CrossRef]
- de Lima, G.T.; De Gaspari, E. Individual variability in humoral response of immunized outbred mice and cross-reactivity with prevalent Brazilian Neisseria meningitidis strains. Biologicals 2018, 55, 19–26. [Google Scholar] [CrossRef]
- He, P.; Zou, Y.; Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccines Immunother. 2015, 11, 477–488. [Google Scholar] [CrossRef]
- Stewart-tull, D.E.S. Freund’s Complete and Incomplete Adjuvants, Preparation, Animals Use. Methods Mol. Biol. 2009, 29–40. [Google Scholar] [CrossRef]
- Baudner, B.C.; Del Giudice, G. Determining the activity of mucosal adjuvants. Methods Mol. Biol. 2010, 626, 261–285. [Google Scholar] [PubMed]
- Kevin, F.; Joanne, M.C.; Harrison, D.E. Mouse Models in Aging Research. In American College of Laboratory Animal Medicine Series; Fox, J.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 637–672. [Google Scholar]
- Trzewikoswki, G.; de Lima, E.D.G. Study of the Immune Response in the Elderly: Is It Necessary to Develop a Vaccine against Neisseria meningitidis for the Aged? J. Aging Res. 2019, 2019, 9287121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Vermont, C.L.; van Dijken, H.H.; van Limpt, C.J.P.; de Groot, R.; van Alphen, L.; Dobbelsteen, G.P. Antibody Avidity and Immunoglobulin G Isotype Distribution following Immunization with a Monovalent Meningococcal B Outer Membrane Vesicle Vaccine. Infect. Immun. 2002, 70, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Chackerian, B.; Lowy, D.R.; Schiller, J.T. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Investig. 2001, 108, 415–423. [Google Scholar] [CrossRef]
- Borrow, R.; Carlone, G.M. Serogroup B and C Serum Bactericidal Assays. Meningococcal Vaccines 2001, 66, 289–304. [Google Scholar] [CrossRef]
- Junior, F.C.S.; Gioia, C.A.C.; Oliveira, J.M.; Cruz, S.C.; Frasch, C.E.; Milagres, L.G. Differential Capacities of Outer Membrane Proteins from Neisseria meningitidis B to Prime the Murine Immune System after Vaccination. Scand. J. Immunol. 2007, 65, 1–7. [Google Scholar] [CrossRef]
- Cibulski, S.P.; Mourglia-Ettlin, G.; Teixeira, T.F.; Quirici, L.; Roehe, P.M.; Ferreira, F.; Silveira, F. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine 2016, 34, 1162–1171. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Harrison, L.H. Practical Use of Meningococcal Vaccines—Whom and When to Vaccinate. In Vaccinations; Elsevier: Amsterdam, The Netherlands, 2018; pp. 105–129. [Google Scholar] [CrossRef]
- Pollard, A.J.; Frasch, C. Development of natural immunity to Neisseria meningitidis. Vaccine 2001, 19, 1327–1346. [Google Scholar] [CrossRef]
- Hjelholt, A.; Christiansen, G.; Sørensen, U.S.; Birkelund, S. IgG subclass profiles in normal human sera of antibodies specific to five kinds of microbial antigens. Pathog. Dis. 2013, 67, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, S.S.; Ducry, J.; Oxenius, A. Dissecting the Contribution of IgG Subclasses in Restricting Airway Infection with Legionella pneumophila. J. Immunol. 2014, 193, 4053–4059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poolman, J.T. Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. NPJ Vaccines 2020, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- van Deuren, M.; Brandtzaeg, P.; van der Meer, J.W.M. Update on Meningococcal Disease with Emphasis on Pathogenesis and Clinical Management. Clin. Microbiol. Rev. 2000, 13, 144–166. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, C. New advances in mucosal vaccination. Immunol. Lett. 2014, 161, 204–206. [Google Scholar] [CrossRef]
- Badran, M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig. J. Nanomater. Biostructures 2014, 9, 83–91. [Google Scholar]
- Dong, Y.-D.; Tchung, E.; Nowell, C.; Kaga, S.; Leong, N.; Mehta, D.; Kaminskas, L.; Boyd, B.J. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Christensen, D.; Agger, E.M.; Andreasen, L.V.; Kirby, D.; Andersen, P.; Perrie, Y. Liposome-based cationic adjuvant formulations (CAF): Past, present, and future. J. Liposome Res. 2009, 19, 2–11. [Google Scholar] [CrossRef]
- Nguyen, B.; Tolia, N.H. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021, 6, 70. [Google Scholar] [CrossRef]
- Flurkey, K.; Currer, J.M. The Mouse in Biomedical Research, 2nd ed.; Elvesiver: Burlington, MA, USA, 2007. [Google Scholar]
- Borrow, R.; Abad, R.; Trotter, C.; van der Klis, F.R.; Vazquez, J.A. Effectiveness of meningococcal serogroup C vaccine programmes. Vaccine 2013, 31, 4477–4486. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Larsen, K.R.; Darling, R.; Petersen, A.C.; Bellaire, B.H.; Wannemuehler, M.J.; Narasimhan, B. Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine 2021, 39, 3862–3870. [Google Scholar] [CrossRef] [PubMed]
- Vujanic, A.; Snibson, K.J.; Wee, J.L.K.; Edwards, S.J.; Pearse, M.J.; Scheerlinck, J.-P.; Sutton, P. Long-Term Antibody and Immune Memory Response Induced by Pulmonary Delivery of the Influenza Iscomatrix Vaccine. Clin. Vaccine Immunol. 2012, 19, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, E.; Fuentes, M.; Alarcón, M.; Palomo, I. Immune System Dysfunction in the Elderly. An. Acad. Bras. Ciências 2017, 89, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Feavers, I.M.; Maiden, M.C.J. Recent Progress in the Prevention of Serogroup B Meningococcal Disease. Clin. Vaccine Immunol. 2017, 24, e00566-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, G.K.; Andersen, P.; Christensen, D. Immunocorrelates of CAF family adjuvants. Semin. Immunol. 2018, 39, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-X.; Xie, Y.; Ye, Y.-P. Advances in saponin-based adjuvants. Vaccine 2009, 27, 1787–1796. [Google Scholar] [CrossRef]
- Giuntini, S.; Granoff, D.M.; Beernink, P.T.; Ihle, O.; Bratlie, D.; Michaelsen, T.E. Human IgG1, IgG3, and IgG3 Hinge-Truncated Mutants Show Different Protection Capabilities against Meningococci Depending on the Target Antigen and Epitope Specificity. Clin. Vaccine Immunol. 2016, 23, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Michaelsen, T.E.; Kolberg, J.; Aase, A.; Herstad, T.K.; Hoiby, E.A. The four mouse IgG isotypes differ extensively in bactericidal and opsonophagocytic activity when reacting with the P1.16 epitope on the outer membrane PorA protein of Neisseria meningitidis. Scand. J. Immunol. 2004, 59, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Anttila, M.; Voutilainen, M.; Jäntti, V.; Eskola, J.; Käyhty, H. Contribution of serotype-specific IgG concentration, IgG subclasses and relative antibody avidity to opsonophagocytic activity against Streptococcus pneumoniae. Clin. Exp. Immunol. 1999, 118, 402–407. [Google Scholar] [CrossRef]
- Boxus, M.; Lockman, L.; Fochesato, M.; Lorin, C.; Thomas, F.; Giannini, S.L. Antibody avidity measurements in recipients of Cervarix® vaccine following a two-dose schedule or a three-dose schedule. Vaccine 2014, 32, 3232–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermont, C.; Dobbelsteen, G. Neisseria meningitidis serogroup B: Laboratory correlates of protection. FEMS Immunol. Med. Microbiol. 2002, 34, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granoff, D.M.; Maslanka, S.E.; Carlone, G.M.; Plikaytis, B.D.; Santos, G.F.; Mokatrin, A.; Raff, H.V. A Modified Enzyme-Linked Immunosorbent Assay for Measurement of Antibody Responses to Meningococcal C Polysaccharide That Correlate with Bactericidal Responses. Clin. Diagn. Lab. Immunol. 1998, 5, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granoff, D.M. Relative importance of complement-mediated bactericidal and opsonic activity for protection against meningococcal disease. Vaccine 2009, 27, B117–B125. [Google Scholar] [CrossRef] [Green Version]
- van der Pol, L.; Stork, M.; van der Ley, P. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 2015, 10, 1689–1706. [Google Scholar] [CrossRef]
- Ala’Aldeen, D.A.A.; Borriello, S.P. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 1996, 14, 49–53. [Google Scholar] [CrossRef]
- Danve, B.; Lissolo, L.; Mignon, M.; Dumas, P.; Colombani, S.; Schryvers, A.; Quentin-Millet, M.-J. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 1993, 11, 1214–1220. [Google Scholar] [CrossRef]
- Ferreirós, C.; Ferreiro, N.; Criado, M.T. Influence of adjuvants on the ability of anti-Tbp antibodies to block transferrin binding, iron uptake and growth of Neisseria meningitidis. Enferm. Infecc. Microbiol. Clin. 2002, 20, 316–320. [Google Scholar] [CrossRef]
- Weynants, V.E.; Feron, C.M.; Goraj, K.K.; Bos, M.P.; Denoël, P.A.; Verlant, V.G.; Tommassen, J.; Peak, I.R.A.; Judd, R.C.; Jennings, M.P.; et al. Additive and Synergistic Bactericidal Activity of Antibodies Directed against Minor Outer Membrane Proteins of Neisseria meningitidis. Infect. Immun. 2007, 75, 5434–5442. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.; Wall, R.; Borriello, S. Comparison of methods for the analysis of outer membrane antigens of Neisseria meningitidis by Western blotting. J. Immunol. Methods 1990, 134, 215–225. [Google Scholar] [CrossRef]
- MacLeod, M.K.L.; McKee, A.S.; David, A.; Wang, J.; Mason, R.; Kappler, J.W.; Marrack, P. Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc. Natl. Acad. Sci. USA 2011, 108, 7914–7919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanackovic, D.; Altorki, N.K.; Cao, Y.; Ritter, E.; Ferrara, C.A.; Ritter, G.; Hoffman, E.W.; Bokemeyer, C.; Old, L.J.; Gnjatic, S. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl. Acad. Sci. USA 2008, 105, 1650–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, M.; Baier, W.; Bessler, W.G.; Heinevetter, L. Modulation of the Th1/Th2 bias by lipopeptide and saponin adjuvants in orally immunized mice. Immunobiology 2002, 205, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chen, K.; Kolls, J.K. Th17 cell based vaccines in mucosal immunity. Curr. Opin. Immunol. 2013, 25, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, O.; Lastre, M.; Lapinet, J.; Bracho, G.; Dı́az, M.; Zayas, C.; Taboada, C.; Sierra, G. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine. Infect. Immun. 2001, 69, 4502–4508. [Google Scholar] [CrossRef] [Green Version]
Hemolysis % | |||||||
---|---|---|---|---|---|---|---|
[ ] Sap | 1 mg | 500 µg | 100 µg | 50 µg | 10 µg | 5 µg | 1 µg |
Sample 1 | 109.61 | 100.71 | 103.04 | 113.80 | 3.93 | 2.45 | 2.93 |
Sample 2 | 96.28 | 102.78 | 103.84 | 96.28 | 3.64 | 2.42 | 2.99 |
Sample 3 | 94.32 | 92.17 | 100.12 | 98.40 | 3.49 | 2.22 | 2.69 |
Mean | 100.07 | 98.55 | 102.34 | 102.83 | 3.69 | 2.36 | 2.87 |
[ ] DDA | [ ] OMV | Size (nm) | Polydispersion | Charge (mV) |
---|---|---|---|---|
0.1 mM | 5 µg/mL | 118.1 ± 4.9 | 0.333 ± 0.006 | 15.42 ± 1.78 |
0.1 mM | 10 µg/mL | 116.9 ± 4.8 | 0.324 ± 0.007 | 18.51 ± 1.24 |
0.1 mM | 25 µg/mL | 131.6 ± 4.6 | 0.309 ± 0.006 | 8.49 ± 2.18 |
0.1 mM | 50 µg/mL | 202.3 ± 4.8 | 0.339 ± 0.21 | 12.01 ± 0.72 |
[ ] Sap | [ ] OMV | Size (nm) | Polydispersion | Charge (mV) |
---|---|---|---|---|
50 µg/mL | 25 µg/mL | 218.7 ± 12.1 | 0.359 ± 0.015 | −13.64 ± 1.51 |
10 µg/mL | 25 µg/mL | 255.5 ± 17.9 | 0.383 ± 0.021 | −10.5 ± 3.52 |
5 µg/mL | 25 µg/mL | 472.5 ± 52.7 | 0.359 ± 0.018 | −22.78 ± 0.7 |
Functionality of Antibodies | ||
---|---|---|
Avidity Index (%) | Bactericidal Titer | |
OMV+AH | 44.67 | 1/32 |
OMV+DDA | 42.38 | 1/32 |
OMV+Sap | 39.24 | 1/32 |
OMV | 37.15 | 1/4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, V.A.; Portilho, A.I.; De Gaspari, E. Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis. Diseases 2022, 10, 46. https://doi.org/10.3390/diseases10030046
Correa VA, Portilho AI, De Gaspari E. Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis. Diseases. 2022; 10(3):46. https://doi.org/10.3390/diseases10030046
Chicago/Turabian StyleCorrea, Victor Araujo, Amanda Izeli Portilho, and Elizabeth De Gaspari. 2022. "Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis" Diseases 10, no. 3: 46. https://doi.org/10.3390/diseases10030046
APA StyleCorrea, V. A., Portilho, A. I., & De Gaspari, E. (2022). Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis. Diseases, 10(3), 46. https://doi.org/10.3390/diseases10030046