Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Initial Processing
2.2. Kidney Dysfunction Markers
2.3. Subject Classification
2.4. Metallothionein Expression
2.5. Plasma Metal Levels
2.6. Statistical Analyses
3. Results
4. Discussion
4.1. Demography
4.2. Plasma Metals and Metallothionein
4.3. Plasma Metals and CKD Progression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Taal, M.W.; Brenner, B.M. Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int. 2006, 70, 1694–1705. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, S.; Dayaratne, M.; Wijesinghe, H.; Wijewickrama, E. A Systematic Review of Renal Pathology in Chronic Kidney Disease of Uncertain Etiology. Kidney Int. Rep. 2021, 6, 1711–1728. [Google Scholar] [CrossRef]
- Sabolić, I. Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef]
- Bolignano, D.; Zoccali, C. Non-proteinuric rather than proteinuric renal diseases are the leading cause of end-stage kidney disease. Nephrol. Dial. Transplant. 2017, 32, ii194–ii199. [Google Scholar] [CrossRef] [Green Version]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.N.C.; Dissanayake, C.B.; Abesekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Wanigasuriya, K.P.; Peiris-John, R.J.; Wickremasinghe, R. Chronic kidney disease of unknown aetiology in Sri Lanka: Is cadmium a likely cause? BMC Nephrol. 2011, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Bandara, J.M.R.S.; Wijewardena, H.V.P.; Liyanege, J.; Upul, M.A.; Bandara, J.M.U.A. Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol. Lett. 2010, 198, 33–39. [Google Scholar] [CrossRef]
- Jayasumana, M.A.C.S.; Paranagama, P.A.; Amarasinghe, M.D.; Wijewardane, K.M.R.C.; Dahanayake, K.S.; Fonseka, S.I.; Rajakaruna, K.D.L.M.P.; Mahamithawa, A.M.P.; Samarasinghe, U.D.; Senanayake, V.K. Possible link of chronic arsenic toxicity with chronic kidney disease of unknown etiology in Sri Lanka. J. Nat. Sci. Res. 2013, 3, 64–73. [Google Scholar]
- Rango, T.; Jeuland, M.; Manthrithilake, H.; McCornick, P. Nephrotoxic contaminants in drinking water and urine, and Chronic Kidney Disease in rural Sri Lanka. Sci. Total Environ. 2015, 518, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Ekanayaka, P.; Jayasinghe, C.; Chandrajith, R. Heavy Metals in Tilapia (Oreochromis sp.) from Padaviya and Huruluwewa Reservoirs in Sri Lanka; National Aquatic Resources Research and Development Agency (NARA), Scientific Sessions: Colombo, Sri Lanka, 2016; pp. 137–140. [Google Scholar]
- Nanayakkara, S.; Senevirathna, S.T.M.L.D.; Harada, K.H.; Chandrajith, R.; Hitomi, T.; Abeysekera, T.; Muso, E.; Watanabe, T.; Koizumi, A. Systematic evaluation of exposure to trace elements and minerals in patients with chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka. J. Trace Elem. Med. Bio. 2019, 54, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.T.; Hawksworth, G.M.; Beattie, J.H.; Rodilla, V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. 2000, 35, 35–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, L.; Bai, Q.; Zhu, X.; Zhang, J.; Wei, Q.; Li, D.; Gao, C.; Li, J.; Zhang, Z.; et al. Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J. Biol. Chem. 2014, 289, 22413–22426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tully, D.B.; Collins, B.J.; Overstreet, J.D.; Smith, C.S.; Dinse, G.E.; Mumtaz, M.M.; Chapin, R.E. Effects of arsenic, cadmium, chromium and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol. Appl. Pharm. 2000, 168, 79–90. [Google Scholar] [CrossRef]
- Nemec, A.A.; Leikauf, G.D.; Pitt, B.R.; Wasserloos, K.J.; Barchowsky, A. Nickel mobilizes intracellular zinc to induce metallothionein in human airway epithelial cells. Am. J. Resp. Cell Mol. 2008, 41, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rodilla, V.; Miles, A.T.; Jenner, W.; Hawksworth, G.M. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: Toxicity and metallothionein induction. Chem. Biol. Interact. 1998, 115, 71–83. [Google Scholar] [CrossRef]
- Eckschlager, T.; Adam, V.; Hrabeta, J.; Figova, K.; Kizek, R. Metallothioneins and Cancer. Curr. Protein Pept. Sci. 2009, 10, 360–375. [Google Scholar] [CrossRef]
- Sakulsak, N. Metallothionein: An overview on its metal homeostatic regulation in mammals. Int. J. Morphol. 2012, 30, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Krężel, A.; Wolfgang, M. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem. Rev. 2021, 121, 14594–14648. [Google Scholar] [CrossRef]
- Tinti, F.; Lai, S.; Noce, A.; Rotondi, S.; Marrone, G.; Mazzaferro, S.; Di Daniele, N.; Mitterhofer, A.P. Chronic kidney disease as a systemic inflammatory syndrome: Update on mechanisms involved and potential treatment. Life 2021, 11, 419. [Google Scholar] [CrossRef]
- Gunawickrama, S.H.N.P.; Hewavitharana, K.I.G.; Nanayakkara, P.G.C.L.; Gunawickrama, K.B.S. Chronic kidney disease of unknown etiology (CKDu) in Sri Lanka: Hematological changes and pro-Inflammation suggest likely predictors of advance disease, as renal outcomes show prevalent normoalbuminuria. Diseases 2022, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, S.; Kurtkulagi, O.; Atak Tel, B.M.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G. Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with type 2 diabetes mellitus? The care time study. Prim. Care Diabetes 2021, 6, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, L.; Li, L.; Huang, Z.; Ye, L. Metallothionein 1: A new spotlight on inflammatory diseases. Front. Immunol. 2021, 12, 739918. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, H.; Ogawa, D.; Sogawa, N.; Asanuma, M.; Miyazaki, I.; Terami, N.; Hatanaka, T.; Horiguchi, C.S.; Nakatsuka, A.; Eguchi, J.; et al. Metallothionein deficiency exacerbates diabetic nephropathy in streptozotocin-induced diabetic mice. Am. J. Physiol. Renal Physiol. 2014, 306, F105–F115. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Kong, L.; Cheng, Y.; Zhang, Z.; Wang, Y.; Luo, M.; Tan, Y.; Chen, X.; Miao, L.; Cai, L. Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radic. Biol. Med. 2015, 89, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Schanz, M.; Schaaf, L.; Dippon, J.; Biegger, D.; Fritz, P.; Alscher, M.D.; Kimmel, M. Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol. 2017, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Jin, T.; Xu, Y.; Lu, Y.; Wu, Q.; Zhang, Y.J.; Liu, J. Diurnal-and sex-related difference of metallothionein expression in mice. J. Circadian Rhythm. 2012, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Ljubojevića, M.; Orctb, T.; Micekc, V.; Karaicaa, D.; Jurasovićb, J.; Breljaka, D.; Madunića, I.V.; Rašićd, D.; Jovanovićd, I.N.; Peraicad, M.; et al. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J. Trace. Elem. Med. Bio. 2019, 53, 98–108. [Google Scholar] [CrossRef]
- Kowalska, K.; Bizoń, A.; Zalewska, M.; Milnerowicz, H. The influence of biological and environmental factors on metallothionein concentration in the blood. J. Trace Elem. Med. Biol. 2015, 29, 99–103. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Lente, F.V.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Eng. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mididoddi, S.; McGuirt, J.P.; Sens, M.A.; Todd, J.H.; Sens, D.A. Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol. Lett. 1996, 85, 17–27. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.; Agrawal, K.C. Antisense down-regulation of metallothionein induces growth arrest and apoptosis in human breast carcinoma cells. Cancer Gene Ther. 1997, 4, 199–207. [Google Scholar] [PubMed]
- Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ranasinghe, A.V.; Kumara, G.W.G.P.; Karunarathna, R.H.; De Silva, A.P.; Sachintani, K.G.D.; Gunawardena, J.M.C.N.; Kumari, S.K.C.R.; Sarjana, M.S.F.; Chandraguptha, J.S.; De Silva, M.V.C. The incidence, prevalence and trends of chronic kidney disease and chronic kidney disease of uncertain aetiology (CKDu) in the North Central province of Sri Lanka: An analysis of 30,566 patients. BMC Nephrol. 2019, 20, 338. [Google Scholar] [CrossRef]
- Jayasekara, K.B.; Dissanayake, D.M.; Sivakanesan, R.; Ranasinghe, A.; Karunarathna, R.H.; Kumara, G.W.G.P. Epidemiology of Chronic Kidney Disease, With Special Emphasis on Chronic Kidney Disease of Uncertain Etiology, in the North Central Region of Sri Lanka. J. Epidemiol. 2015, 25, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cheng, M.L.; Yang, Q.; Shan, K.R.; Shen, J.; Zhou, Y.; Zhang, X.; Dill, A.L.; Waalkes, M.P. Blood metallothionein transcript as a biomarker for metal sensitivity: Low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ. Health Persp. 2007, 115, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Ambrus, A.; Hamilton, D.J.; Kuiper, H.A.; Racke, K.D. Significance of impurities in the safety evaluation of crop protection products (IUPAC Technical Report). Pure Appl. Chem. 2003, 75, 937–973. [Google Scholar] [CrossRef]
- Defarge, N.; de Vendômois, J.S.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef]
- Ratnayake, A.R.M.S.P.; Navaratna, A. Spectroscopic determination of metal impurities in commercial raw material fertilizer of Sri Lanka. Ceylon J. Sci. (Phys. Sci.) 2014, 18, 27–36. [Google Scholar]
- Valcke, M.; Levasseur, M.-E.; da Silva, A.S.; Wesseling, C. Pesticide exposures and chronic kidney disease of unknown etiology: An epidemiologic review. Environ. Health 2017, 16, 49–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.R.; Cousins, R.J. Metallothionein expression in animals: A physiological perspective on function. J. Nutr. 2000, 130, 1085–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yuan, Y.; Xiao, Y.; Li, Y.; Yu, Y.; Mo, T.; Jiang, H.; Li, X.; Yang, H.; Xu, C.; et al. Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. Ecotoxicol. Environ. Saf. 2020, 189, 110006. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zhub, X.; Shrubsoleb, M.J.; Yuc, C.; Xiad, Z.; Daib, Q. Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003–2012. Environ. Int. 2018, 121, 1355–1362. [Google Scholar] [CrossRef]
- Patriarca, M.; Lyon, T.D.; Fell, G.S. Nickel metabolism in humans investigated with an oral stable isotope. Am. J. Clin. Nutr. 1997, 66, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Veuthey, T.D.; Anna, M.C.; Roque, M.E. Role of the kidney in iron homeostasis: Renal expression of Prohepcidin, Ferroportin, and DMT1 in anemic mice. Am. J. Physiol. Renal Physiol. 2008, 295, F1213–F1221. [Google Scholar] [CrossRef] [Green Version]
- Damianaki, K.; Lourenco, J.M.; Braconnier, P.; Ghobril, J.P.; Devuyst, O.; Burnier, M.; Lenglet, S.; Augsburger, M.; Thomas, A.; Pruijm, M. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol. Dial. Transpl. 2020, 35, 1163–1170. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D.A. Gender differences in Zinc and Copper excretion in response to co-exposure to low environmental concentrations of Cadmium and Lead. Stresses 2021, 1, 3–15. [Google Scholar] [CrossRef]
- Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia 2012, 32, 279–286. [Google Scholar]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.I.; Mott, J.A.; Voorhees, R.E.; Sewell, C.M.; Paschal, D.; Wood, C.M.; McKinney, P.E.; Redd, S. Assessment of urinary metals following exposure to a large vegetative fire, New Mexico, 2000. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirley, D.G.; Lote, C.J. Renal handling of Aluminium. Nephron Physiol. 2005, 101, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Schnaper, H.W. Remnant nephron physiology and the progression of chronic kidney disease. Pediatric Nephrol. 2014, 29, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Fattah, H.; Layton, A.; Vallon, V. How do kidneys adapt to a deficit or loss in nephron number? Physiology 2019, 34, 189–197. [Google Scholar] [CrossRef]
- Oberg, B.P.; Menamin, E.M.; Lucas, F.L.; Monagle, E.M.; Morrow, J.; Ikizler, T.A.; Himmelfarb, J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004, 65, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
Endemic Control 1 (n, 14) | CRF Subjects 1 (n, 84) | Odds Ratio 2 (95% CI) | Non Endemic Control 3 (n, 12) | |
---|---|---|---|---|
Gender/male | 100 | 100 | - | 100 |
Age-range (year) | 40–63 | 36–77 | - | 45–60 |
Occupation and practice | ||||
Labourer | 7.1 | 0 | 0.05 (0.002–1.3) | 0 |
Paddy farmer | 35.7 | 89.2 | 15.0 (4.1–54.6) ** | 91.6 |
Civil defence force/part time paddy farming | 50 | 7.14 | 0.07 (0.02–0.29) ** | 8.3 |
Government employee | 0 | 3.5 | 1.24 (0.06–25.4) | 0 |
Unemployed | 7.1 | 0 | 0.05 (0.002–1.3) | 0 |
Agrochemical usage | 78.5 | 96.4 | 7.36 (1.31–41.1) * | 91.6 |
EC 1 (µg/mg Protein) | NEC 2 (µg/mg Protein) | p | |
---|---|---|---|
Li | 0.86 ± 0.35 | 0.04 ± 0.003 | *** |
Mg | 547.8 ± 50.5 | 366.2 ± 16.7 | ** |
Al | 46.5 ± 6.27 | 16.9 ± 1.70 | *** |
V # | 79.2 ± 7.50 | 46.8 ± 5.70 | ** |
Mn | 3.08 ± 0.34 | 1.83 ± 0.14 | ** |
Fe | 126.2 ± 13.3 | 84.2 ± 6.69 | ** |
Co | 84.3 ± 20.5 | 19.1 ± 4.10 | ** |
Ni | 1.02 ± 0.19 | 0.35 ± 0.12 | ** |
Cu | 17.9 ± 1.02 | 13.4 ± 0.57 | ** |
Zn | 82.7 ± 17.6 | 33.4 ± 3.37 | ** |
Ga # | 0.99 ± 0.05 | 0.81 ± 0.02 | ** |
As | 1.37 ± 0.12 | 2.43 ± 0.21 | *** |
Rb | 9.37 ± 0.64 | 6.34 ± 0.41 | *** |
Sr | 7.93 ± 1.20 | 4.86 ± 0.53 | * |
Ag # | 0.98 ± 0.08 | 0.64 ± 0.02 | *** |
Cs # | 17.3 ± 1.40 | 9.47 ± 0.88 | *** |
Ba | 6.06 ± 0.74 | 4.09 ± 0.39 | * |
Pb | 4.28 ± 0.29 | 2.85 ± 0.11 | *** |
U # | 115.8 ± 15.8 | 74.2 ± 11.0 | * |
Σ hMT-inducers Δ | 109.9 ± 18.9 | 54.39 ± 3.25 | ** |
Σ MT-binding metals ΔΔ | 2.33 ± 0.05 | 2.13 ± 0.03 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawickrama, S.H.N.P.; Silva, A.R.N.; Nanayakkara, P.G.C.L.; Gunawickrama, K.B.S.; Jayasekara, J.M.K.B.; Chandrasekharan, N.V. Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Diseases 2022, 10, 34. https://doi.org/10.3390/diseases10020034
Gunawickrama SHNP, Silva ARN, Nanayakkara PGCL, Gunawickrama KBS, Jayasekara JMKB, Chandrasekharan NV. Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Diseases. 2022; 10(2):34. https://doi.org/10.3390/diseases10020034
Chicago/Turabian StyleGunawickrama, S. H. Nandana P., A. Rajith N. Silva, P. G. Chandra L. Nanayakkara, K. B. Suneetha Gunawickrama, J. M. Kithsiri B. Jayasekara, and Naduviladath V. Chandrasekharan. 2022. "Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka" Diseases 10, no. 2: 34. https://doi.org/10.3390/diseases10020034
APA StyleGunawickrama, S. H. N. P., Silva, A. R. N., Nanayakkara, P. G. C. L., Gunawickrama, K. B. S., Jayasekara, J. M. K. B., & Chandrasekharan, N. V. (2022). Metals and Metallothionein Expression in Relation to Progression of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Diseases, 10(2), 34. https://doi.org/10.3390/diseases10020034