An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain
Abstract
:1. Introduction
2. Invariant DC Coefficients Computation and Modification
2.1. Invariant DC Coefficient Computation in Spatial Domain
2.2. DC Coefficients Modification in Spatial Domain
3. Proposed Watermarking Scheme
3.1. Watermark Insertion Process
- step 1.
- Redistribute the host image “I” to get the invariant features as explained in Section 2.1, and divide this image into 8 × 8 non-overlapping blocks Ii,j (i = 0, 1, 2, …, 63; j = 0, 1, 2, …, 63), as shown in Figure 1. As a check point, the numbers of non-overlapping blocks should be equal to the numbers of the watermark bits because one bit of watermark is inserted per block. Scramble the watermark image W with a secret key to generate the scrambled watermark image.
- step 2.
- With the help of Equation (4), directly compute the invariant DC coefficient DC (i, j) in the spatial domain without applying the DCT transform.
- step 3.
- Based on the watermark bit information W (i, j), modifying magnitudes M1 and M2 are decided to modify the DC coefficient DC (i, j), as given in the Equations (14) and (15).
- step 4.
- Now, using these magnitudes M1 and M2, the possible quantization results Q1 and Q2 are computed as follows:
- step 5.
- New DC value DC’ (i, j) corresponding to old DC value DC (i, j) is calculated based on Q1 and Q2 as follows:
- step 6.
- Calculate the amount of change Ci, j in the value of the new DC coefficient using Equation (18):
- step 7.
- To insert the watermark bit W (i, j) directly to the host image block Ii,j in the spatial domain add Ci,j/8 to all pixels in the block according to Equation (13).
- step 8.
- Repeat steps 2–7 until all the pixels in all the blocks are modified to obtain the redistributed watermarked image. Then, apply the inverse redistribution operation to put back the pixels at their actual positions to obtain the watermarked image Iw.
3.2. Watermark Extraction Process
- step 1.
- Redistribute the distorted watermarked image “Iw”, and then divide this image into 8 × 8 non-overlapping blocks Iwi,j (i = 0, 1, 2, …, 63; j = 0, 1, 2, …, 63).
- step 2.
- With the help of Equation (4), directly compute the invariant DC coefficient DC’ (i, j) in the spatial domain without applying the DCT transform.
- step 3.
- Using the quantization parameter “Q” and DC’ (i, j), extract the watermark bit eW (i, j) such as given in Equation (19).
- step 4.
- Repeat steps 2 and 3 until all the blocks are visited to extract the encrypted watermark image. Then, apply the decryption operation with the correct keys to get extracted watermark eW.
3.3. Finding the Optimal Quantization Parameter Using Differential Evolution
4. Performance Evaluation and Experimental Discussion
4.1. Imperceptibility Analysis
4.2. Robustness Analysis against Attacks
4.3. Execution Time Analysis
4.4. Security and False Positive Detection of Watermark
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cox, I.J.; Miller, M.L.; Bloom, J.A. Digital Watermarking; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2002. [Google Scholar]
- Liu, R.; Tan, T. An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimed. 2002, 4, 121–128. [Google Scholar]
- Hussein, E.; Belal, M.A. Digital Watermarking Techniques, Applications and Attacks Applied to Digital Media: A Survey. Int. J. Eng. Res. Technol. 2002, 1, 1–8. [Google Scholar]
- Khan, A.; Siddiqa, A.; Munib, S.; Malik, S.A. A recent survey of reversible watermarking techniques. Inf. Sci. 2014, 279, 251–272. [Google Scholar] [CrossRef]
- Nikolaidis, N.; Pitas, I. Robust image watermarking in the spatial domain. Signal Process. 1998, 66, 385–403. [Google Scholar] [CrossRef]
- Abraham, J.; Paul, V. An imperceptible spatial domain color image watermarking scheme. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 125–133. [Google Scholar] [CrossRef]
- Su, Q.; Yuan, Z.; Liu, D. An approximate Schur decomposition-based spatial domain color image watermarking method. IEEE Access. 2019, 7, 4358–4370. [Google Scholar] [CrossRef]
- Sakthivel, S.M.; Sankar, A.R. Computation-efficient image watermarking architecture with improved performance. Comput. Electr. Eng. 2020, 84, 106649. [Google Scholar] [CrossRef]
- Thanki, R.; Kothari, A.; Trivedi, D. Hybrid and blind watermarking scheme in DCuT–RDWT domain. J. Inf. Secur. Appl. 2019, 46, 231–249. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, D.; Zhang, X.; Su, Q. New image blind watermarking method based on two-dimensional, discrete cosine transform. Opt. Int. J. Light Electron Opt. 2020, 204, 164152. [Google Scholar] [CrossRef]
- Ariatmanto, D.; Ernawan, F. Adaptive scaling factors based on the impact of selected DCT coefficients for image watermarking. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Araghi, T.K.; Abd Manaf, A.; Araghi, S.K. A secure blind discrete wavelet transform based watermarking scheme using two-level singular value decomposition. Expert Syst. Appl. 2018, 112, 208–228. [Google Scholar] [CrossRef]
- Attari, A.A.; Shirazi, A.A.B. Robust audio watermarking algorithm based on DWT using Fibonacci numbers. Multimed. Tools Appl. 2018, 77, 25607–25627. [Google Scholar] [CrossRef]
- Liu, J.; Rao, Y.; Huang, Y. Complex Wavelet-Based Image Watermarking with the Human Visual Saliency Model. Electronics 2019, 8, 1462. [Google Scholar] [CrossRef] [Green Version]
- Shoron, S.H.; Islam, M.; Uddin, J.; Shon, D.; Im, K.; Park, J.-H.; Lim, D.-S.; Jang, B.; Kim, J.-M. A Watermarking Technique for Biomedical Images Using SMQT, Otsu, and Fuzzy C-Means. Electronics 2019, 8, 975. [Google Scholar] [CrossRef] [Green Version]
- Fares, K.; Amine, K.; Salah, E. A robust blind color image watermarking based on Fourier transform domain. Opt. Int. J. Light Electron Opt. 2020, 208, 164562. [Google Scholar] [CrossRef]
- Li, L.; Xu, H.H.; Chang, C.C.; Ma, Y.Y. A novel image watermarking in redistributed invariant wavelet domain. J. Syst. Softw. 2011, 84, 923–929. [Google Scholar] [CrossRef]
- Su, Q.; Ni, Y.; Wang, Q.; Sheng, G. A blind color image watermarking based on DC component in the spatial domain. Optik 2013, 124, 255–6260. [Google Scholar] [CrossRef]
- Parah, S.A.; Loan, N.A.; Shah, A.A.; Sheikh, J.A.; Bhat, G.M. A new secure and robust watermarking technique based on logistic map and modification of DC coefficient. Nonlinear Dyn. 2018, 93, 1933–1951. [Google Scholar] [CrossRef]
- Su, Q.; Chen, B. Robust color image watermarking technique in the spatial domain. Soft Comput. 2018, 22, 91–106. [Google Scholar] [CrossRef]
- Zeng, G.; Qiu, Z. Image Watermarking Based on DC Component in DCT. Int. Symp. Intell. Inf. Technol. Appl. Workshops 2008, 573–576. [Google Scholar] [CrossRef]
- Maity, S.P.; Maity, S.; Sil, J.; Delpha, C. Perceptually adaptive MC-SS image watermarking using GA-NN hybridization in fading gain. Eng. Appl. Artif. Intell. 2014, 31, 3–14. [Google Scholar] [CrossRef]
- Tsai, H.H.; Lai, Y.S.; Lo, S.C. A zero-watermark scheme with geometrical invariants using SVM and PSO against geometrical attacks for image protection. J. Syst. Softw. 2013, 86, 335–348. [Google Scholar] [CrossRef]
- Maity, S.P.; Maity, S.; Sil, J.; Delpha, C. Collusion resilient spread spectrum watermarking in M-band wavelets using GA-fuzzy hybridization. J. Syst. Softw. 2013, 86, 47–59. [Google Scholar] [CrossRef]
- Horng, S.J.; Rosiyadi, D.; Fan, P.; Wang, X.; Khan, M.K. An adaptive watermarking scheme for e-government document images. Multimed. Tools Appl. 2014, 72, 3085–3103. [Google Scholar] [CrossRef]
- Takore, T.T.; Kumar, P.R.; Devi, G.L. A new robust and imperceptible image watermarking scheme based on hybrid transform and pso. Int. J. Intell. Syst. Appl. 2018, 10. [Google Scholar] [CrossRef]
- Huang, Y.L.; Horng, S.J.; Kao, T.W.; Run, R.S.; Lai, J.L.; Chen, R.J.; Kuo, I.H.; Khan, M.K. An improved forecasting model based on the weighted fuzzy relationship matrix combined with a PSO adaptation for enrollments. Int. J. Innov. Comput. Inf. Control 2011, 7, 4027–4045. [Google Scholar]
- Hsu, L.Y.; Horng, S.j.; Fan, P.; Khan, M.K.; Wang, Y.R.; Run, R.S.; Lai, J.L.; Chen, R.J. MTPSO algorithm for solving planar graph coloring problem. Expert Syst. Appl. 2011, 38, 5525–5531. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Siarry, P. Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng. Appl. Artif. Intell. 2014, 31, 15–26. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W. An optimized watermarking technique based on self-adaptive DE in DWT–SVD transform domain. Signal Process. 2014, 94, 545–556. [Google Scholar] [CrossRef]
- Bakhsh, F.Y.; Moghaddam, M.E. A robust hdr images watermarking method using artificial bee colony algorithm. J. Inf. Secur. Appl. 2018, 41, 12–27. [Google Scholar] [CrossRef]
- Ansari, I.A.; Pant, M.; Ahn, C.W. Abc optimized secured image watermarking scheme to find out the rightful ownership. Opt. Int. J. Light Electron Opt. 2016, 127, 5711–5721. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Pant, M.; Siarry, P. An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony. Inf. Sci. 2015, 301, 44–60. [Google Scholar] [CrossRef]
- Agarwal, C.; Mishra, A.; Sharma, A.; Bedi, P. Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. Expert Syst. Appl. 2014, 41, 7858–7867. [Google Scholar]
- Hammouche, K.; Diaf, M.; Siarry, P. A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 2010, 23, 676–688. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Pant, M.; Siarry, P. A Reliable Image Watermarking Scheme Based on Redistributed Image Normalization and SVD. Discret. Dyn. Nat. Soc. 2016, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Kwan, C.; Shang, E.; Trac, T.D. Perceptually Lossless Image Compression with Error Recovery. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27–29 August 2018; Article No. 16. pp. 1–5. [Google Scholar] [CrossRef]
- Egiazarian, K.; Astola, J.; Ponomarenko, N.; Lukin, V.; Battisti, F.; Carli, M. A new full-reference quality metrics based on HVS. In Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, AZ, USA, 22–24 January 2006; pp. 1–4. [Google Scholar]
- Kwan, C.; Larkin, J.; Budavari, B.; Chou, B.; Shang, E.; Tran, T.D. A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications. Computers 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
Attack Indicator | Attack’s Description |
---|---|
NO | No attack applied |
MF | Mean filtering with window size 3 × 3 |
RO | Anticlockwise rotation by 90° |
CR | 25% centered cropping |
GN | Gaussian noise addition with mean zero and standard deviation 0.0005 |
JPEG | JPEG compression with quality factor 60 |
RS | Rescaling 512→256→512 |
MD | Median filtering with window size 3 × 3 |
SP | Salt and pepper noise with noise density 0.005 |
RCD | Deleted 20 rows and 20 columns from random locations |
GF | Gaussian low-pass filter with window size 9 × 9 |
FR | Flipping of rows |
FC | Flipping of columns |
MB | Motion blur with window size 3 × 3 |
PI | Pixelation with window size 4 × 4 |
Image | Parah et al. [19] | Zeng et al. [21] | Proposed | |||
---|---|---|---|---|---|---|
W1 | W2 | W1 | W2 | W1 | W2 | |
Baboon | 42.7948 | 42.8719 | 43.5489 | 43.8594 | 45.0031 | 45.0002 |
Clown | 42.8007 | 42.9428 | 43.7956 | 43.5874 | 45.0003 | 44.9998 |
Couple | 42.8101 | 42.8371 | 44.0052 | 44.0041 | 45.0011 | 45.0000 |
Houses | 42.9718 | 42.8685 | 43.7893 | 43.8569 | 45.0001 | 45.0004 |
Kiel | 42.8677 | 42.8826 | 43.4586 | 43.5785 | 44.9999 | 44.9996 |
Lena | 42.8916 | 42.8211 | 44.0578 | 44.0568 | 44.9997 | 45.0003 |
Lighthouse | 42.7475 | 42.8698 | 44.0456 | 44.0685 | 45.0003 | 45.0008 |
Average | 42.8406 | 42.8705 | 43.8144 | 43.8588 | 45.0007 | 45.0001 |
Image | Parah et al. [19] | Zeng et al. [21] | Proposed | |||
---|---|---|---|---|---|---|
W1 | W2 | W1 | W2 | W1 | W2 | |
Baboon | 0.9964 | 0.9966 | 0.9958 | 0.9961 | 0.9966 | 0.9969 |
Clown | 0.9813 | 0.9812 | 0.9825 | 0.9833 | 0.9870 | 0.9870 |
Couple | 0.9933 | 0.9933 | 0.9922 | 0.9936 | 0.9934 | 0.9937 |
Houses | 0.9963 | 0.9961 | 0.9972 | 0.9965 | 0.9968 | 0.9966 |
Kiel | 0.9925 | 0.9931 | 0.9935 | 0.9941 | 0.9945 | 0.9968 |
Lena | 0.9899 | 0.9899 | 0.9905 | 0.9907 | 0.9933 | 0.9925 |
Lighthouse | 0.9937 | 0.9941 | 0.9943 | 0.9946 | 0.9938 | 0.9947 |
Average | 0.9919 | 0.9921 | 0.9923 | 0.9927 | 0.9936 | 0.9940 |
Attack | Baboon | Clown | Couple | Houses | Kiel | Lena | Lighthouse |
---|---|---|---|---|---|---|---|
NO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
MF | 0.6534 | 0.7681 | 0.7677 | 0.5730 | 0.6781 | 0.8538 | 0.7302 |
RO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
CR | 0.8662 | 0.8693 | 0.8683 | 0.8675 | 0.8698 | 0.8652 | 0.8690 |
GN | 0.9119 | 0.8887 | 0.9093 | 0.9108 | 0.9110 | 0.9087 | 0.9052 |
JPEG | 0.9735 | 0.9845 | 0.9849 | 0.9657 | 0.9697 | 0.9887 | 0.9834 |
RS | 0.7769 | 0.9358 | 0.9191 | 0.7092 | 0.7882 | 0.9747 | 0.8374 |
MD | 0.6393 | 0.8677 | 0.7855 | 0.6022 | 0.6528 | 0.9114 | 0.7113 |
SP | 0.8361 | 0.8680 | 0.8549 | 0.8528 | 0.8454 | 0.8486 | 0.8461 |
RCD | 0.8038 | 0.8114 | 0.7765 | 0.7724 | 0.7616 | 0.7846 | 0.7708 |
GF | 0.9782 | 0.9749 | 0.9725 | 0.9507 | 0.9504 | 0.9747 | 0.9538 |
FR | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
FC | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
MB | 0.8613 | 0.8547 | 0.8979 | 0.7060 | 0.8441 | 0.9324 | 0.8641 |
PI | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Average | 0.8867 | 0.9215 | 0.9158 | 0.8607 | 0.8847 | 0.9362 | 0.8981 |
Attack | Baboon | Clown | Couple | Houses | Kiel | Lena | Lighthouse |
---|---|---|---|---|---|---|---|
NO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
MF | 0.7006 | 0.8112 | 0.8078 | 0.6366 | 0.7331 | 0.8736 | 0.7779 |
RO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
CR | 0.8589 | 0.8605 | 0.8603 | 0.8585 | 0.8615 | 0.8587 | 0.8597 |
GN | 0.9271 | 0.9177 | 0.9262 | 0.9280 | 0.9247 | 0.9249 | 0.9226 |
JPEG | 0.9780 | 0.9897 | 0.9851 | 0.9726 | 0.9788 | 0.9894 | 0.9865 |
RS | 0.8139 | 0.9503 | 0.9256 | 0.7580 | 0.8373 | 0.9736 | 0.8753 |
MD | 0.6836 | 0.8929 | 0.8106 | 0.6576 | 0.7116 | 0.9223 | 0.7599 |
SP | 0.8668 | 0.8998 | 0.8678 | 0.8664 | 0.8506 | 0.8539 | 0.8598 |
RCD | 0.8187 | 0.8152 | 0.8143 | 0.8056 | 0.8325 | 0.8019 | 0.8157 |
GF | 0.9576 | 0.9812 | 0.9781 | 0.9777 | 0.9533 | 0.9813 | 0.9767 |
FR | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
FC | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
MB | 0.8787 | 0.8902 | 0.9082 | 0.7609 | 0.8871 | 0.9395 | 0.8820 |
PI | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Average | 0.8989 | 0.9339 | 0.9256 | 0.8815 | 0.9047 | 0.9413 | 0.9144 |
Attack | W1 | W2 | ||||
---|---|---|---|---|---|---|
Parah et al. [19] | Zeng et al. [21] | Proposed | Parah et al. [19] | Zeng et al. [21] | Proposed | |
NO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
MF | 0.8458 | 0.7706 | 0.7178 | 0.8742 | 0.8305 | 0.7630 |
RO | 0.5546 | 0.6610 | 1.0000 | 0.6970 | 0.7598 | 1.0000 |
CR | 0.8506 | 0.8426 | 0.8679 | 0.8592 | 0.8418 | 0.8597 |
GN | 0.9548 | 0.9060 | 0.9065 | 0.9640 | 0.9152 | 0.9245 |
JPEG | 0.9977 | 0.9986 | 0.9786 | 0.9979 | 0.9764 | 0.9829 |
RS | 0.9351 | 0.8668 | 0.8487 | 0.9480 | 0.9216 | 0.8763 |
MD | 0.8368 | 0.7185 | 0.7386 | 0.8634 | 0.8317 | 0.7769 |
SP | 0.8407 | 0.8196 | 0.8503 | 0.8640 | 0.8538 | 0.8664 |
RCD | 0.7709 | 0.7737 | 0.7830 | 0.8088 | 0.8030 | 0.8149 |
GF | 0.9603 | 0.9539 | 0.9650 | 0.9718 | 0.9581 | 0.9723 |
FR | 0.5559 | 0.7865 | 1.0000 | 0.6973 | 0.8699 | 1.0000 |
FC | 0.5727 | 0.8456 | 1.0000 | 0.6874 | 0.8303 | 1.0000 |
MB | 0.9239 | 0.9376 | 0.8515 | 0.9380 | 0.9225 | 0.8781 |
PI | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Average | 0.8400 | 0.8587 | 0.9005 | 0.8781 | 0.8876 | 0.9143 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Ahn, C.W.; Pant, M.; Kumar, S.; Singh, M.K.; Saini, D. An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain. Electronics 2020, 9, 1428. https://doi.org/10.3390/electronics9091428
Ali M, Ahn CW, Pant M, Kumar S, Singh MK, Saini D. An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain. Electronics. 2020; 9(9):1428. https://doi.org/10.3390/electronics9091428
Chicago/Turabian StyleAli, Musrrat, Chang Wook Ahn, Millie Pant, Sanoj Kumar, Manoj K. Singh, and Deepika Saini. 2020. "An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain" Electronics 9, no. 9: 1428. https://doi.org/10.3390/electronics9091428
APA StyleAli, M., Ahn, C. W., Pant, M., Kumar, S., Singh, M. K., & Saini, D. (2020). An Optimized Digital Watermarking Scheme Based on Invariant DC Coefficients in Spatial Domain. Electronics, 9(9), 1428. https://doi.org/10.3390/electronics9091428