Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media
Abstract
1. Introduction
2. MOT–PEEC Formulation
3. Spatial and Time Discretization
4. Numerical Results
4.1. Dielectric Shell
- homogeneous medium with ,
- anisotropic medium with
- non–homogeneous medium with .
4.2. Neutral Beam Injector
4.3. Equivalent Surface Models
4.4. Stability Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rubinacci, G.; Ventre, S.; Villone, F.; Liu, Y. A fast technique applied to the analysis of resistive wall modes with 3D conducting structures. J. Comput. Phys. 2009, 228, 1562–1572. [Google Scholar] [CrossRef]
- Forestiere, C.; Miano, G.; Rubinacci, G.; Tamburrino, A.; Udpa, L.; Ventre, S. A Frequency Stable Volume Integral Equation Method for Anisotropic Scatterers. IEEE Trans. Antennas Propag. 2017, 65, 1224–1235. [Google Scholar] [CrossRef]
- Sayed, S.B.; Ülkü, H.A.; Bağcı, H. A Stable Marching On-In-Time Scheme for Solving the Time-Domain Electric Field Volume Integral Equation on High-Contrast Scatterers. IEEE Trans. Antennas Propag. 2015, 63, 3098–3110. [Google Scholar] [CrossRef]
- Ruehli, A.E. Inductance Calculations in a Complex Integrated Circuit Environment. IBM J. Res. Dev. 1972, 16, 470–481. [Google Scholar] [CrossRef]
- Romano, D.; Antonini, G. Partial Element Equivalent Circuit-Based Transient Analysis of Graphene-Based Interconnects. IEEE Trans. Electromagn. Compat. 2016, 58, 801–810. [Google Scholar] [CrossRef]
- Romano, D.; Kovačević-Badstübner, I.; Parise, M.; Grossner, U.; Ekman, J.; Antonini, G. Partial Element Equivalent Circuit-Based Transient Analysis of Graphene-Based Interconnects. IEEE Trans. Electromagn. Compat. 2016, 63, 1499–1510. [Google Scholar] [CrossRef]
- Cao, Y.S.; Jiang, L.J.; Ruehli, A.E. An Equivalent Circuit Model for Graphene-Based Terahertz Antenna Using the PEEC Method. IEEE Trans. Antennas Propag. 2016, 64, 1385–1393. [Google Scholar] [CrossRef]
- Baumgartner, P.; Renhart, W.; Birò, O.; Hackl, A.; Magele, C.; Bauernfeind, T.; Torchio, R. Multi-Objective Optimization of Yagi–Uda Antenna Applying Enhanced Firefly Algorithm with Adaptive Cost Function. IEEE Trans. Magn. 2018, 54, 8000504. [Google Scholar] [CrossRef]
- Voltolina, D.; Bettini, P.; Alotto, P.; Moro, F.; Torchio, R. High-Performance PEEC Analysis of Electromagnetic Scatterers. IEEE Trans. Magn. 2019, 55, 7201204. [Google Scholar] [CrossRef]
- Torchio, R.; Moro, F.; Meunier, G.; Guichon, J.-M.; Chadebec, O. An Extension of Unstructured-PEEC Method to Magnetic Media. IEEE Trans. Magn. 2019, 55, 7200404. [Google Scholar] [CrossRef]
- Cirimele, V.; Torchio, R.; Virgillito, A.; Freschi, F.; Alotto, P. Challenges in the Electromagnetic Modeling of Road Embedded Wireless Power Transfer. Energies 2019, 12, 2677. [Google Scholar] [CrossRef]
- Ardon, V.; Aime, J.; Chadebec, O.; Clavel, E.; Guichon, J.; Vialardi, E. EMC Modeling of an Industrial Variable Speed Drive with an Adapted PEEC Method. IEEE Trans. Magn. 2010, 46, 2892–2898. [Google Scholar] [CrossRef]
- Bandinelli, M.; Mori, A.; Galgani, G.; Romano, D.; Antonini, G.; Dieudonné, A.G.; Dunand, M. A Surface PEEC Formulation for High-Fidelity Analysis of the Current Return Networks in Composite Aircrafts. IEEE Trans. Electromagn. Compat. 2015, 57, 1027–1036. [Google Scholar] [CrossRef]
- Manara, G.; Monorchio, A.; Reggiannini, R. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation. IEEE Trans. Antennas Propag. 1997, 45, 527–532. [Google Scholar] [CrossRef]
- Liu, Y.; Yücel, A.C.; Bağcı, H.; Michielssen, E. A Scalable Parallel PWTD-Accelerated SIE Solver for Analyzing Transient Scattering From Electrically Large Objects. IEEE Trans. Antennas Propag. 2016, 64, 663–674. [Google Scholar] [CrossRef]
- Antonini, G. Fast Multipole Method for Time Domain PEEC Analysis. IEEE Trans. Mobile Comput. 2003, 2, 275–287. [Google Scholar] [CrossRef]
- Sekine, T.; Asai, H. Full-wave PEEC time domain solver based on leapfrog scheme. In Proceedings of the 2011 IEEE 20th Conference on EPEPS, San Jose, CA, USA, 23–26 October 2011; pp. 181–184. [Google Scholar]
- Gianfagna, C.; Lombardi, L.; Antonini, G. Marching-on-in-time solution of delayed PEEC models of conductive and dielectric objects. IET Microw. Antennas Propag. 2018, 13, 42–47. [Google Scholar] [CrossRef]
- Qi, R.; Du, Y.P.; Chen, M. Time-Domain PEEC Transient Analysis for a Wire Structure above the Perfectly Conducting Ground with the Incident Field from a Distant Lightning Channel. IEEE Trans. Electromagn. Compat. 2019. [Google Scholar] [CrossRef]
- Freschi, F.; Repetto, M. A general framework for mixed structured/unstructured PEEC modelling. Appl. Comput. Electromagn. Soc. J. 2008, 23, 200–206. [Google Scholar]
- Torchio, R. A Volume PEEC Formulation Based on the Cell Method for Electromagnetic Problems from Low to High Frequency. IEEE Trans. Antennas Propag. 2019, 67, 7452–7465. [Google Scholar] [CrossRef]
- Pesce, A.; de Lorenzi, A.; Grando, L. A new approach to passive protection against high energy and high current breakdowns in the ITER NBI accelerator. Fusion Eng. Design 2009, 84, 1499–1504. [Google Scholar] [CrossRef]
- Bigi, M.; de Lorenzi, A.; Grando, L.; Watanabe, K.; Yamamoto, M. A model for electrical fast transient analyses of the ITER NBI power supplies and the MAMuG accelerator. Fusion Eng. Design 2009, 84, 446–450. [Google Scholar] [CrossRef]
- Walker, S.P.; Bluck, M.J.; Chatzis, I. The stability of integral equation time-domain scattering computations for three-dimensional scattering; similarities and differences between electrodynamic and elastodynamic computations. Int. J. Numerical Model. 2002, 15, 459–474. [Google Scholar] [CrossRef]
- Fano, R.M.; Chu, L.J.; Adler, R.B. Electromagnetic Fields, Energy, and Forces; M.I.T. Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Bobbio, S. Electrodynamics of Materials: Forces, Stresses, and Energies in Solids and Fluids, 1st ed.; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Van’t Wout, E.; van der Heul, D.R.; van der Ven, H.; Vuik, C. Design of Temporal Basis Functions for Time Domain Integral Equation Methods with Predefined Accuracy and Smoothness. IEEE Trans. Antennas Propag. 2013, 61, 271–280. [Google Scholar] [CrossRef]
- Shanker, B.; Lu, M.; Yuan, J.; Michielssen, E. Time Domain Integral Equation Analysis of Scattering from Composite Bodies via Exact Evaluation of Radiation Fields. IEEE Trans. Antennas Propag. 2009, 57, 1506–1520. [Google Scholar] [CrossRef]
- Shi, Y.; Xia, M.; Chen, R.; Michielssen, E.; Lu, M. Stable Electric Field TDIE Solvers via Quasi-Exact Evaluation of MOT Matrix Elements. IEEE Trans. Antennas Propag. 2011, 59, 574–585. [Google Scholar] [CrossRef]
- Ülkü, H.A.; Bağcı, H.; Michielssen, E. Marching On-In-Time Solution of the Time Domain Magnetic Field Integral Equation Using a Predictor-Corrector Scheme. IEEE Trans. Antennas Propag. 2013, 61, 4120–4131. [Google Scholar] [CrossRef]
- Sadigh, A.; Arvas, E. Treating the instabilities in marching-on-in-time method from a different perspective (electromagnetic scattering). IEEE Trans. Antennas Propag. 1993, 41, 1695–1702. [Google Scholar] [CrossRef]
- Jiao, D.; Ergin, A.A.; Shanker, B.; Michielssen, E.; Jin, J.-M. A fast higher-order time-domain finite element-boundary integral method for 3D electromagnetic scattering analysis. IEEE Trans. Antennas Propag. 2002, 50, 1192–1202. [Google Scholar] [CrossRef]
- Li, J.; Shanker, B. Time-Dependent Debye–Mie Series Solutions for Electromagnetic Scattering. IEEE Trans. Antennas Propag. 2015, 63, 3644–3653. [Google Scholar] [CrossRef]
- Weile, D.S.; Pisharody, G.; Chen, N.W.; Shanker, B.; Michielssen, E. A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 283–295. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torchio, R.; Voltolina, D.; Bettini, P.; Moro, F.; Alotto, P. Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media. Electronics 2020, 9, 242. https://doi.org/10.3390/electronics9020242
Torchio R, Voltolina D, Bettini P, Moro F, Alotto P. Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media. Electronics. 2020; 9(2):242. https://doi.org/10.3390/electronics9020242
Chicago/Turabian StyleTorchio, Riccardo, Dimitri Voltolina, Paolo Bettini, Federico Moro, and Piergiorgio Alotto. 2020. "Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media" Electronics 9, no. 2: 242. https://doi.org/10.3390/electronics9020242
APA StyleTorchio, R., Voltolina, D., Bettini, P., Moro, F., & Alotto, P. (2020). Marching On-In-Time Unstructured PEEC Method for Electrically Large Structures with Conductive, Dielectric, and Magnetic Media. Electronics, 9(2), 242. https://doi.org/10.3390/electronics9020242