Impact of Laser Attacks on the Switching Behavior of RRAM Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torrezan, A.C.; Strachan, J.P.; Medeiros-Ribeiro, G.; Williams, R.S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 5203. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Yu, S.; Gao, B.; Huang, P.; Kang, J.; Wong, H.-S.P. HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector. In Proceedings of the IEEE International Electron Device Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012; pp. 20.7.1–20.7.4. [Google Scholar]
- Lanza, M. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope. Materials 2014, 7, 2155–2218. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal–Oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.Y.; Kang, J.F.; Wong, H.-S.P. Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front. Neurosci. 2013, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Ambrogio, S.; Balatti, S.; Cubeta, A.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I—Set/Reset Variability. IEEE Trans. Electron Devices 2014, 61, 2912–2919. [Google Scholar] [CrossRef] [Green Version]
- Grossi, A.; Walczyk, D.; Zambelli, C.; Miranda, E.; Olivo, P.; Stikanov, V.; Feriani, A.; Schoof, G.; Kraemer, R.; Tillack, B.; et al. Impact of Intercell and Intracell Variability on Forming and Switching Parameters in RRAM Arrays. IEEE Trans. Electron Devices 2015, 62, 2502–2509. [Google Scholar] [CrossRef]
- Ambrogio, S.; Balatti, S.; Cubeta, A.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Statistical Fluctuations in HfOx Resistive-Switching Memory: Part II—Random Telegraph Noise. IEEE Trans. Electron Devices 2014, 61, 2920–2927. [Google Scholar] [CrossRef]
- González-Cordero, G.; González, M.B.; Campabadal, F.; Jiménez-Molinos, F.; Roldán, J.B. A new technique to analyze RTN signals in resistive memories. Microelectron. Eng. 2019, 215. [Google Scholar] [CrossRef]
- Rajendran, J.; Rose, G.S.; Karri, R.; Potkonjak, M. Nano-PPUF: A memristor-based security primitive. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI 2012, Amherst, MA, USA, 19–21 August 2012; pp. 84–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, A. Utilizing the variability of resistive Random Access Memory to implement reconfigurable physical unclonable functions. IEEE Electron Device Lett. 2015, 36, 138–140. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Pang, Y.; Qian, H.; Yu, S. Experimental characterization of physical unclonable function based on 1 kb Resistive Random Access Memory arrays. IEEE Electron Device Lett. 2015, 36, 1380–1383. [Google Scholar] [CrossRef]
- Mazady, A.; Rahman, M.T.; Forte, D.; Anwar, M. Memristor PUF—A Security Primitive: Theory and Experiment. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 222–229. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, H.; Gao, B.; Deng, N.; Liu, R.; Yu, S.; Chen, A.; Qian, H. Optimization of RRAM-based physical unclonable function with a novel differential read-out method. IEEE Electron Device Lett. 2017, 38, 168–171. [Google Scholar] [CrossRef]
- Govindaraj, R.; Ghosh, S.; Katkoori, S. Design, Analysis and Application of Embedded Resistive RAM based Strong Arbiter PUF. IEEE Trans. Dependable Secur. Comput. 2018. [Google Scholar] [CrossRef]
- Arumí, D.; Gonzalez, M.B.; Campabadal, F. RRAM serial configuration for the generation of random bits. Microelectron. Eng. 2017, 178, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Arumí, D.; Gómez-Pau, Á.; Manich, S.; Rodríguez-Montañés, R.; González, M.B.; Campabadal, F. Unpredictable Bits Generation Based on RRAM Parallel Configuration. IEEE Electron Device Lett. 2019, 40, 341–344. [Google Scholar] [CrossRef]
- Lee, G.S.; Kim, G.H.; Kwak, K.; Jeong, D.S.; Ju, H. Enhanced Reconfigurable Physical Unclonable Function Based on Stochastic Nature of Multilevel Cell RRAM. IEEE Trans. Electron Devices 2019, 66, 1717–1721. [Google Scholar] [CrossRef]
- Huang, C.Y.; Shen, W.C.; Tseng, Y.H.; King, Y.C.; Lin, C.J. A Contact-Resistive Random-Access-Memory-Based True Random Number Generator. IEEE Electron Device Lett. 2012, 33, 1108–1110. [Google Scholar] [CrossRef]
- Balatti, S.; Ambrogio, S.; Carboni, R.; Milo, V.; Wang, Z.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 2016, 63, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Sahay, S.; Kumar, A.; Parmar, V.; Suri, M. OxRAM RNG Circuits Exploiting Multiple Undesirable Nanoscale Phenomena. IEEE Trans. Nanotechnol. 2017, 16, 560–566. [Google Scholar] [CrossRef]
- Govindaraj, R.; Ghosh, S.; Katkoori, S. CSRO-Based Reconfigurable True Random Number Generator Using RRAM. IEEE Trans. Very Larg. Scale Integr. Syst. 2018, 26, 2661–2670. [Google Scholar] [CrossRef]
- Bennett, W.G.; Hooten, N.C.; Schrimpf, R.D.; Reed, R.A.; Mendenhall, M.H.; Alles, M.L.; Bi, J.; Zhang, E.X.; Linten, D.; Fantini, A.; et al. Single- and Multiple-Event Induced Upsets in HfO2/Hf 1T1R RRAM. IEEE Trans. Nucl. Sci. 2014, 61, 1717–1725. [Google Scholar] [CrossRef]
- Krakovinsky, A.; Bocquet, M.; Wacquez, R.; Coignus, J.; Deleruyelle, D.; Djaou, C.; Reimbold, G.; Portal, J.M. Impact of a laser pulse on HfO2-based RRAM cells reliability and integrity. In Proceedings of the 2016 International Conference on Microelectronic Test Structures (ICMTS), Yokohama, Japan, 28–31 March 2016; pp. 152–156. [Google Scholar] [CrossRef]
- Krakovinsky, A.; Bocquet, M.; Wacquez, R.; Coignus, J.; Portal, J.M. Thermal laser attack and high temperature heating on HfO2-based OxRAM cells. In Proceedings of the 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece, 3–5 July 2017; pp. 85–89. [Google Scholar] [CrossRef] [Green Version]
- Mehonic, A.; Gerard, T.; Kenyon, A. Light-activated resistance switching in SiOx RRAM devices. J. Appl. Phys. Lett. 2017, 111, 233502. [Google Scholar] [CrossRef]
- Kai, X.; Feng, Z.; Jin, L.; Lanlong, J.; Cong, F.; Jing, L.; Ming, L.; Jinshun, B. Pulsed-laser testing for single event effects in a stand-alone resistive random access memory. In Proceedings of the 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Chengdu, China, 4–7 July 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Bi, J.; Han, Z. Mitigation of soft errors in resistive switching random-access-memories. In Proceedings of the 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, China, 18–20 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
Work | Structure | Dimensions (nm) | Size (µm × µm) | Cell | Results |
---|---|---|---|---|---|
[24] | TiN/Hf/HfO2/TiN | ?2/10/5/?2 | 105 × 120 | 1T1R | HRS to LRS transitions when the transistor is irradiated |
[25] | TiN/Ti/HfO2/TiN | 50/10/5/10 | 3 × 3 | 1R | HRS to LRS transitions |
[26] | Ti/HfO2/TiN | 10/10/101 | 3 × 31 | 1T1R | HRS to LRS transitions |
[28] | ?2/HfOx/?2 | ?2/?2/?2 | ?2 | 1T1R | Transitions when peripheral circuits are irradiated |
This work | TiN/Ti/HfO2/W | 200/10/10/200 | 2 × 2 5 × 5 15 × 15 | 1R | No transitions |
Laser Source | Type | Maximum Power (W) | Wavelenght (nm) | Spot Size (µm) |
---|---|---|---|---|
1 | single photon absorption | 2 | 1064 | 3, 12 and 25 |
2 | 5.2 | 1024 | ||
3 | 2 | 976 |
DUT | Size (µm × µm) | RLRS-Before (Ω) | RLRS-After (Ω) | RHRS-Before (Ω) | RHRS-After (Ω) |
---|---|---|---|---|---|
1 | 2 × 2 | 185 | 187 | 7945 | 9436 |
2 | 5 × 5 | 637 | 648 | 12,199 | 11,532 |
3 | 5 × 5 | 529 | 541 | 5103 | 5205 |
4 | 15 × 15 | 189 | 190 | 9703 | 9510 |
5 | 5 × 5 | 604 | 617 | 4120 | 3939 |
6 | 2 × 2 | 363 | 371 | 5986 | 5840 |
7 | 15 × 15 | 261 | 259 | 6063 | 6424 |
8 | 15 × 15 | 248 | 245 | 6704 | 6850 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumí, D.; Manich, S.; Gómez-Pau, Á.; Rodríguez-Montañés, R.; Montilla, V.; Hernández, D.; González, M.B.; Campabadal, F. Impact of Laser Attacks on the Switching Behavior of RRAM Devices. Electronics 2020, 9, 200. https://doi.org/10.3390/electronics9010200
Arumí D, Manich S, Gómez-Pau Á, Rodríguez-Montañés R, Montilla V, Hernández D, González MB, Campabadal F. Impact of Laser Attacks on the Switching Behavior of RRAM Devices. Electronics. 2020; 9(1):200. https://doi.org/10.3390/electronics9010200
Chicago/Turabian StyleArumí, Daniel, Salvador Manich, Álvaro Gómez-Pau, Rosa Rodríguez-Montañés, Víctor Montilla, David Hernández, Mireia Bargalló González, and Francesca Campabadal. 2020. "Impact of Laser Attacks on the Switching Behavior of RRAM Devices" Electronics 9, no. 1: 200. https://doi.org/10.3390/electronics9010200
APA StyleArumí, D., Manich, S., Gómez-Pau, Á., Rodríguez-Montañés, R., Montilla, V., Hernández, D., González, M. B., & Campabadal, F. (2020). Impact of Laser Attacks on the Switching Behavior of RRAM Devices. Electronics, 9(1), 200. https://doi.org/10.3390/electronics9010200