Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom
Abstract
:1. Introduction
2. Experimental and Numerical Setups
2.1. Experimental Setup
Frequency (GHz) | Real Part of Relative Permittivity | Conductivity (S/m) |
---|---|---|
2.4 | 34.3 | 0.922 |
2.45 | 34.21 | 0.921 |
2.5 | 34.04 | 0.981 |
2.2. Numerical Setup
3. Comparison between Simulation and Measurement Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, H.H.; Child, A.D. Electrically Conducting Textiles. In Handbook of Conducting Polymers, 2nd ed.; Skotheim, T.A., Elsenaumer, R.L., Reynolds, J.R., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 993–1104. [Google Scholar]
- Wang, Z.; Zhang, L.; Volakis, J.L. Textile Antennas for Wearable Radio Frequency Applications. Text. Light Ind. Sci. Technol. J. 2013, 2, 105–112. [Google Scholar]
- Wearable Electronics and Photonics; Tao, X.M. (Ed.) Woodhead Publishing Ltd and CRC Press LLC: Boca Raton, FL, USA, 2005; pp. pp. 1–12 and pp. 177–197.
- Wearable Monitoring Systems, 1st ed.; Bonfiglio, A.; de Rossi, D. (Eds.) Springer: New York, NY, USA, 2011; pp. 165–252.
- Antennas and Propagation for Body-Centric Wireless Communications, 2nd ed.; Hall, P.S.; Hao, Y. (Eds.) Artech House: London, UK, 2012; pp. 151–240, 271–278.
- Wireless Body Area Networks: Technology, Implementation, and Applications; Yuce, M.; Khan, J. (Eds.) Pan Stanford Publishing: Singapore, Singapore, 2011; pp. 4–6.
- Special Issue on Antennas and Propagation on Body-Centric Wireless Communications; Hall, P.; Hao, Y.; Ito, K. (Eds.) IEEE Transactions on Antennas and Propagation: Piscataway, NJ, USA, 2009; p. 57.
- Li, H.-B.; Yazdandoost, K.Y.; Zhen, B. Wireless Body Area Network; River Publishers: Aalborg, Denmark, 2010; Chapter 3. [Google Scholar]
- Kennedy, T.F.; Fink, P.W.; Chu, A.W.; Champagne, N.J.; Lin, G.Y.; Khayat, M.A. Body-worn E-textile antennas: The good, the low-mass, and the conformal. IEEE Trans. AP 2009, 57, 910–918. [Google Scholar] [CrossRef]
- Fujii, K.; Takahashi, M.; Ito, K. Electric field distributions of wearable devices using the human body as a transmission channel. IEEE Trans. AP 2007, 55, 2080–2087. [Google Scholar] [CrossRef]
- Sabban, A. Wearable Antennas for Medical Applications. In Advancement in Microstrip Antennas with Recent Applications; Kishk, A., Ed.; Chapter 13; InTech: Rijeka, Croatia, 2013; pp. 305–335. [Google Scholar]
- Soh, P.J.; Vandenbosch, G.; Yan, S. Made to be worn. Electron. Lett. 2014, 50, 420. [Google Scholar]
- Bodymedia Body Monitoring Technologies. Available online: www.bodymedia.com (accessed on 15 July 2014).
- BodyLAN—FitSense Technology. Available online: http://devel.fitsense.com/b/BodyLAN.asp (accessed on 15 July 2014).
- IEEE 802.15 Working Group for WPAN. Available online: www.ieee802.org/15/ (accessed on 15 July 2014).
- IEEE 802.11 Working Group for WLAN. Available online: http://grouper.ieee.org/groups/802/11/ (accessed on 15 July 2014).
- Conti, M. Wireless Communications and Pervasive Technology. In Smart Environments: Technologies, Protocols, and Applications; Cook, D.J., Das, S.K., Eds.; John Wiley & Sons: New York, NY, USA, 2004; pp. 63–100. [Google Scholar]
- Salonen, P.; Rahmat-Samii, Y.; Kivikoski, M. Wearable antennas in the vicinity of human body. IEEE Antennas Propag. Soc. Int. Symp. 2004, 1, 467–470. [Google Scholar]
- Loh, T.H.; Matthews, J.; Alexander, M.; Knight, D.; Mouthaan, R.; Loader, B. Measurements of Body Wearable Antennas. In Presented at IET Seminar on Antenna and Propagation for Body-Centric Wireless Communications, London, UK, June 2011.
- Duan, Z.; Linton, D.; Scanlon, W.; Conway, G. Using EBG to Improve Antenna Efficiency in Proximity to the Human Body; IET Seminar on Wideband, Multiband Antennas and Arrays for Defence or Civil Applications: London, UK, 2008; pp. 173–180. [Google Scholar]
- Alabidi, E.S.; Kamarudin, M.R.; Rahman, T.A.; Khalily, M.; Josoh, M. Radiation characteristics improvement of monopole antenna above glass substrate for WBAN applications. Life Sci. J. 2014, 11, 124–131. [Google Scholar]
- Dey, S.; Dipto, N.A.; Rafin, M.A.-R.; Mojumder, S.; Shahrin, M. Design of wearable antenna system on different materials & their performance analysis at the off and on body environment in terms of impedance matching and radiation characteristics. Am. Acad. Sch. Res. J. 2013, 5, 181–192. [Google Scholar]
- Ammann, M.J.; Curto, S.; Bao, X.L.; McEvoy, P. Antenna Design Considerations for High Specific Absorption Rate in Local Hyperthermia Treatment. IEEE Antennas Propag. Soc. Int. Symp. 2008, 1–4. [Google Scholar]
- Loh, T.H.; Alexander, M.; Miller, P.; Betancort, A.L. Interference minimisation of antenna-to-range interface for pattern testing of electrically small antennas. In Proceedings of the 4th European Conference on Antennas and Propagation, Barcelona, Spain, 11–16 April 2010.
- Vorobyov, A.V.; Zijderfeld, J.H.; Yarovoy, A.G.; Ligthart, L.P. Impact Common mode currents on miniaturized UWB antenna performance. In Proceedings of The European Conference on Wireless Technology, Paris, France, 3–4 October 2005; pp. 285–288.
- Abuelhaija, A. Development of a noval Switched Beam Antenna for Communications. Master Thesis Presentation; Duisburg-Essen University: Duisburg, 2010. Available online: http://hft.uni-duisburg-essen.de/arbeiten/Vortrag_MA_Abuelhaija_Ashraf.pdf (accessed on 15 July 2014).
- Enprobe GmbH. Available online: http://www.enprobe.de/products_FO-Links.htm (accessed on 15 July 2014).
- Schmid & Partner Engineering AG. Available online: http://www.speag.com/products/em-phantom/ (accessed on 15 July 2014).
- Clarke, R.N.; Gregory, A.P.; Hodgetts, T.E.; Symm, G.T.; Brown, N.M. Microwave measurements upon uniaxial anisotropic dielectrics—Theory and practice. In Proceedings of the British Electromagnetic Measurements Conference (BEMC) 95–22, Malvern, UK, 7–9 November 1995.
- Computer Simulation Technologies. Available online: http://www.cst.com (accessed on 15 July 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Loh, T.H.; Cheadle, D.; Rosenfeld, L. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom. Electronics 2014, 3, 462-473. https://doi.org/10.3390/electronics3030462
Loh TH, Cheadle D, Rosenfeld L. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom. Electronics. 2014; 3(3):462-473. https://doi.org/10.3390/electronics3030462
Chicago/Turabian StyleLoh, Tian Hong, David Cheadle, and Lawrence Rosenfeld. 2014. "Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom" Electronics 3, no. 3: 462-473. https://doi.org/10.3390/electronics3030462
APA StyleLoh, T. H., Cheadle, D., & Rosenfeld, L. (2014). Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom. Electronics, 3(3), 462-473. https://doi.org/10.3390/electronics3030462