Arrester Fault Recognition Model Based on Thermal Imaging Images Using VMamba
Abstract
1. Introduction
2. The Overall Structure of the Network Model
2.1. Feature Extraction Module
2.2. Feature Enhancement Module
2.3. Comparison with the Same Type of SSM Visual Models
3. Experiment
3.1. Dataset
3.2. Evaluation Index
3.3. Experimental Setup and Result Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beyane, B.M.; Dlamini, G.A.Z.; Bokoro, P.N. A Deep Learning Approach for the Detection of Surge Events in Metal Oxide Surge Arresters. In Proceedings of the 2025 33rd Southern African Universities Power Engineering Conference (SAUPEC), Pretoria, South Africa, 29–30 January 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Murat, A.A.; Kiran, M.S. A comprehensive review on YOLO versions for object detection. Eng. Sci. Technol. Int. J. 2025, 70, 102161. [Google Scholar] [CrossRef]
- Dai, L.; Xu, T. Fault Diagnosis Analysis and Treatment of a 330 kV Zinc Oxide Arrester. Mech. Electr. Eng. Technol. 2023, 52, 172–176. [Google Scholar]
- Ullah, I.; Khan, R.U.; Yang, F. Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment. Energies 2020, 13, 392. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Y.; Liu, J.; Han, J. MTI-YOLO: A Light-Weight and Real-Time Deep Neural Network for Insulator Detection in Complex Aerial Images. Energies 2021, 14, 1426. [Google Scholar] [CrossRef]
- Liu, Z.; Ning, K.; Liu, X. Arrester Fault Early Warning Algorithm Based on LSTM and Random Forest. Electron. Des. Eng. 2024, 32, 137–141. [Google Scholar]
- Wang, Y.; Lin, X.; Xiang, Z.; Su, W.-H. VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection. Plants 2025, 14, 468. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. VMamba: Visual state space model. arXiv 2024, arXiv:2401.10166. [Google Scholar]
- DL/T 664-2008; Application Specification for Infrared Diagnosis of Live Equipment. Industry Standard—Electric Power. Wuhan High Voltage Research Institute, State Grid: Wuhan, China; East China Grid Company Limited: Wuhan, China; East China Electric Power Test & Research Institute Co., Ltd.: Wuhan, China, 2008; p. 38.
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Babichenko, Y.; Dean, O.; Tennenholtz, M. Incentive-Compatible Classification. Proc. AAAI Conf. Artif. Intell. 2020, 34, 7055–7062. [Google Scholar] [CrossRef]
- Qin, Y.; Yin, L.; Gao, X. Hot-Spot Fault Detection in Photovoltaic Module Infrared Images Based on HCF-YOLO. Acta Energiae Solaris Sin. 2024, 46, 285–294. [Google Scholar]
- Palazzetti, L.; Giannetti, D.; Verolino, A.; Grasso, D.A.; Pinotti, C.M.; Sorbelli, F.B. AntPi: A Raspberry Pi based edge–cloud system for real-time ant species detection using YOLO. Ecol. Inform. 2025, 91, 103383. [Google Scholar] [CrossRef]
- Madadum, H.; E Nasir, F.; Haruehansapong, K. Optimizing watermelon leaf disease detection using Sam-based augmentation with YOLO for practical agricultural solutions. Smart Agric. Technol. 2025, 12, 101326. [Google Scholar] [CrossRef]
- Gan, X.; Huang, L.; Yuan, Y.; Deng, Y. FAN-YOLO: Real-time driver behavior detection based on full-layer aggregation network of YOLO. J. Real-Time Image Process. 2025, 22, 139. [Google Scholar] [CrossRef]
- Su, C.; Luo, X.; Li, S.; Chen, L.; Wang, J. VMKLA-UNet: Vision Mamba with KAN linear attention U-Net. Sci. Rep. 2025, 15, 13258. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhu, D.; Guo, H.; Zhou, C.; Elhassan, M.A.M.; Wang, M. DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading. Interdiscip. Sci. Comput. Life Sci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Wu, S.; Wu, W.; Jiang, Z. MambaNeXt-YOLO: A Hybrid State Space Model for Real-time Object Detection. arXiv 2025, arXiv:2506.03654. [Google Scholar]







| Comparison Dimension | Mamba-UNet | VMamba-YOLO | MambaVision | S4Vision | OURS |
|---|---|---|---|---|---|
| Core Architecture | Encoder–Decoder | Lightweight YOLO Architecture | Sequential Scanning SSM (Unidirectional) | General SSM (Single-directional Spatial Modeling) | Multi-stage VSS Blocks + Four-Directional Cross-Scanning |
| Multi-Scale Feature Capture | Weak | Weak | Moderate | Moderate | Strong |
| Anti-Interference in Complex Backgrounds | Weak | Weak | Moderate | Moderate | Strong |
| Industrial Deployment Cost | High | Low | Medium | Medium | Medium |
| Model | Backbone | Input Size | mAP (%) |
|---|---|---|---|
| YOLOv8n | CSPNet | 640 × 640 | 70.01 |
| YOLOv11n | CSPNet | 640 × 640 | 84.4 |
| YOLOv11m | CSPNet | 640 × 640 | 81.2 |
| Ours without SE | VMamba | 640 × 640 | 94.34 |
| Ours without SPPF | VMamba | 640 × 640 | 94.43 |
| Swin-transNet | Swin-Transform | 640 × 640 | 98.1 |
| Ours | VMamba | 640 × 640 | 95.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Li, J.; Wang, J.; Luo, Y.; Liu, Y. Arrester Fault Recognition Model Based on Thermal Imaging Images Using VMamba. Electronics 2025, 14, 4784. https://doi.org/10.3390/electronics14244784
Lin L, Li J, Wang J, Luo Y, Liu Y. Arrester Fault Recognition Model Based on Thermal Imaging Images Using VMamba. Electronics. 2025; 14(24):4784. https://doi.org/10.3390/electronics14244784
Chicago/Turabian StyleLin, Lin, Jiantao Li, Jianan Wang, Yong Luo, and Yueyue Liu. 2025. "Arrester Fault Recognition Model Based on Thermal Imaging Images Using VMamba" Electronics 14, no. 24: 4784. https://doi.org/10.3390/electronics14244784
APA StyleLin, L., Li, J., Wang, J., Luo, Y., & Liu, Y. (2025). Arrester Fault Recognition Model Based on Thermal Imaging Images Using VMamba. Electronics, 14(24), 4784. https://doi.org/10.3390/electronics14244784

