Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Pd Nanolayer on Cu Layer
3.2. Characterization of Bonding Interface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.N.; Tan, C.S.; Fan, A.; Reif, R. Abnormal Contact Resistance Reduction of Bonded Copper Interconnects in Three-Dimensional Integration During Current Stressing. Appl. Phys. Lett. 2005, 86, 011903. [Google Scholar] [CrossRef]
- Das, S.; Chandrakasam, A.P.; Reif, R. Calibration of Rent’s Rule Models for Three-Dimensional Integrated Circuits. IEEE Trans. Very Large Scale Integr. Syst. 2004, 12, 359–366. [Google Scholar] [CrossRef]
- Morrow, P.R.; Park, C.M.; Ramanathan, S.; Kobrinsky, M.J.; Harmes, M. Three-Dimensional Wafer Stacking via Cu–Cu Bonding Integrated with 65-nm Strained-Si/Low-k CMOS Technology. IEEE Electron Device Lett. 2006, 27, 335–337. [Google Scholar] [CrossRef]
- Lau, J. Recent Advances and Trends in Cu–Cu Hybrid Bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 399–425. [Google Scholar] [CrossRef]
- Lee, Y.; McInerney, M.; Joo, Y.; Choi, I.; Kim, S.E. Copper Bonding Technology in Heterogeneous Integration. Electron. Mater. Lett. 2024, 20, 1–25. [Google Scholar] [CrossRef]
- Huang, Y.P.; Chien, Y.S.; Tzeng, R.N.; Chen, K.N. Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation. IEEE Trans. Electron Devices 2015, 62, 2587–2592. [Google Scholar] [CrossRef]
- Huang, Y.P.; Chien, Y.S.; Tzeng, R.N.; Shy, M.S.; Lin, T.H.; Chen, K.H.; Chiu, C.T.; Chiou, J.C.; Chuang, C.T.; Hwang, W.; et al. Novel Cu-to-Cu Bonding With Ti Passivation at 180 °C in 3-D Integration. IEEE Electron Device Lett. 2013, 34, 1551–1553. [Google Scholar] [CrossRef]
- Park, S.W.; Hong, S.K.; Kim, S.E.; Park, J.K. First Demonstration of Enhanced Cu–Cu Bonding at Low Temperature with Ruthenium Passivation Layer. IEEE Access 2024, 12, 82396–82403. [Google Scholar] [CrossRef]
- Bonam, S.; Panigrahi, A.K.; Kumar, C.H.; Vanjari, S.R.K.; Singh, S.G. Interface and Reliability Analysis of Au-Passivated Cu–Cu Fine-Pitch Thermocompression Bonding for 3-D IC Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1227–1234. [Google Scholar] [CrossRef]
- Lee, S.; Song, J.; Park, S.; Kim, S.E. Effects of Au Passivation Thickness on Improving Low-Temperature Cu-to-Cu Bonding Interface. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 15, 1351–1358. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, J.; Wang, Q.; Tan, L.; Hua, Y. Low Temperature Cu–Cu Bonding Using Ag Nanostructure for 3D Integration. ECS Solid State Lett. 2015, 4, P75–P76. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.E. Effect of the Annealing Process on Cu Bonding Quality Using Ag Nanolayer. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 737–742. [Google Scholar] [CrossRef]
- Cheemalamarri, H.K.; Fujino, M.; Bhesetti, C.R.; Long, L.B.; Dileep, M.; Vempati, S.R.; Singh, N. Novel Selective Metal Capping on Cu pad Enabling Void-Free Hybrid Bonding at Low Thermal Budgets, Irrespective of Cu Topography and Microstructure. In Proceedings of the IEEE 75th ECTC, Dallas, TX, USA, 27–30 May 2025; pp. 576–581. [Google Scholar]
- Jeong, M.S.; Park, S.W.; Kim, Y.J.; Kim, J.H.; Hong, S.K.; Kim, S.E.; Park, J.K. Unraveling diffusion behavior in Cu-to-Cu direct bonding with metal passivation layers. Sci. Rep. 2024, 14, 6665. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, S.; Kim, S.E. Low-Temperature Diffusion of Au and Ag Nanolayers for u Bonding. Appl. Sci. 2024, 14, 147. [Google Scholar] [CrossRef]
- Tsai, W.; Hsu, M.; Chen, Y.; Liu, Y.; Huang, Y.; Chen, K. Development of hybrid bonding using area-selective passivation layer deposition technology on various substrates for heterogeneous integrated structure. Jpn. J. Appl. Phys. 2024, 63, 12SP06. [Google Scholar] [CrossRef]
- Hsu, M.; Chen, C.; Chang, H.; Chen, K. Achieving low-temperature CU-Cu bonding platform via area-selective metal films with superior surface roughness for advanced packaging. J. Mater. Res. Technol. 2025, 36, 7748–7754. [Google Scholar] [CrossRef]
- Tang, J.; Zui, Y. Study on corrosion resistance of palladium films on 316L stainless steel by electroplating and electroless plating. Corros. Sci. 2008, 50, 2873–2878. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics, Inc.: Chanhassen, MN, USA, 1992; pp. 118–119. [Google Scholar]
Ref | Metal | THK (nm) | Bonding | Annealing | Shear Strength (MPa) | Contact Resistance (Ω·cm2) | Remarks | ||
---|---|---|---|---|---|---|---|---|---|
Temp (°C) | Pressure (MPa) | Time (min) | |||||||
This work | Pd (ASD) | 7 | 200 | 15 | 60 | 200 °C, 1 h | 20.59 | - | D2D, Air |
[6] | Pd | 10 | 150 | 1.91 | 50 | No annealing | 125 kg (Pull test) | 2 × 10−7 | W2W, Vacuum |
[7] | Ti | 5–10 | 180 | 1.91 | 30–50 | No annealing | - | 7 × 10−4 | W2W, Vacuum |
[8] | Ru | 10 | 200 | 15 | 60 | 200 °C, 2 h | 17.16 | 1.78 × 10−7 | D2D, Air |
[9] | Au | 3 | 140 | 0.3 | 30 | No annealing | 200 | W2W, Vacuum | |
[10] | Au | 5 | 180 | 15 | 30 | 200 °C, 1 h | 21.85 | - | D2D, Air |
[11] | Ag | ~20 (nanoparticle) | 250 | 20 | 5 | 250 °C, 25 min | 14.4 | - | D2D, Air |
[12] | Ag | 15 | 180 | 0.8 | 30 | 200 °C, 1 h | 6.5 | - | W2W, Vacuum |
[13] | Unknown (ASD) | 5–7 | - | - | - | >300 °C, 2 h | - | - | W2W |
[14] | Pt, Ti, Ta, Cr | 10~12 | 200 | - | 60 | 280 °C, 1 | - | - | D2D, Air |
[15] | Au/Ag | 12/15 | 180 | 0.8 | 30 | 200 °C, 1 h | 5.4/6.6 | - | W2W, Vacuum |
[16] | Ag (ASD) | 18–40 | - | - | - | 180 °C, 200 °C. 3 min | - | 2 × 10−9 | |
[17] | Au (ASD) | 10 | 150–200 | 200 (N) | 3 | - | 26.122 | 2 × 10−7 | D2D, Air |
Name | Copper (Cu) | Palladium (Pd) | |
---|---|---|---|
Atomic Property | Atomic Number | 29 | 46 |
Electron configuration | [Ar] 3d10 4s1 | [Kr] 4d10 | |
Atomic radius (nm) | 0.128 | 0.137 | |
Structural Property | Crustal Structure | FCC | FCC |
Lattice constant (a) nm | 0.3615 | 0.38902 | |
Thermal Property | Thermal expansion at 20 °C (10 × 10−6/K) | 16.64 | 11.77 |
Melting point (°C) | 1084.6 | 1554.9 | |
Electrical Property | Electronegativity | 1.9 | 2.2 |
Electrical resistivity (nOhm-m) | 16.78 | 105.4 | |
Mechanical Property | Young’s modulus (GPa) | 110~128 | 121 |
Vickers Hardness (MPa) | 343~369 | 400~600 | |
Brinell Hardness (MPa) | 235~875 | 320~610 |
Plans | d-Spacing (Å) | Plans | d-Spacing (Å) | ||
---|---|---|---|---|---|
Pd | (111) | 2.245 | Cu | (111) | 2.086 |
(200) | 1.745 | (200) | 1.805 | ||
(220) | 1.375 | (220) | 1.276 | ||
PdO | (111) | 3.04 | Cu2O | (111) | 2.466 |
(200) | 5.33 | (200) | 2.135 | ||
(220) | 2.68 | (220) | 1.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Go, B.; Komamura, K.; Kim, S.E. Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers. Electronics 2025, 14, 3814. https://doi.org/10.3390/electronics14193814
Lee D, Go B, Komamura K, Kim SE. Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers. Electronics. 2025; 14(19):3814. https://doi.org/10.3390/electronics14193814
Chicago/Turabian StyleLee, Dongmyeong, Byeongchan Go, Keiyu Komamura, and Sarah Eunkyung Kim. 2025. "Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers" Electronics 14, no. 19: 3814. https://doi.org/10.3390/electronics14193814
APA StyleLee, D., Go, B., Komamura, K., & Kim, S. E. (2025). Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers. Electronics, 14(19), 3814. https://doi.org/10.3390/electronics14193814