Invisible Backdoor Attack Based on Dual-Frequency- Domain Transformation
Abstract
1. Introduction
- We propose an invisible backdoor attack method based on dual-frequency-domain transformation to DFDT, which is characterized by its efficiency and stealthiness.
- We experimentally demonstrate that the DFDT attack can effectively enhance the stealthiness of the trigger and that the poisoned samples are visually invisible to the observer.
- Our comprehensive experiments, which compared the proposed attack with established backdoor attacks, show that DFDT not only achieves a high ASR but also significantly decreases the efficacy of certain state-of-the-art defenses.
2. Related Work
2.1. Backdoor Attacks
2.2. Backdoor Defense
3. Preparation
3.1. Notations
3.2. Attack Model
3.3. Adversarial Goal
4. Method
4.1. Implementation of DFDT
4.1.1. Apply Color Channel Transformations to Clean Samples and Trigger Image
4.1.2. Application of Discrete Cosine Transform
4.1.3. Application of Discrete Wavelet Transform
4.1.4. Trigger Generation in the Frequency Domain
4.1.5. Transform from Frequency Domain to Spatial Domain
4.1.6. Color Channels Transform from YUV to RGB
4.2. Optimization Objectives
4.3. Algorithm Flow
Algorithm 1 Training of DFDT |
Input:
Output: ω, well-trained classifier model.
|
5. Experiment
5.1. Experimental Settings
5.1.1. Datasets and Model Architectures
5.1.2. Attack Configurations
5.1.3. Defense Configurations and Evaluation Metrics
5.2. Effectiveness Evaluation
5.2.1. Effectiveness Comparison with SOTA Attack Methods
5.2.2. Effectiveness on Different Networks
5.2.3. Effectiveness on Different Datasets and Poisoning Rates
5.3. Performance with Different Trigger Intensities
5.4. Stealthiness Evaluation
5.4.1. Stealthiness Results from the Perspective of Latent Space
5.4.2. Stealthiness Results from GradCAM Vision Capture
5.4.3. Visualization of Features by t-SNE
5.4.4. Stealthiness Results from Metrics (SSIM, PSNR, LPIPS)
5.5. Impacts over Defenses
5.5.1. STRIP
5.5.2. Neural Cleanse
5.5.3. I-BAU
5.5.4. Fine-Pruning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, K.; Hu, J.; Ren, J.; Guo, H.; Yuan, W. Attrleaks on the edge: Exploiting information leakage from privacy-preserving co-inference. Chin. J. Electron. 2023, 32, 1–12. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Qin, Z.; Zhou, E.; Zhu, G.; Qin, Z.; Choo, K.K.R. Backdoor attack on deep learning-based medical image encryption and decryption network. IEEE Trans. Inf. Forensics Secur. 2023, 19, 280–292. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Li, Z.; Xia, S.T. Backdoor learning: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chen, H.; Zhang, M.; Zhu, Z.; Wei, S.; Yuan, D.; Shen, C. Backdoorbench: A comprehensive benchmark of backdoor learning. Adv. Neural Inf. Process. Syst. 2022, 35, 10546–10559. [Google Scholar] [CrossRef]
- Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 2019, 7, 47230–47244. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Saito, S.; Nagano, K.; Zhao, Y.; Chen, W.; Olszewski, K.; Morishima, S.; Li, H. High-fidelity facial reflectance and geometry inference from an unconstrained image. ACM Trans. Graph. (TOG) 2018, 37, 1–14. [Google Scholar] [CrossRef]
- Nguyen, A.; Tran, A. Wanet–imperceptible warping-based backdoor attack. arXiv 2021, arXiv:2102.10369. [Google Scholar]
- Xu, Z.Q.J.; Zhang, Y.; Luo, T.; Xiao, Y.; Ma, Z. Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv 2019, arXiv:1901.06523. [Google Scholar] [CrossRef]
- Doan, B.G.; Abbasnejad, E.; Ranasinghe, D.C. Februus: Input purification defense against trojan attacks on deep neural network systems. In Proceedings of the 36th Annual Computer Security Applications Conference, Virtual, 7–11 December 2020; pp. 897–912. [Google Scholar]
- Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 707–723. [Google Scholar]
- Liu, Y.; Lee, W.C.; Tao, G.; Ma, S.; Aafer, Y.; Zhang, X. Abs: Scanning neural networks for back-doors by artificial brain stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 1265–1282. [Google Scholar]
- Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 2006, 100, 90–93. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 2002, 40, 2464–2482. [Google Scholar] [CrossRef]
- Xiong, Z.; Ramchandran, K.; Orchard, M.T. Wavelet packet image coding using space-frequency quantization. IEEE Trans. Image Process. 1998, 7, 892–898. [Google Scholar] [CrossRef]
- Wang, T.; Yao, Y.; Xu, F.; An, S.; Tong, H.; Wang, T. An invisible black-box backdoor attack through frequency domain. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 396–413. [Google Scholar]
- Xu, Z.Q.J.; Zhang, Y.; Xiao, Y. Training behavior of deep neural network in frequency domain. In Proceedings of the Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, Australia, 12–15 December 2019; Proceedings, Part I 26. Springer: Berlin/Heidelberg, Germany, 2019; pp. 264–274. [Google Scholar]
- Gao, Y.; Xu, C.; Wang, D.; Chen, S.; Ranasinghe, D.C.; Nepal, S. Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December 2019; pp. 113–125. [Google Scholar]
- Qi, X.; Xie, T.; Li, Y.; Mahloujifar, S.; Mittal, P. Revisiting the assumption of latent separability for backdoor defenses. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Liu, Y.; Ma, X.; Bailey, J.; Lu, F. Reflection backdoor: A natural backdoor attack on deep neural networks. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part X 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 182–199. [Google Scholar]
- Turner, A.; Tsipras, D.; Madry, A. Label-consistent backdoor attacks. arXiv 2019, arXiv:1912.02771. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017, arXiv:1712.05526. [Google Scholar] [CrossRef]
- Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics (PMLR), Online, 26–28 August 2020; pp. 2938–2948. [Google Scholar]
- Chen, C.L.; Golubchik, L.; Paolieri, M. Backdoor attacks on federated meta-learning. arXiv 2020, arXiv:2006.07026. [Google Scholar] [CrossRef]
- Dräger, N.; Xu, Y.; Ghamisi, P. Backdoor attacks for remote sensing data with wavelet transform. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Srivastava, A. Neural trojans. In Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston, MA, USA, 5–8 November 2017; pp. 45–48. [Google Scholar]
- Udeshi, S.; Peng, S.; Woo, G.; Loh, L.; Rawshan, L.; Chattopadhyay, S. Model agnostic defence against backdoor attacks in machine learning. IEEE Trans. Reliab. 2022, 71, 880–895. [Google Scholar] [CrossRef]
- Kolouri, S.; Saha, A.; Pirsiavash, H.; Hoffmann, H. Universal litmus patterns: Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 301–310. [Google Scholar]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf (accessed on 1 July 2025).
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 2012, 32, 323–332. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Tang, D.; Wang, X.; Tang, H.; Zhang, K. Demon in the variant: Statistical analysis of DNNs for robust backdoor contamination detection. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021; pp. 1541–1558. [Google Scholar]
- Zeng, Y.; Chen, S.; Park, W.; Mao, Z.M.; Jin, M.; Jia, R. Adversarial unlearning of backdoors via implicit hypergradient. arXiv 2021, arXiv:2110.03735. [Google Scholar]
- Li, Y.; He, J.; Huang, H.; Sun, J.; Ma, X. Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks. arXiv 2024, arXiv:2401.15295. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Dataset | Image Size | # of Labels | # of Training Images | # of Test Images |
---|---|---|---|---|
CIFAR-10 | 3 × 32 × 32 | 10 | 50,000 | 10,000 |
GTSRB | 3 × 32 × 32 | 43 | 39,209 | 12,630 |
CIFAR-100 | 3 × 32 × 32 | 100 | 50,000 | 10,000 |
Method | CIFAR-10 | GTSRB | CIFAR-100 | |||
---|---|---|---|---|---|---|
BA(%) | ASR(%) | BA(%) | ASR(%) | BA(%) | ASR(%) | |
No attack | 94.25 ± 0.34 | - | 97.42 ± 0.13 | - | 75.30 ± 0.25 | - |
BadNets [8] | 93.38 ± 0.51 | 100 ± 0 | 97.31 ± 0.31 | 100 ± 0 | 74.78 ± 0.78 | 100 ± 0 |
Blend [24] | 94.02 ± 0.21 | 99.12 ± 0.17 | 96.84 ± 0.38 | 98.00 ± 0.15 | 75.02 ± 0.47 | 99.79 ± 0.12 |
TaCT [35] | 93.71 ± 0.47 | 100 ± 0 | 97.16 ± 0.19 | 99.96 ± 0.03 | 74.92 ± 0.55 | 99.27 ± 0.13 |
WABA [27] | 94.12 ± 0.29 | 99.95 ± 0.03 | 97.20 ± 0.16 | 100 ± 0 | 75.16 ± 0.74 | 99.54 ± 0.21 |
MTBA [37] | 93.93 ± 0.21 | 99.99 ± 0.01 | 97.28 ± 0.13 | 100 ± 0 | 74.83 ± 0.82 | 99.64 ± 0.21 |
DFDT (ours) | 94.18 ± 0.17 | 100 ± 0 | 97.34 ± 0.31 | 100 ± 0 | 75.06 ± 0.56 | 99.82 ± 0.10 |
Network | No Attack (BA%) | Ours (BA%) | Ours (ASR%) |
---|---|---|---|
ResNet-18 [33] | 94.25 | 94.18 | 100 |
ResNet-50 [33] | 95.46 | 95.40 | 100 |
VGG-16 [34] | 93.42 | 93.30 | 99.87 |
VGG-19 [34] | 94.78 | 94.84 | 100 |
Dataset | Poisoning Rate(%) | BA(%) | ASR(%) |
---|---|---|---|
CIFAR-10 [31] | 0 | 94.25 | - |
0.5 | 94.20 | 98.45 | |
1 | 94.18 | 100 | |
3 | 93.46 | 100 | |
GTSRB [32] | 0 | 97.42 | - |
0.5 | 97.36 | 97.94 | |
1 | 97.34 | 100 | |
3 | 96.45 | 100 | |
CIFAR-100 [31] | 0 | 75.30 | - |
0.5 | 75.28 | 97.46 | |
1 | 75.06 | 99.82 | |
3 | 73.78 | 99.96 |
CIFAR-10 | GTSRB | CIFAR-100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ASR (%) | SSIM | PSNR | LPIPS | ASR (%) | SSIM | PSNR | LPIPS | ASR (%) | SSIM | PSNR | LPIPS | |
1.0 | 100 | 0.9657 | 36.23 | 0.0978 | 100 | 0.9634 | 35.68 | 0.1236 | 100 | 0.9735 | 39.35 | 0.1067 |
0.8 | 100 | 0.9820 | 40.44 | 0.0626 | 100 | 0.9804 | 36.54 | 0.0915 | 100 | 0.9875 | 41.68 | 0.0653 |
0.6 | 100 | 0.9921 | 41.58 | 0.0204 | 100 | 0.9913 | 38.37 | 0.0609 | 99.82 | 0.9946 | 44.46 | 0.0467 |
0.4 | 99.59 | 0.9963 | 42.78 | 0.0125 | 99.76 | 0.9951 | 40.67 | 0.0326 | 99.87 | 0.9974 | 45.38 | 0.0183 |
0.2 | 99.34 | 0.9975 | 43.45 | 0.0036 | 98.58 | 0.9963 | 41.87 | 0.0062 | 98.64 | 0.9987 | 48.74 | 0.0085 |
Method | SSIM | PSNR | LPIPS |
---|---|---|---|
BadNets [8] | 0.9845 | 26.89 | 0.198 |
Blend [24] | 0.8876 | 23.75 | 1.13 |
TaCT [35] | 0.9285 | 35.56 | 0.763 |
WABA [27] | 0.9876 | 39.79 | 0.047 |
DFDT (ours) | 0.9921 | 41.58 | 0.029 |
Defense | CIFAR-10 | GTSRB | CIFAR-100 | |||
---|---|---|---|---|---|---|
CA (%) | ASR (%) | CA (%) | ASR (%) | CA (%) | ASR (%) | |
No Defense | 94.1812 | 100 | 97.3445 | 100 | 75.0635 | 99.8216 |
I-BAU [36] | 94.1688 | 99.9882 | 97.3352 | 99.9821 | 75.0211 | 99.7854 |
Deviation | 0.0124 | 0.0118 | 0.0093 | 0.0179 | 0.0424 | 0.0362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Li, G.; Xu, S.; Zhang, Y.; Cao, Y. Invisible Backdoor Attack Based on Dual-Frequency- Domain Transformation. Electronics 2025, 14, 3753. https://doi.org/10.3390/electronics14193753
Cao M, Li G, Xu S, Zhang Y, Cao Y. Invisible Backdoor Attack Based on Dual-Frequency- Domain Transformation. Electronics. 2025; 14(19):3753. https://doi.org/10.3390/electronics14193753
Chicago/Turabian StyleCao, Mingyue, Guojia Li, Simin Xu, Yihong Zhang, and Yan Cao. 2025. "Invisible Backdoor Attack Based on Dual-Frequency- Domain Transformation" Electronics 14, no. 19: 3753. https://doi.org/10.3390/electronics14193753
APA StyleCao, M., Li, G., Xu, S., Zhang, Y., & Cao, Y. (2025). Invisible Backdoor Attack Based on Dual-Frequency- Domain Transformation. Electronics, 14(19), 3753. https://doi.org/10.3390/electronics14193753