Real-Time Detection and Segmentation of the Iris At A Distance Scenarios Embedded in Ultrascale MPSoC
Abstract
1. Introduction
1.1. Contributions
1.2. Organisation of the Paper
2. Related Work
3. Methodology
3.1. Data Acquisition Setup
3.2. Datasets
4. Proposed Scheme for Iris Segmentation
4.1. The AMD Deep Processing Unit (DPU)
4.2. Overview of the Proposed Architecture
4.3. Iris Detection
4.4. Iris Segmentation
5. Evaluation Results
5.1. Evaluation of the Detection Stage
5.2. Evaluation of the Segmentation Stage
5.3. Other Relevant Key Performance Indicators
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daugman, J. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Mohammed, R.; Ali Ahmed, A. Iris Recognition Technology: Principles, Mechanism, and Market Forecasting (2022–2030). In Proceedings of the 5th International African Conference on Current Studies, Cairo, Egypt, 2–5 February 2022. [Google Scholar]
- Nguyen, K.; Fookes, C.; Jillela, R.; Sridharan, S.; Ross, A. Long range iris recognition: A survey. Pattern Recognit. 2017, 72, 123–143. [Google Scholar] [CrossRef]
- Ruiz-Beltrán, C.A.; Romero-Garcés, A.; González, M.; Pedraza, A.S.; Rodríguez-Fernández, J.A.; Bandera, A. Real-time embedded eye detection system. Expert Syst. Appl. 2022, 194, 116505. [Google Scholar] [CrossRef]
- Chen, Y.; Gan, H.; Chen, H.; Zeng, Y.; Xu, L.; Heidari, A.A.; Zhu, X.; Liu, Y. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet. Neurocomputing 2023, 517, 264–278. [Google Scholar] [CrossRef]
- Daugman, J. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 1148–1161. [Google Scholar] [CrossRef]
- Masek, L. Recognition of Human Iris Patterns for Biometric Identification. Ph.D. Thesis, University of Western Australia, Crawley, Australia, 2003. [Google Scholar]
- He, Z.; Tan, T.; Sun, Z.; Qiu, X. Toward Accurate and Fast Iris Segmentation for Iris Biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1670–1684. [Google Scholar] [CrossRef] [PubMed]
- Sutra, G.; Garcia-Salicetti, S.; Dorizzi, B. The Viterbi algorithm at different resolutions for enhanced iris segmentation. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 310–316. [Google Scholar] [CrossRef]
- Osorio-Roig, D.; Morales-González, A.; Garea-Llano, E. Semantic Segmentation of Color Eye Images for Improving Iris Segmentation. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Mendoza, M., Velastín, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 466–474. [Google Scholar]
- Ruiz-Beltrán, C.A.; Romero-Garcés, A.; González-García, M.; Marfil, R.; Bandera, A. Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics. Sensors 2023, 23, 7491. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, H.; Zhang, M.; Liu, J.; Sun, Z.; Tan, T. Accurate iris segmentation in non-cooperative environments using fully convolutional networks. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Arsalan, M.; Naqvi, R.A.; Kim, D.S.; Nguyen, P.H.; Owais, M.; Park, K.R. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors. Sensors 2018, 18, 1501. [Google Scholar] [CrossRef]
- Miron, C.; Pasarica, A.; Manta, V.; Timofte, R. Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network. Multimed. Tools Appl. 2022, 81, 14961–14977. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Gu, Y.; Liu, Y.; Meng, X.; Li, J. A Robust Iris Segmentation Scheme Based on Improved U-Net. IEEE Access 2019, 7, 85082–85089. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L. Study on Iris Segmentation Algorithm Based on Dense U-Net. IEEE Access 2019, 7, 123959–123968. [Google Scholar] [CrossRef]
- Dong, L.; Liu, Y.; Zhu, X. PFSegIris: Precise and Fast Segmentation Algorithm for Multi-Source Heterogeneous Iris. Algorithms 2021, 14, 261. [Google Scholar] [CrossRef]
- Pourafkham, B.; Khotanlou, H. ES-Net: Unet-based model for the semantic segmentation of Iris. Multimed. Tools Appl. 2025, 84, 12395–12416. [Google Scholar] [CrossRef]
- Lei, S.; Shan, A.; Liu, B.; Zhao, Y.; Xiang, W. Lightweight and efficient dual-path fusion network for iris segmentation. Sci. Rep. 2023, 13, 14034. [Google Scholar] [CrossRef]
- Benke, I.; Marković, B.E.; Pavlović, I.; Milošević, M.; Grbić, R. Software solution stack for data transfer on a frame grabber platform. In Proceedings of the 2019 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 29–30 May 2019; pp. 39–43. [Google Scholar] [CrossRef]
- Kumar, A.; Passi, A. Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognit. 2010, 43, 1016–1026. [Google Scholar] [CrossRef]
- Alonso-Fernandez, F.; Bigun, J. Near-infrared and visible-light periocular recognition with Gabor features using frequency-adaptive automatic eye detection. IET Biom. 2015, 4, 74–89. [Google Scholar] [CrossRef]
- Hofbauer, H.; Alonso-Fernandez, F.; Wild, P.; Bigun, J.; Uhl, A. A Ground Truth for Iris Segmentation. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 527–532. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- ISO/IEC 29794-6:2015; Information Technology—Biometric Sample Quality—Part 6: Iris Image Data. ISO: Geneva, Switzerland, 2015.
- Safarov, F.; Khojamuratova, U.; Komoliddin, M.; Kurbanov, Z.; Tamara, A.; Nizamjon, I.; Muksimova, S.; Cho, Y.I. Lightweight Evolving U-Net for Next-Generation Biomedical Imaging. Diagnostics 2025, 15, 1120. [Google Scholar] [CrossRef]
- Suzuki, S.; be, K. Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2019, 128, 336–359. [Google Scholar] [CrossRef]
- Fernandez, F.G. TorchCAM: Class Activation Explorer. 2020. Available online: https://github.com/frgfm/torch-cam (accessed on 15 September 2025).
- Ruiz-Beltrán, C.A.; Romero-Garcés, A.; González-García, M.; Marfil, R.; Bandera, A. FPGA-Based CNN for Eye Detection in an Iris Recognition at a Distance System. Electronics 2023, 12, 4713. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. arXiv 2018, arXiv:1812.04948. [Google Scholar]
- Guan, S.; Khan, A.A.; Sikdar, S.; Chitnis, P.V. Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal. IEEE J. Biomed. Health Inform. 2020, 24, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef]
- Hu, Q.; Yin, S.; Ni, H.; Huang, Y. An End to End Deep Neural Network for Iris Recognition. Procedia Comput. Sci. 2020, 174, 505–517. [Google Scholar] [CrossRef]
AMD/Xilinx ZynqTM UltraScale+TM | XCZU4EV-1SFVC784I |
---|---|
Logic Cells | 192 K |
Look Up Tables (LUTs) | 88 K |
DSP Slices | 728 (18 × 25 MACCs) |
CLB Flip-Flops | 176 K |
Block RAM | 4.5 Mb |
EMMC FLASH | 8 GB |
QSPI FLASH | 256 Mbit |
HP I/O | 96 |
HD I/O | 84 |
Application Processor | Quad-Core ARM Cortex-A53 MPCore |
Real-Time Processor | Dual-core ARM Cortex-R5 MPCore |
Graphics Processor | Mali-400 MP2 |
Dataset | TP | TN | FP | FN | Precision/Recall/F1-Score |
---|---|---|---|---|---|
CASIA | 1120 | 0 | 0 | 0 | 1.000/1.000/1.000 |
IITD | 1272 | 0 | 0 | 48 | 1.000/0.964/0.982 |
OUR | 46 | 427 | 6 | 1 | 0.885/0.979/0.929 |
# | Operation | Kernel | Parameters | Output Size |
---|---|---|---|---|
0 | Input Image | – | – | |
1 | DoubleConv (1→24) | 5448 | ||
2 | MaxPooling | – | ||
3 | DoubleConv (24→48) | 31,200 | ||
4 | MaxPooling | – | ||
5 | DoubleConv (48→96) | 124,512 | ||
6 | MaxPooling | – | ||
7 | DoubleConv (96→192) | 497,856 | ||
8 | MaxPooling | – | ||
9 | DoubleConv (192→384) | 1,991,040 | ||
10 | ConvTranspose (384→192) | 295,104 | ||
11 | Concat (7, 10) | – | – | |
12 | DoubleConv (384→192) | 995,904 | ||
13 | ConvTranspose (192→96) | 73,824 | ||
14 | Concat (5, 13) | – | – | |
15 | DoubleConv (192→96) | 248,928 | ||
16 | ConvTranspose (96→48) | 18,480 | ||
17 | Concat (3, 16) | – | – | |
18 | DoubleConv (96→48) | 62,256 | ||
19 | ConvTranspose (48→24) | 4632 | ||
20 | Concat (1, 19) | – | – | |
21 | DoubleConv (48→24) | 15,624 | ||
22 | Conv2d Out (24→1) | 25 |
Metric | Mean | Std. Dev. |
---|---|---|
Difference in Iris Radius (pixels) | 3.19 | 3.74 |
Distance Between Centers (pixels) | 5.49 | 1.30 |
Mean Iris Radius (Histogram method) | 22.71 | 1.39 |
Mean Iris Radius (Hough method) | 20.13 | 4.44 |
Setting | TP | FP |
---|---|---|
Eye-only solution | 6941 | 65 |
Iris-only solution | 6941 | 47 |
Eye-iris solution | 6941 | 0 |
Hardware and Model | Database | DICE | Time [ms] |
---|---|---|---|
FP32 model on RTX 3060 | CASIA-V3-Interval | 0.9555 | 0.984 ± 0.061 |
IITD | 0.9719 | 0.989 ± 0.056 | |
INT8 quantized model on MPSoC (B1024 DPU) | CASIA-V3-Interval | 0.9561 | 25.53 ± 0.110 |
IITD | 0.9706 | 25.50 ± 0.045 |
Method | Average DICE Coefficient | Number of Parameters [M] |
---|---|---|
ES-Net [23] | 0.9797 | – |
Lightweight UNet [19] | 0.9759 | 0.037 |
Proposed | 0.9706 | 4.37 |
PFSegIris [22] | 0.9661 | 1.86 |
UNet++ [17] | 0.9660 | 9.04 |
DeepLab V3++ [15] | 0.9658 | 18.86 |
FD-UNet [37] | 0.9595 | – |
Linknet [16] | 0.9586 | 9.82 |
UNet [13] | 0.9571 | 7.76 |
SegNet [14] | 0.9541 | – |
PSPNet [38] | 0.9393 |
Resource | Available | Utilisation [35] | Utilisation (Proposed) |
---|---|---|---|
LUT | 87,840 | 78,178 (89%) | 80,813 (92%) |
FF | 175,680 | 119,462 (68%) | 126,490 (72%) |
BRAM | 256 | 105 (41%) | 72 (28%) |
URAM | 48 | 48 (100%) | 48 (100%) |
DSP | 728 | 342 (46%) | 459 (63%) |
MMCM | 4 | 2 (50%) | 1 (25%) |
Stage | Processing Time (ms) | Rejection (%) |
---|---|---|
Detection | 21.441 ± 0.471 | – |
Filter | 3.675 ± 0.303 | 94.75 |
Preprocessing | 8.536 ± 0.444 | – |
Segmentation | 26.626 ± 1.414 | – |
Pupil/iris radius and center | 6.298 ± 3.231 | 13.20 |
Unroll Iris | 27.806 ± 3.221 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Beltrán, C.; Pons, Ó.; González-García, M.; Bandera, A. Real-Time Detection and Segmentation of the Iris At A Distance Scenarios Embedded in Ultrascale MPSoC. Electronics 2025, 14, 3698. https://doi.org/10.3390/electronics14183698
Ruiz-Beltrán C, Pons Ó, González-García M, Bandera A. Real-Time Detection and Segmentation of the Iris At A Distance Scenarios Embedded in Ultrascale MPSoC. Electronics. 2025; 14(18):3698. https://doi.org/10.3390/electronics14183698
Chicago/Turabian StyleRuiz-Beltrán, Camilo, Óscar Pons, Martín González-García, and Antonio Bandera. 2025. "Real-Time Detection and Segmentation of the Iris At A Distance Scenarios Embedded in Ultrascale MPSoC" Electronics 14, no. 18: 3698. https://doi.org/10.3390/electronics14183698
APA StyleRuiz-Beltrán, C., Pons, Ó., González-García, M., & Bandera, A. (2025). Real-Time Detection and Segmentation of the Iris At A Distance Scenarios Embedded in Ultrascale MPSoC. Electronics, 14(18), 3698. https://doi.org/10.3390/electronics14183698