UBSP-Net: Underclothing Body Shape Perception Network for Parametric 3D Human Reconstruction
Abstract
1. Introduction
- We propose UBSP-Net, a novel deep learning network that simultaneously infers the internal body point cloud and a VSMPL reference point cloud with point-to-point correspondence from a clothed 3D scan, enabling robust and efficient parametric model registration. By modeling the internal body point cloud as coordinate offsets from the external scan and leveraging body part label probabilities, UBSP-Net achieves a superior accuracy in capturing detailed body shapes, even with sparse or incomplete scans, outperforming existing methods like IP-Net and PTF in terms of the Chamfer distance errors and inference speed.
- We introduce an automated pipeline that seamlessly integrates internal body shape inference with SMPL and SMPL+D model registration, providing a scalable and privacy-preserving solution for parametric 3D human reconstruction. This pipeline optimizes the SMPL parameters for the internal body and extends to SMPL+D for clothed models, incorporating a local shield term to prevent irrational deformations in non-clothed regions, thus ensuring high-fidelity reconstruction across various common clothing types and enabling applications to 3D shape analysis, virtual try-ons, and animation.
2. Related Work
2.1. Body Shape and Pose Under Clothing
2.2. Human Body Model Registration
3. Fundamentals
4. Method
4.1. UBSP-Net
4.2. The Loss Function
4.3. SMPL/SMPL+D Model Registration
5. Dataset Generation
6. Experimentation and Analysis
6.1. The Influence of the Sampling Point Quantity
6.2. The Influence of the Part Label Probability
6.3. Comparison of Internal Body Shape Predictions
6.4. Parametric Model Reconstruction Evaluation
6.5. The Real Scan Reconstruction Experiment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haleem, A.; Gupta, P.; Bahl, S.; Javaid, M.; Kumar, L. 3D scanning of a carburetor body using COMET 3D scanner supported by COLIN 3D software: Issues and solutions. Mater. Today Proc. 2021, 39, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Chen, W.; Li, H.; Hill, R. Equivariant point network for 3D point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14514–14523. [Google Scholar]
- Lin, C.H.; Gao, J.; Tang, L.; Takikawa, T.; Zeng, X.; Huang, X.; Kreis, K.; Fidler, S.; Liu, M.Y.; Lin, T.Y. Magic3D: High-resolution text-to-3D content creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 300–309. [Google Scholar]
- Li, X.; Li, G.; Li, T.; Mitrouchev, P. Human body construction based on combination of parametric and nonparametric reconstruction methods. Vis. Comput. 2024, 40, 5557–5573. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Li, T.; Lv, J.; Mitrouchev, P. Design of a multi-sensor information acquisition system for mannequin reconstruction and human body size measurement under clothes. Text. Res. J. 2022, 92, 3750–3765. [Google Scholar] [CrossRef]
- Hu, P.; Kaashki, N.N.; Dadarlat, V.; Munteanu, A. Learning to estimate the body shape under clothing from a single 3-D scan. IEEE Trans. Ind. Inform. 2020, 17, 3793–3802. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Li, M.; Song, H. Parametric body reconstruction based on a single front scan point cloud. IEEE Trans. Vis. Comput. Graph. 2024, 31, 5816–5828. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, B.L.; Sminchisescu, C.; Theobalt, C.; Pons-Moll, G. Combining implicit function learning and parametric models for 3D human reconstruction. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16. Springer: Cham, Switzerland, 2020; pp. 311–329. [Google Scholar]
- Wang, S.; Geiger, A.; Tang, S. Locally aware piecewise transformation fields for 3D human mesh registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7639–7648. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. In Seminal Graphics: Pioneering Efforts That Shaped the Field; Association for Computing Machinery: New York, NY, USA, 1998; pp. 347–353. [Google Scholar]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2; Association for Computing Machinery: New York, NY, USA, 2023; pp. 851–866. [Google Scholar]
- Feng, H.; Kulits, P.; Liu, S.; Black, M.J.; Abrevaya, V.F. Generalizing neural human fitting to unseen poses with articulated SE(3) equivariance. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 7977–7988. [Google Scholar]
- Xie, H.; Zhong, Y. Structure-consistent customized virtual mannequin reconstruction from 3D scans based on optimization. Text. Res. J. 2020, 90, 937–950. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, T.; Liu, Y.; Dai, Q. Pamir: Parametric model-conditioned implicit representation for image-based human reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3170–3184. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, B.L.; Sminchisescu, C.; Theobalt, C.; Pons-Moll, G. Loopreg: Self-supervised learning of implicit surface correspondences, pose and shape for 3D human mesh registration. Adv. Neural Inf. Process. Syst. 2020, 33, 12909–12922. [Google Scholar]
- Chen, D.; Song, Y.; Liang, F.; Ma, T.; Zhu, X.; Jia, T. 3D human body reconstruction based on SMPL model. Vis. Comput. 2023, 39, 1893–1906. [Google Scholar] [CrossRef]
- Choutas, V.; Müller, L.; Huang, C.H.P.; Tang, S.; Tzionas, D.; Black, M.J. Accurate 3D body shape regression using metric and semantic attributes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 2718–2728. [Google Scholar]
- Wang, Y.; Daniilidis, K. Refit: Recurrent fitting network for 3D human recovery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 14644–14654. [Google Scholar]
- Pavlakos, G.; Choutas, V.; Ghorbani, N.; Bolkart, T.; Osman, A.A.; Tzionas, D.; Black, M.J. Expressive body capture: 3D hands, face, and body from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10975–10985. [Google Scholar]
- Wehrbein, T.; Rudolph, M.; Rosenhahn, B.; Wandt, B. Utilizing uncertainty in 2D pose detectors for probabilistic 3D human mesh recovery. In Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, AZ, USA, 26 February–6 March 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 5852–5862. [Google Scholar]
- Chen, S.; He, Y. Knowledge-embedded Transformer for 3D Human Pose Estimation. IEEE Trans. Instrum. Meas. 2025, 74, 5031811. [Google Scholar]
- Yu, T.; Zheng, Z.; Guo, K.; Zhao, J.; Dai, Q.; Li, H.; Pons-Moll, G.; Liu, Y. Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7287–7296. [Google Scholar]
- Zhang, C.; Pujades, S.; Black, M.J.; Pons-Moll, G. Detailed, accurate, human shape estimation from clothed 3D scan sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4191–4200. [Google Scholar]
- Lazova, V.; Insafutdinov, E.; Pons-Moll, G. 360-degree textures of people in clothing from a single image. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Québec City, QC, Canada, 16–19 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 643–653. [Google Scholar]
- Li, J.; Hu, Q.; Zhang, Y.; Ai, M. Robust symmetric iterative closest point. ISPRS J. Photogramm. Remote Sens. 2022, 185, 219–231. [Google Scholar] [CrossRef]
- Bogo, F.; Romero, J.; Pons-Moll, G.; Black, M.J. Dynamic FAUST: Registering human bodies in motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6233–6242. [Google Scholar]
- Yao, Y.; Deng, B.; Xu, W.; Zhang, J. Quasi-newton solver for robust non-rigid registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7600–7609. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2D pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Li, X.; Cheng, X.; Chen, F.; Shi, F.; Li, M. FPCR-Net: Front Point Cloud Regression Network for End-to-End SMPL Parameter Estimation. Sensors 2025, 25, 4808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Pons-Moll, G.; Pujades, S.; Hu, S.; Black, M.J. ClothCap: Seamless 4D clothing capture and retargeting. ACM Trans. Graph. (ToG) 2017, 36, 1–15. [Google Scholar] [CrossRef]
- Ma, Q.; Yang, J.; Ranjan, A.; Pujades, S.; Pons-Moll, G.; Tang, S.; Black, M.J. Learning to dress 3D people in generative clothing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6469–6478. [Google Scholar]
- Song, Y.P.; Wu, X.; Yuan, Z.; Qiao, J.J.; Peng, Q. Posturehmr: Posture transformation for 3D human mesh recovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 9732–9741. [Google Scholar]
- Yu, T.; Zheng, Z.; Guo, K.; Liu, P.; Dai, Q.; Liu, Y. Function4d: Real-time human volumetric capture from very sparse consumer rgbd sensors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 5746–5756. [Google Scholar]
Sampling Points | Part Labels (%) | VSMPL Reference Point Cloud | Internal Body Point Cloud |
---|---|---|---|
2000 | 96.7 | (100.4, 59.7) | (7.6, 1.5) |
4000 | 97.2 | (97.8, 59.9) | (7.2, 1.6) |
6000 | 97.4 | (96.1, 56.3) | (7.1, 1.4) |
8000 | 97.6 | (93.9, 56.3) | (6.7, 1.5) |
10,000 | 97.3 | (88.7, 56.9) | (6.4, 1.4) |
12,000 | 97.1 | (89.0, 55.4) | (6.4, 1.5) |
Method | VSMPL Reference Point Cloud | Internal Body Point Cloud |
---|---|---|
Unweighted labeling probability | (127.0, 61.5) | (7.8, 1.5) |
Weighted labeling probability | (88.7, 56.9) | (6.4, 1.4) |
Method | Mean | Standard Deviation |
---|---|---|
IP-Net [8] | 238.3 | 278.0 |
PTF [9] | 306.2 | 288.6 |
Ours | 180.9 | 44.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cheng, X.; Chen, F.; Shi, F.; Li, M. UBSP-Net: Underclothing Body Shape Perception Network for Parametric 3D Human Reconstruction. Electronics 2025, 14, 3522. https://doi.org/10.3390/electronics14173522
Li X, Cheng X, Chen F, Shi F, Li M. UBSP-Net: Underclothing Body Shape Perception Network for Parametric 3D Human Reconstruction. Electronics. 2025; 14(17):3522. https://doi.org/10.3390/electronics14173522
Chicago/Turabian StyleLi, Xihang, Xianguo Cheng, Fang Chen, Furui Shi, and Ming Li. 2025. "UBSP-Net: Underclothing Body Shape Perception Network for Parametric 3D Human Reconstruction" Electronics 14, no. 17: 3522. https://doi.org/10.3390/electronics14173522
APA StyleLi, X., Cheng, X., Chen, F., Shi, F., & Li, M. (2025). UBSP-Net: Underclothing Body Shape Perception Network for Parametric 3D Human Reconstruction. Electronics, 14(17), 3522. https://doi.org/10.3390/electronics14173522