Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters
Abstract
1. Introduction
2. Current-Mode Active Blocks Overview
- Y is a high-impedance (ideally infinite) voltage input terminal;
- X is a low-impedance (ideally zero) current input/voltage output terminal;
- Z is a high-impedance (ideally infinite) current output terminal.
- Y is a low-impedance (ideally zero) current input terminal;
- X is a high-impedance (ideally infinite) voltage input and current output terminal;
- Z is a low-impedance (ideally zero) voltage output terminal.
3. The Proposed Multifunction Filter
4. Simulations and Measurements
5. Comparison with the Literature
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Valkenburg, M.E. Analog Filter Design; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Singh, S.V. Electronically Tunable Voltage-Mode Biquad Filter/Oscillator Based On CCCCTAs. arXiv 2010, arXiv:1306.5412. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Chen, P.-Y. A CFOA-Based Voltage-Mode Multifunction Biquadratic Filter and a Quadrature Oscillator Using the CFOA-Based Biquadratic Filter. Appl. Sci. 2019, 9, 2304. [Google Scholar] [CrossRef]
- Gupta, M. New Single Input Multiple Output Type Current Mode Biquad Filter Using OTAs. Circuits Syst. 2016, 7, 231–238. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. A New Low-Voltage Low-Power Dual-Mode VCII-Based SIMO Universal Filter. Electronics 2019, 8, 765. [Google Scholar] [CrossRef]
- Channumsin, O.; Pukkalanun, T.; Tangsrirat, W. Voltage-Mode Universal Filter with One Input and Five Outputs Using DDCCTAs and All-Grounded Passive Components. Microelectron. J. 2012, 43, 555–561. [Google Scholar] [CrossRef]
- Chamnanphai, V. Electronically Tunable SIMO Mixed-Mode Universal Filter Using VDTAs. Electrotech. Rev. 2017, 1, 209–213. [Google Scholar] [CrossRef]
- Appala, N.G.; Krishna, B.T. Design of New Universal Filters with Second Generation Current Conveyor. I-Manag. J. Circuits Syst. 2019, 7, 11. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T.; Steffan, P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors 2023, 23, 5945. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Chen, H.P.; Ku, Y.; Zhong, M.X. Voltage-mode multifunction biquad filter and its application as fully-uncoupled quadrature oscillator based on CFOAs. Sensors 2020, 20, 6681. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Channumsin, O.; Unhavanich, S.; Pukkalanun, T. Dual-Mode Single-Input Three-Output Multifunction Filter and Quadrature Oscillator Consisting of Two Voltage Differencing Transconductance Amplifiers and Two Grounded Capacitors. J. Commun. Technol. Electron. 2023, 68, 460–473. [Google Scholar] [CrossRef]
- Jaikla, W.; Buakhong, U.; Siripongdee, S.; Khateb, F.; Sotner, R.; Silapan, P.; Suwanjan, P.; Chaichana, A. Single commercially available IC-based electronically controllable voltage-mode first-order multifunction filter with complete standard functions and low output impedance. Sensors 2021, 21, 7376. [Google Scholar] [CrossRef] [PubMed]
- Khateb, F.; Kumngern, M.; Kulej, T. 0.5-V 281-nW versatile mixed-mode filter using multiple-input/output differential difference transconductance amplifiers. Sensors 2023, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Uygur, A.; Kuntman, H.; Zeki, A. Multi-input multi-output CDTA-based KHN filter. In Proceedings of the ELECO: The 4th International Conference on Electrical and Electronics, Istanbul, Turkey, 7–11 December 2005; Volume 46, p. 50. [Google Scholar]
- Minaei, S.; Ibrahim, M.A. A Mixed-mode KHN-biquad Using DVCC and Grounded Passive Elements Suitable for Direct Cascading. Circuit Theory Appl. 2009, 37, 793–810. [Google Scholar] [CrossRef]
- Sen, F.; Kircay, A.; Cobb, B.S.; Akgul, A. MO-CCCII-Based Single-Input Multi-Output (SIMO) Current-Mode Fractional-Order Universal and Shelving Filter. Fractal Fract. 2024, 8, 181. [Google Scholar] [CrossRef]
- Ettaghzouti, T.; Hassen, N.; Garradhi, K.; Besbes, K. SIMO High Frequency Active Universal Current Mode Filter with Independent Control of Pole Frequency and Quality Factor. In Proceedings of the 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2017; pp. 157–162. [Google Scholar]
- Kumar, A.; Kumar, S.; Elkamchouchi, D.H.; Urooj, S. Fully Differential Current-Mode Configuration for the Realization of First-Order Filters with Ease of Cascadability. Electronics 2022, 11, 2072. [Google Scholar] [CrossRef]
- Safari, L.; Minaei, S.; Metin, B. A Low Power Current Controllable Single-Input Three-Output Current-Mode Filter Using MOS Transistors Only. AEU—Int. J. Electron. Commun. 2014, 68, 1205–1213. [Google Scholar] [CrossRef]
- Jin, J. Resistorless Active SIMO Universal Filter and Four-Phase Quadrature Oscillator. Arab. J. Sci. Eng. 2014, 39, 3887–3894. [Google Scholar] [CrossRef]
- Jerabek, J.; Vrba, K. SIMO Type Low-Input and High-Output Impedance Current-Mode Universal Filter Employing Three Universal Current Conveyors. AEU—Int. J. Electron. Commun. 2010, 64, 588–593. [Google Scholar] [CrossRef]
- Chaturvedi, B.; Mohan, J.; Jitender; Kumar, A. Resistorless Realization of First-Order Current Mode Universal Filter. Radio Sci. 2020, 55, e2019RS006932. [Google Scholar] [CrossRef]
- Ferri, G.; Guerrini, N.C. Low-Voltage Low-Power CMOS Current Conveyors; Springer Science & Business Media: Cham, Switzerland, 2007; ISBN 978-0-306-48720-0. [Google Scholar]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. Traditional Op-Amp and New VCII: A Comparison on Analog Circuits Applications. AEU—Int. J. Electron. Commun. 2019, 110, 152845. [Google Scholar] [CrossRef]
- Jia, H.; Lv, Y. Design of a Novel Wideband Op Amp with CCII Structure. Analog Integr. Circuits Sig. Process. 2015, 85, 445–449. [Google Scholar] [CrossRef]
- Stornelli, V.; Ferri, G.; Pantoli, L.; Barile, G.; Pennisi, S. A Rail-to-Rail Constant-Gm CCII for Instrumentation Amplifier Applications. AEU—Int. J. Electron. Commun. 2018, 91, 103–109. [Google Scholar] [CrossRef]
- Karami Horestani, F.; Karami Horastani, Z.; Björsell, N. A Band-Pass Instrumentation Amplifier Based on a Differential Voltage Current Conveyor for Biomedical Signal Recording Applications. Electronics 2022, 11, 1087. [Google Scholar] [CrossRef]
- Moustakas, K.; Siskos, S. Improved Low-Voltage Low-Power Class AB CMOS Current Conveyors Based on the Flipped Voltage Follower. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 961–965. [Google Scholar]
- Olivieri, R.; Barile, G.; Stornelli, V.; Ciarrocchi, D.; Fonte, M.; Zompanti, A.; Ferri, G. A novel current-mode EMG interface. In Proceedings of the 10th International Workshop on Advances in Sensors and Interfaces (IWASI), Manfredonia, Italy, 3–4 July 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. A review on VCII applications in signal conditioning for sensors and bioelectrical signals: New opportunities. Sensors 2022, 22, 3578. [Google Scholar] [CrossRef] [PubMed]
- Siripruchyanun, M.; Theppota, B.; Saksiri, W. A Second Generation Voltage Conveyor (VCII)-Based Transimpedance-Mode Instrumentation Amplifier. In Proceedings of the 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), Bangkok, Thailand, 24–25 August 2023; pp. 254–259. [Google Scholar]
- Reda, A.; Ibrahim, M.F.; Farag, F. Input–Output Rail-to-Rail CMOS CCII for Low Voltage–Low Power Applications. Microelectron. J. 2016, 48, 60–75. [Google Scholar] [CrossRef]
- Djurić, R.; Popović-Božović, J. A CMOS Rail-to-Rail Class AB Second-Generation Voltage Conveyor and Its Application in a Relaxation Oscillator. Electronics 2024, 13, 3511. [Google Scholar] [CrossRef]
- Olivieri, R.; Esposito, P.; Fonte, M.; Barile, G.; Zompanti, A.; Ferri, G.; Stornelli, V. A Current Mode Interface for Dendrometry through an Additively Manufactured Sensor. In Proceedings of the 2025 IEEE Sensors Applications Symposium (SAS), Newcastle, UK, 8–10 July 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Özoguz, S.; Acar, C. Universal Current-Mode Filter with Reduced Number of Active and Passive Components. Electron. Lett. 1997, 33, 948–949. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Channumsin, O. High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements. Radioengineering 2011, 20, 905–910. [Google Scholar]
- Higashimura, M.; Fukui, Y. Realization of Current-Mode Multifunction Filters Using Multiple-Output Current Conveyors. In Proceedings of the AP-ASIC’99, First IEEE Asia Pacific Conference on ASICs (Cat. No.99EX360), Seoul, Republic of Korea, 23–25 August 1999; pp. 55–58. [Google Scholar]
- Wang, S.-F.; Chen, H.-P.; Ku, Y.; Li, Y.-F. High-Input Impedance Voltage-Mode Multifunction Filter. Appl. Sci. 2021, 11, 387. [Google Scholar] [CrossRef]
- Kumngern, M.; Jongchanachavawat, W.; Phatsornsiri, P.; Wongprommoon, N.; Khateb, F.; Kulej, T. Cur-rent-Mode First-Order Versatile Filter Using Translinear Current Conveyors with Controlled Current Gain. Electronics 2023, 12, 2828. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T. Single EX-CCCII-Based First-Order Versatile Active Filter. Appl. Sci. 2024, 14, 7396. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Likhitkitwoerakul, N.; Pukkalanun, T.; Faseehuddin, M.; Tangsrirat, W. Cascadable First-Order and Second-Order Inverse Filters Based on Second-Generation Voltage Conveyors. Appl. Sci. 2025, 15, 1916. [Google Scholar] [CrossRef]
Parameter | α | β | ZX | ZY | ZZ |
---|---|---|---|---|---|
CCII | 1 | 0.99 | 7.4 kΩ | 10 MΩ | 2 MΩ |
VCII | 1 | 1 | 1.7 MΩ | 54 Ω | 202 Ω |
CCII | W (μm) | L (μm) | VCII | W (μm) | L (μm) |
---|---|---|---|---|---|
M1–M2 | 50 | 0.35 | M1–M2 | 30 | 0.35 |
M3–M4 | 35 | 1.2 | M3–M4 | 4.2 | 0.35 |
M5–M10 | 22.05 | 0.35 | M5 | 7 | 0.35 |
M6–M7–M8–M9 | 10 | 2.1 | M6–M7 | 50 | 3.5 |
M8–M9 | 28.7 | 1.4 | |||
M10 | 14 | 52 | |||
MB0–MB1–MB2–MB3 | 2.1 | 0.7 | |||
MB4–MB5 | 4.2 | 0.7 |
Reference | Operation Mode Filter Order | Main Active Block (Total Transistor Number) | No. Active Blocks | No. Passive Elements | Filter Operations | Technol. (μm) | Supply (V) | Power Consumption | THD Worst Case (%) | Internal Dependance | FOM |
---|---|---|---|---|---|---|---|---|---|---|---|
[6] | VM 2nd order | DDCCTA (44) | 2 | 4 (2R,2C) | LP, BP, HP, AP, BS | Mietec 0.5 | ±2 | 3.74 mW | 1.5–7 | yes | 0.089 |
[35] | CM 2nd order | CCII (Not available) | 4 | 4 (2R,2C) | LP, BP, HP | Not available | 10 | Not available | Not available | yes | Not available |
[36] | VM 2nd order | DDCCTA (22) | 1 | 3 (1R,2C) | LP, BP, HP | Mietec 0.5 | ±3 | 0.83 mW | 1.5–5.5 | yes | 0.6 |
[20] | CM 2nd order | CDTA (72) | 3 | 2 (2C) | LP, BP, HP, BR | Mietec 0.5 | ±2.5 | 19.6 mW | Not available | yes | 0.02 |
[4] | CM 2nd order | OTA+ Current Follower (44) | 3 (2 OTA + 1 CF) | 2 (2C) | LP, BP, HP, BR, AP | TSCM 0.18 | ±1 | Not available | 4–10 | yes | Not available |
[15] | MM 2nd order | DVCC (54) | 3 | 5 (3R,2C) | LP, BP, HP, Notch | TSCM 0.35 | ±1.5 | 5.76 mW | Not available | yes | 0.043 |
[37] | CM 2nd order | MOCCII (59) | 3 | 4 (2R,2C) | LP, BP, HP | Not available | ±2.5 | Not available | Not available | yes | Not available |
[11] | Dual-Mode (VM, CM) 2nd order | VDTA (36) | 2 | 2 (2C) | LP, BP, HP, | TSCM 0.25 | ±1 | 2.47 mW | 8–9 | yes | 0.2 |
[38] | VM 2nd order | CFA (N/A) | 3 | 5 (3R,2C) | LP, BS, BP | AD844 | ±6 | 255 mW | Not available | yes | 0.001 |
[22] | CM 1st order | DD-DXCCII (30) | 1 | 1 (1C) | LP, HP, AP | Standard CMOS 0.18 | ±1.25 | 2 mW | Not available | yes | 0.25 |
[39] | CM 1st order | CCCII (70) | 2 | 2 (2C) | LP, HP, AP | BJT (ALA400 CBIC-R) | ±2.5 | 2.72 mW | 1.8 | yes | 0.091 |
[18] | CM 1st order | MOCDTA (35) | 1 | 1 (1R) | LP, HP, AP | CMOS TMC 0.13 | ±1 | 2.5 mW | Not available | yes | 0.2 |
[40] | MM 1st order | EX-CCCII (35) | 1 | 1 (1C) | LP, HP, AP | Standard CMOS 0.18 | ±0.9 | 0.558 mW | 0.69 | yes | 0.89 |
[8] | CM 2nd order | CCII (30) | 3 | 4 (2R,2C) | LP, BP, HP | 0.7 | ±1.65 | Not available | Not available | no | Not available |
[41] | VM/CM 1st/2nd order | VCII (63) | 2/3 | 3/6 | INVERSE | Not available | ±0.75 | 0.25/0.5 mW | 1.5–2 | yes | 0.44 |
Proposed CMOS | TIM and VM 2nd order | VCII (64) | 5 (4 VCII + 1 CCII) | 14 (8R, 6C) | LP, BP, HP | Standard CMOS 0.35 | ±1.65 | 0.876 mW | 4 | no | 0.12 |
Proposed AD844 | TIM and VM 2nd order | CFA (Not available) | 5 AD844 | 14 (8R, 6C) | LP, BP, HP | AD844 | ±10 | 326 mW | 4 (sim) 1.78 (meas) | no | 0.00032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, R.; Di Lizio, G.A.; Barile, G.; Stornelli, V.; Ferri, G.; Minaei, S. Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters. Electronics 2025, 14, 3514. https://doi.org/10.3390/electronics14173514
Olivieri R, Di Lizio GA, Barile G, Stornelli V, Ferri G, Minaei S. Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters. Electronics. 2025; 14(17):3514. https://doi.org/10.3390/electronics14173514
Chicago/Turabian StyleOlivieri, Riccardo, Giuseppe Alessandro Di Lizio, Gianluca Barile, Vincenzo Stornelli, Giuseppe Ferri, and Shahram Minaei. 2025. "Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters" Electronics 14, no. 17: 3514. https://doi.org/10.3390/electronics14173514
APA StyleOlivieri, R., Di Lizio, G. A., Barile, G., Stornelli, V., Ferri, G., & Minaei, S. (2025). Conveyor-Based Single-Input Triple-Output Second-Order LP/BP and Cascaded First-Order HP Filters. Electronics, 14(17), 3514. https://doi.org/10.3390/electronics14173514